
 

U N I V E R S I T Y  O F  C O P E N H A G E N  

F A C U L T Y  O F  H E A L T H  A N D  M E D I C A L  S C I E N C E S  

 

 

 

 

 

 

 

 

 

 

Automatic learning and pattern recognition 

using sensor data in livestock farming 

 

PhD Thesis ∙ Dan Børge Jensen ∙ 2016 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

Automatic learning and pattern recognition 

using sensor data in livestock farming 

 

PhD Thesis 

Dan Børge Jensen 

 

HERD 

Centre for Herd-oriented Education, Research and Development  

Department of Large Animal Sciences  

University of Copenhagen 

 

February 2016 

 

 
 

 



ii 

 

Principal advisors 

 

Professor Nils Toft (March 2013 - August 2013) 

Department of Large Animal Sciences 

University of Copenhagen, Denmark 

 

Associate professor Cécile Cornou (August 2013 - October 2014) 

Department of Large Animal Sciences 

University of Copenhagen, Denmark 

 

Professor Anders Ringgaard Kristensen (October 2014 - February 2016) 

Department of Large Animal Sciences 

University of Copenhagen, Denmark 

 

Co-advisors 

 

Associate professor Cécile Cornou (August 2013 - October 2014) 

Department of Large Animal Sciences 

University of Copenhagen, Denmark 

 

Professor Nils Toft (August 2013 - February 2016) 

Section for Epidemiology 

Technical University of Denmark, Denmark 

 

External advisor and contact person while staying abroad 

 

Associate professor Albert De Vries 

Department of Animal Sciences 

University of Florida, United States of America 

 

Assessment committee 

 

Associate Professor Matt Denwood (Chairman) 

Department of Large Animal Sciences 

University of Copenhagen, Denmark 

 

Dr Søren Lundbye-Christensen 

Unit of Clinical Biostatistics and Bioinformatics 

Aalborg University Hospital, Denmark 

 

Associate Professor Lluis Miguel Plà Aragones 

Department of Mathematics 

University of Lleida, Spain 

 

This thesis has been submitted to the Graduate School of Health and Medical Sciences, University 

of Copenhagen 29/02/2016. 
 



iii 
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Summary 

This thesis should be considered in the lights of two primary contexts, namely the project context 

and the societal context. 

In terms of the project context, the PhD project, which formed the basis for this thesis, was itself a 

part of a larger project called PigIT - improving welfare and productivity in growing pigs using 

advanced ICT methods. This overall project covered several sub-projects, each of which were 

related to a number of different work packages with different foci. The continuing overall goal of 

this larger project is, in essence, to simultaneously improve both animal welfare and productivity of 

growing pigs. This is done by implementing existing sensor technologies for collecting precision 

data for monitoring purposes. By precision data is meant regularly and preferably automatically 

collected data pertaining to specific animals within the herd. For the PhD project presented in this 

thesis, the focus was on combining the collected data and, by means of models and classification 

tools, be able to predict or detect undesired events based on these combined data.  

In terms of the societal context, animal welfare is known to be a great concern for the citizens of the 

European Union, and in particular in the Scandinavian countries, including Denmark. It is however 

also known that the average European consumer is not willing to pay extra for animal products 

made under above-standard welfare conditions. If the productivity can be improved by improving 

the welfare, this would become less of a problem. Another important societal aspect is the rise of 

antibiotic resistant bacteria, which are naturally evolving in response to antibiotics use, including 

the antibiotics use seen in modern animal farming. It seems reasonable to assume that improving the 

health of the pigs would result in a reduced need for using antibiotics, which in return would reduce 

the selective pressure for antibiotic resistance in bacteria, thus slowing this evolutionary process 

down.  

Two primary hypotheses have been the motivating premises behind the research presented in this 

thesis. These are referred to as the environment hypothesis and the normality hypothesis. In short, 

the environment hypothesis states that the environment experienced by the pigs, including the very 

local environment at e.g. the pen level, affects the health and comfort of the pigs. Thus monitoring 

the local environment could yield predictions of undesired events. The normality hypothesis states 

that so long as the animals are healthy and comfortable, their behavior and physiological 

characteristics will be predictable by a dynamic model designed to describe this normal state. It then 

follows that when the animals become sick or experience discomfort, the same model will fail in 

predicting the behavior and physiological characteristics of the same animals. Thus the inaccuracies 

in the forecasts of such a model could be used to provide early warnings of oncoming problems.  

The five papers discussed in this thesis take one or both of the above mentioned hypotheses as their 

premises. Together they show a cumulative progression towards reaching the goals of the PhD 

project presented in this thesis, namely to combine data from multiple sources for the purpose of 

predicting or detecting undesired events in growing pigs: 
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Paper 1 demonstrates that there is good reason to suspect that monitoring the pen level 

environment will provide pen specific information on the health and welfare of the animals. It 

should be noted that since no direct pen specific data or direct health and welfare related 

registrations were available, proxies had to be used.  

Paper 2 shows that daily summaries of automatically collected pen level temperatures can provide 

information which is directly useful for predicting the onset of diarrhea and pen fouling at the pen 

level.  

Paper 3 shows that very diverse data streams can be meaningfully combined using a multivariate 

dynamic linear model (DLM). By diverse data streams is meant data produced by different sensors 

pertaining to different variables (specifically water consumption, feed amount, and live weight) 

with differing numerical values and variances, and different observational frequencies. Paper 3 

further presents a method for unifying the multiple forecast errors made by the multivariate DLM at 

each observation step. This unification method is based on Cholesky decomposition. The 

combination of a multivariate DLM for modeling multiple data streams and the Cholesky-based 

unification of the forecast errors is called the DLM/Cholesky method.  

Paper 4 shows that the DLM/Cholesky method can be used to make indiscriminant pen level 

predictions of undesired events in a large scale data set collected in a commercial Danish pig farm. 

It should be noted that only registrations of diarrhea and pen fouling were available to evaluate the 

method's performance. Furthermore, Paper 4 demonstrates that monitoring the data streams via 

multivariate DLMs provide a simple method of estimating the relative information value of the 

various data streams. This is achieved by systematically including or omitting specific data streams 

while estimating the resulting performance. Lastly, Paper 4 showed that the information value of the 

pen level temperature data was much lower when monitored with a multivariate DLM compared to 

the summary method used in Paper 2.  

Paper 5 demonstrated how a naïve Bayesian classifier (NBC) could be used to combine the forecast 

errors from a multivariate DLM as well as categorical non-sensor data for the purpose of detecting 

undesired events. This method was used to detect mastitis in dairy cows from Florida.   

These five papers all show that precision data are useful and important for detecting or predicting 

undesired events in groups or individual animals. Together, they further show that the multivariate 

DLM is a useful approach for monitoring the animal-oriented data, but that the environment-

oriented data are probably better monitored in terms of absolute summary values for this purpose. 

Lastly, it should be noted that further research is needed to improve the methods described in the 

Papers 1 through 5, as well as to verify their utility in multiple different herds, before any 

commercial implementations can be considered. 
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Sammendrag 

Denne afhandling bør betragtes i lyset af to primære sammenhænge, nemlig den projektmæssige 

sammenhæng og den samfundsmæssige sammenhæng.  

I forhold til den projektmæssige sammenhæng skal det siges at det PhD projekt, der udgør 

grundlaget for denne afhandling, var en del af et større projekt kaldet PigIT - improving welfare and 

productivity in growing pigs using advanced ICT methods. Dette overordnede projekt dækkede flere 

delprojekter, der hver især beskæftigede sig med et antal forskellige fokusområder. Det overordnede 

mål med dette større projekt er, kort fortalt, på én gang at forbedre dyrevelfærden og 

produktiviteten af slagtesvin. Dette gøres ved at implementere eksisterende sensorteknologier til 

regelmæssigt og helst automatisk at indsamle data med henblik på monitorering. Målet med det 

PhD projekt, der bliver præsenteret i denne afhandling, var at kombinere det indsamlede data og, 

ved brug af modellering og klassifikationsmetoder, at blive i stand til at forudsige eller detektere 

uønskede hændelser på baggrund af disse data.  

I forhold til den samfundsmæssige sammenhæng er det velkendt, at dyrevelfærd er en 

problemstilling som den europæiske befolkning går meget op i. Dette er særligt tilfældet i 

Skandinavien, inklusiv Danmark. Det er på den anden side også velkendt at den gennemsnitlige 

europæiske forbruger ikke er indstillet på at betale ekstra for produkter, der lover bedre 

dyrevelfærd. Hvis produktiviteten kan forbedres samtidig med at velfærden forbedres eller 

opretholdes, ville denne forbrugerholdning blive et mindre væsentligt problem. Et andet vigtigt 

samfundsmæssigt problem er den stigende fremkomst af antibiotikaresistente bakterier. Disse 

udvikler sig naturligt som reaktion på anvendelse af antibiotika, inklusiv det antibiotikaforbrug der 

finder sted i moderne landbrug. Det virker rimeligt at antage at en forbedring af dyrenes sundhed vil 

resultere i et mindsket behov for at bruge antibiotika, hvilket i sidste ende ville være med til at 

bremse denne evolutionære proces. 

To hypoteser har været motivationen for den forskning, der vil blive diskuteret i denne afhandling, 

nemlig miljøhypotesen og normalitetshypotesen. Kort fortalt postulerer miljøhypotesen, at det miljø 

som grisene oplever, inklusiv det meget lokale miljø i fx den enkelte sti, påvirker grisenes sundhed 

og komfort. Ved at monitorere det lokale miljø vil man således kunne forudsige uønskede 

begivenheder. Normalitetshypotesen postulerer, at så længe dyrene er sunde og komfortable, vil 

deres adfærd og fysiologiske karakteristika kunne forudsiges af en dynamisk model, der er designet 

til at beskrive denne normale tilstand. Det betyder til gengæld at når dyrene er syge eller oplever 

ubehag, vil den samme model ikke længere være i stand til at forudsige dyrenes adfærd og 

fysiologi. Således vil unøjagtighederne af en sådan models kunne bruges til at advare om 

begyndende problemer.  

De fem artikler, der bliver diskuteret i denne afhandling, tager udgangspunkt i de ovenfornævnte 

hypoteser. Tilsammen viser de en gradvis fremgang mod målene for det her beskrevne PhD projekt, 

nemlig at kombinere data fra flere kilder med det formål at forudsige eller detektere uønskede 

begivenheder i slagtesvin:  



x 

 

Artikel 1 indikerer at monitorering af miljøet i de enkelte stier vil give nyttig information om 

dyrenes helbred og velfærd.  Det bør bemærkes at hverken direkte miljøobservationer af de enkelte 

stier eller registreringer af sundheds- og velfærdsproblemer var tilgængelige. Derfor måtte 

alternative markør-data bruges i stedet for.  

Artikel 2 viser at daglige opsummeringer af automatisk indsamlet temperaturdata fra de enkelte 

stier kan levere informationer, som er direkte anvendelige til at forudsige diarre og stivending i den 

enkelte sti.  

Artikel 3 viser at meget forskellige typer datastrømme kan kombineres meningsfyldt ved brug af en 

multivariat dynamisk lineær model (DLM). Med forskellige typer datastrømme menes data, der 

opsamles via forskellige sensorer, der måler forskellige variable (i Artikel 3 var der tale om 

vandforbrug, foderforbrug, og grisenes kropsvægt) med forskelligartede numeriske værdier, 

varianser, og observationsfrekvenser. Derudover præsenteres der i Artikel 3 en metode til at forene 

de forudsigelsesafvigelser, der forekommer for hvert observationstrin i DLM'en. Metoden til at 

opnå denne forening er baseret på Cholesky dekomponering. Kombinationen af en multivariat DLM 

til at modellere flere datastrømme og den Cholsky-baserede metode til at forene 

forudsigelsesafvigelserne kaldes DLM/Cholesky metoden.  

Artikel 4 viser at DLM/Cholesky metoden kan bruges til at forudsige uønskede hændelser i enkelte 

stier i et større datasæt fra en kommerciel dansk svineproducent. Metoden kan dog ikke skelne 

mellem forskellige typer af uønskede hændelser. Det bør i øvrigt bemærkes at kun registreringer af 

diarre og stivending var tilgængelige til at evaluere metodens performance. Ydermere demonstrerer 

Artikel 4 en simpel metode til at estimere den relative informationsværdi af de forskellige 

datastrømme.  Dette opnås ved systematisk at udelade eller inkludere de enkelte datastrømme i 

DLM'en, mens man samtidig estimerer den derved opnåede performance. Til sidst skal det nævnes 

de temperaturdata, der blev indsamlet i de enkelte stier, så ud til at indeholde langt mindre 

information når de blev monitoreret med en multivariat DLM sammenlignet med den 

opsummeringsmetode, der blev brugt i Artikel 2.  

Artikel 5 viste at naïv Bayesiansk klassifikation kunne bruges til at kombinere både 

forudsigelsesafvigelserne fra den multivariate DLM og kategoriske data der ikke blev opsamlet med 

sensorer, med det formål at detektere uønskede begivenheder. Denne metode blev brugt til at 

detektere yverbetændelse i malkekøer fra Florida.  

Alle fem artikler viser, at regelmæssigt indsamlede data fra stierne eller de enkelte dyr kan 

omsættes til nyttig information, hvis man ønsker at detektere eller forudsige uønskede 

begivenheder. Tilsammen viser de desuden, at en multivariat DLM er en brugbar metode til at 

monitorere data, der er direkte relateret til dyrene. Derimod kan data der relaterer til det omgivende 

miljø sandsynligvis monitoreres bedre ved brug af absolutte opsummeringsværdier, i hvert fald til 

det her relevante formål. Til sidst bør det bemærkes at yderligere forskning er nødvendig for at 

forbedre de metoder der er beskrevet i Artiklerne 1 til 5, samt for at verificere at de kan bruges på 

flere forskellige gårde, før kommercielle implementeringer kan overvejes.   
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1.1 Background and motivation 

The PhD project described in this thesis was done as part of the larger PigIT project. The full title of 

this overall project is: PigIT - improving welfare and productivity in growing pigs using advanced 

ICT methods. Three words in particular stick out here: ICT, welfare, and productivity. ICT is simply 

an abbreviation of "information and communication technology", and productivity refers to how 

many pigs a farmer can produce per unit of some input factor, usually man hours. Welfare, on the 

other hand, is a broad umbrella term for many things, so some specification might be in order. One 

of the best known and most influential sets of criteria for animal welfare is the Five Freedoms, as 

laid out by the former advisory body to the British government known as the Farm Animal Welfare 

Council (2012): 

1. Freedom from hunger or thirst (by ready access to fresh water and a diet to maintain full 

health and vigor) 

2. Freedom from discomfort (by providing an appropriate environment including shelter and a 

comfortable resting area) 

3. Freedom from pain, injury or disease (by prevention or rapid diagnosis and treatment) 

4. Freedom to express (most) normal behavior (by providing sufficient space, proper facilities 

and company of the animal's own kind) 

5. Freedom from fear and distress (by ensuring conditions and treatment which avoid mental 

suffering) 

In the PigIT project, only items 1, 2, and 3 are actually considered so far as improving welfare is 

concerned, and the studies described in this thesis only relate to items 2 and 3.  Specifically, the 

goal was to develop methods for detection and early warnings of diarrhea, pen fouling, and tail 

biting in growing/finishing pigs, i.e. slaughter pigs growing from a weight of approximately 30 kg 

until they reach a live weight of around 110 kg and are ready for slaughter. Tail biting was not 

observed in the data which were used in the papers discussed in this thesis, and so this event will 

not be considered further in this thesis. Pen fouling, also known as undesired excretory behavior, is 

the event where the pigs will start resting in the dunging area and in return excrete in the resting 

area. This behavior is a well known response when the temperature in the pen exceeds the limit of 

what the pigs will experience as comfortable (Aarnink et al. 2006), and as such this problem relates 

to Item 2 of the five freedoms. In addition, the act of pen fouling means increased risk of disease, 

thus indirectly linking it to Item 3. Lastly, pen fouling will inevitably mean costly extra work for the 

farm staff, as they have to clean the fouled pen, meaning that predicting and preventing pen fouling 

would mean a more cost efficient pig production.  

Diarrhea is a common symptom of many different intestinal diseases, and the ability to achieve 

early warnings of this event thus relates directly to Item 3 of the five freedoms. Getting reliable 

early warnings about diarrhea could potentially be utilized for earlier treatment of the pigs (with 

antibiotics and/or other treatment options). Conventional slaughter pigs have a retention time of up 

to 30 days after receiving antibiotics (Videncenter for Svineproduktion 2013), during which time 

the farmer is not allowed to sell the pigs to be slaughtered. Thus earlier treatment of finishers would 
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mean a quicker sale of finished pigs, thus improving the productivity. In addition, earlier detection 

and earlier treatment would mean less time of suffering for the afflicted animals, thus improving the 

welfare. Lastly, it is conceivable that that earlier detection and treatment of infectious diseases 

would reduce the spreading of such diseases, resulting in a long-term reduction in the use of 

antibiotics. In addition to being financially appealing to the farmer, a reduction of antibiotic usage is 

of great interest to society as a whole, as we see an ever increasing problem with antibiotic 

resistance in infectious bacteria (Alanis 2005; Endtz et al. 1991).  

1.1.1 Why do we need to improve productivity? 

Pig production and pig slaughter are important factors in the Danish economy, with around 20 

million pigs being slaughtered in Denmark every year (The Danish Pig Research Centre 2014). 

Since the early 1990’s, however, the relative and absolute number of Danish-born piglets being 

exported, mostly to Germany and Poland, has increased steadily to a point where about one third of 

all Danish weaned pigs (< 30 kg) are currently exported instead of being slaughtered in Denmark. 

As a consequence, the number of pigs being slaughtered in Denmark has been decreasing since 

2003 (The Danish Pig Research Centre 2014) with slaughter houses closing and jobs disappearing 

as a result. During the same period, the total number of pig producers has been reduced by 

approximately 8 % per year, and according to projections from SEGES, Denmark will only have 

around 1300 pig producers by the year 2024, compared to the 3638 pig producers in business in 

2015 (Videncenter for Svineproduktion 2015).  

One reason for the increased export is that the foreign pig producers are able to pay more for the 

weaned than their Danish colleagues (The Danish Pig Research Centre 2014), reflecting the fact 

that raising the pigs to reach the slaughter weight can be done cheaper under e.g. German and 

Polish working conditions (Landbrug og Fødevarer 2011). In addition, the wages at e.g. German 

and Polish slaughterhouses and abattoirs are significantly lower than in Denmark, meaning that 

slaughtering the pigs in these countries is much cheaper than in Denmark (Landbrug og Fødevarer 

2011). Therefore, in order to retain the many jobs which are dependent on production and slaughter 

of Danish slaughter pigs we need to make the Danish production of slaughter pigs more efficient 

without compromising the health and welfare of the pigs.  

1.1.2 Why do we need to improve welfare? 

While the number of slaughter pig producers has been steadily declining over the past ten years or 

so, the average number of pigs per producer has roughly doubled from 2969 pigs in 2003 to 5314 

pigs in 2012 (Pig Research Centre 2013). Since the health of the pigs are generally assessed visually 

by the farm staff as they move through the herd as part of their various daily routines, it is 

reasonable to suspect that problems with health and comfort of the pigs can be easily missed, and 

that this problem only increases with increasing stock sizes. This idea seems to be supported by the 

findings of 2014 welfare control, conducted by the Danish Veterinary and Food Administration. 

They found that the most common problem for those herds, which did not pass the welfare control 

(27 % of all herds), was sick or injured animals, which did not receive the necessary treatment 

(Videncenter for Svineproduktion 2015). If we assume that these problems were generally due to 
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oversight and not malice, they could be reduced by automated monitoring and detection systems, 

which could point the farm staff's attention towards those animals with particularly high risks of 

health issues. This assumption of oversight is in line with the result of a cross sectional study 

covering 20 Danish commercial pig production herds (Weber et al. 2015). The authors showed that 

one third of all weaned pigs, which had been assessed as healthy by the farm staff, did in fact have 

diarrhea when they were clinically examined.  

Furthermore, an EU-wide survey conducted in 2006 showed that European citizens generally, and 

Scandinavians especially, consider animal welfare to be a very important issue (Eurobarometer 

2007b). On a scale from 1 to 10, Danes on average rated the importance of animal welfare at 8.6., 

while the overall EU average was 7.8. The lowest average rating for any country was 6.9 (Lithuania 

and Spain). Furthermore, the high importance ratings are constant regardless of political affiliations. 

In addition, an overwhelming majority of Europeans (77 %) said that animal welfare either 

probably of defiantly needs to be improved compared to current standards. For Denmark, this 

number was 81 %. 

Interestingly, this high level of concern for animal welfare amongst the European citizens is not 

reflected in their willingness to change their habits as consumers, as shown by another survey 

conducted mainly in 2006 (Eurobarometer 2007a). In this survey, 53 % of EU respondents said they 

never or very rarely consider animal welfare when buying eggs, meat, or milk, even though 74 % of 

these EU consumers believed that purchasing animal welfare friendly products would have a 

positive influence on the welfare of farm animals. Furthermore, 34 % of the EU respondents would 

accept no increase in price for buying welfare friendly products, while 25 % would accept up to a 5 

% increase in price.  

In short, it seems like the citizens in the European Union are highly concerned with the welfare of 

farmed animals, but that as consumers they are not willing to put in an effort or pay more to 

advance this cause, even though they actually believe that they have that power. It would thus seem 

to be the case that any improvements in animal welfare would need to be profitable for the farmer in 

and of itself, as consumers will not pay for it.  

1.2 Objective and challenges of this thesis 

A key element of the overall PigIT project was to utilize model based monitoring, also known as 

model predictive control, which is a popular strategy within the broader precision livestock farming 

(PLF) movement, as described by Wathes et al. (2008). The concept of model based monitoring is 

illustrated in Figure 1. For a physical system e.g. a herd, a section or pen within a herd, an 

individual animal, or any combination of these observational levels, data is collected using sensors, 

as well as in terms of diagnoses of undesired or otherwise relevant health states or behaviors. When 

this raw data is fed to one or more models, possibly after some pre-processing, the models should 

be capable of raising alarms concerning events which have already happened (detection) and/or 

concerning events which are likely to happen within some relevant future time frame (forewarning). 

These alarms can then be combined with general safety considerations and standard operating 

procedures for the farm to advise the farmer about what action to take. 
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Figure 1: The basic idea of a model-based monitoring system. The figure is adapted from Dvorak and Kuipers 

(1989). The red rectangle indicates the focus of the work done in relation to this thesis. 

The objective of the work done related to the papers described in this thesis was to turn the raw data 

into information which can be utilized for advising the farmer, as indicated by the red rectangle in 

Figure 1. In other words, the objective was to develop and demonstrate methods for processing 

collectable data into actual information pertaining to the condition of the animals. How this 

information should be translated into advices and decisions is however beyond the scope of this 

thesis, and is being covered in a parallel PhD project.  

In order to meet the stated objective, several challenges had to be overcome. 

One challenge is a lack of registered diagnoses of undesired events. In one of the used datasets, as 

described in section 2.1, no event registrations were available. In another dataset, described in 

section 2.2, registrations were only available for three specific kinds of undesired events, namely 

diarrhea, pen fouling, and tail biting. It is nevertheless known that other problems, such as influenza 

and pneumonia, were present in the herd, but for the research done in relation to this thesis, it was 

not possible to know when or where these other problems were observed. This then raised the 

challenge: 

 How should absent or limited registrations of undesired events be handled? 

Additional challenges emerged from the nature of the data being collected for the project. Overall, 

the data sets used in the papers relating to this thesis were collected through a multitude of sensors 

and could thus be very diverse; some of the collected data were numerical, while other data were 

categorical. Some data related to the environment experienced by the animals, some related to 

animal behavior, and some related to the physiology of the animals.  Because of the data diversity, 

the values from various numerical data streams would differ in numerical magnitude and variance. 

Moreover, the observational frequency could differ considerably between different sensors, with 

some observations being made every few minutes and others being made daily or even weekly.  

This diversity of data gave rise to three important challenges: 
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 What is the relative information value of the individual data streams within the multitude of 

available data streams? In other words, which data streams are most relevant to include 

when trying to detect and/or provide early warnings about undesired events? 

 How should multiple data streams, which differ in origin, numerical magnitude, variance, 

and observational frequency, be combined? 

 Do the various variables being measured interact with each other, and if so, how can these 

interactions be captured when combining the data? 

For various reasons, the collected data should not be expected to be very informative in its raw 

form, which is why pre-processing was done. For one thing, auto-correlation in the data means that 

deviations from an expected pattern may be more informative than the raw values of the 

observations. Furthermore, data streams with high observation frequencies are likely to have a low 

signal/noise ratio, and might thus benefit from being aggregated to e.g. sums or means of longer 

periods. As an example, continuous water flow measurements can be aggregated to hourly sum 

values, thus increasing the information density of each aggregated observation. It may further be the 

case that deriving secondary values from a collection of primary observations, e.g. the rate of 

change within some data stream, could provide more information than merely considering the raw 

observations. Thus some relevant pre-processing related challenges are: 

 Should the observations be condensed to a lower frequency? And if so, how? 

 Are any derived values more informative than the raw observations? 

 Are observed deviations from the expected pattern more informative than the raw 

observations? 

 What is the expected pattern?  

The output values, which are produced by the pre-processing, need to be passed through some 

model in order to determine if an alarm should be raised. In this context, the word "model" is used 

in a very broad sense, as it can be anything from a simple set of thresholds to more complicated 

classification tools. Prior to this, these models need to have been trained, i.e. optimized for 

classifying the data, based on existing observations which are known to be associated with either 

events or non-events.  

It is important to note that some models can also be used in the pre-processing part of the model-

based monitoring system, such as dynamic linear models as a method for handling the auto-

correlated nature of the data streams. These pre-processing models should not be confused with the 

classification models discussed in this paragraph.  

The alarms themselves provide additional challenges, as it should be decided if alarms should be 

raised before physical signs of the events are visible (forewarnings) or shortly after the events are 

observable (detection). Finally, the performance of these alarms must be evaluated.  

All in all, the matter of classification models and their associated alarms present the following 

challenges: 

 Which classification model should be used for raising the alarms? 
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 Should the system provide alarms before an event had occurred (forewarning) or afterwards 

(detection)? 

 How should the performance of the alarms be measured? 

The most important challenge of the ones listed above was probably the matter of how to best 

combine the various data streams. This challenge was particularly important, in part because it was 

the most novel aspect of the research done in relation to this thesis, but also because many of the 

other challenges listed above were directly tied to this challenge, and as a consequence were solved 

with it. 

1.3 State of the art 

In light of the research challenges listed in the previous section, an overview of the current state of 

monitoring pig production herds, either for the purpose of detecting diseases and other events or for 

the purpose of improving productivity, is in order.  

The data which are usually collected in relation to herd management and precision livestock 

farming can be divided into two broad categories, namely animal-oriented data and environment-

oriented data. In this context animal-oriented data refers to quantitative measures of the animals' 

behavior or their physiological traits, while environment-oriented data refer to quantitative 

measurements of the environment which the pigs are exposed to, such as air temperature and 

relative humidity. This section will first elaborate on the state of the art of utilizing these two data 

types for monitoring of pig production. Both common monitoring practices in modern pig 

production and experimental methods presented in the scientific literature will be considered. 

Subsequently, an overview of existing methods for combining multiple streams of data for PLF 

purposes will be given.  

1.3.1 Animal-oriented data 

In the practice of modern pig production, data pertaining directly to the pigs are rarely measured 

with sensors, automatically or otherwise. Rather, the assessment of the health and welfare of the 

animals is done by the farm staff through observation and interaction with the animals. For 

example, a commonly used sign of good health in weaned and finisher pigs is whether or not the 

pigs get up when the farm staff enters the section, and whether or not they generally display 

curiosity behavior (Eskildsen & Weber 2015). Specifically, healthy pigs of all ages should come out 

of hiding to examine the farm staff, while sick pigs will tend to stay hidden. In addition, the staff 

may observe such more or less obvious health indicators as diarrhea-like feces, which is a symptom 

of intestinal infections, or unclear urine, which is a symptom of bladder infection.  

One noteworthy variable, which is being measured in some modern pig farms, is the eating 

behavior of the pigs. For example, group-housed pregnant sows are commonly fed individually 

using electronic sow feeders such as the Nedap Electronic Sow Feeding systems (Nedap 2013), 

which will recognize the individual sow using RFID transponders and feed her according to her 

specific feeding plan. If any sow does not eat, the system can alert the farmer, as that would be a 
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sign of disease. Similar to this are the ACEMA systems (SKIOLD A/S 2016), which are used in 

breading stations such as the Danish Bøgildgård, which is run by SEGES. Like the Nedap system, 

the ACEMA system will recognize individual growing pigs via an RFID transponder, but will allow 

the pigs to feed ad libitum. By weighing the amount of dispensed feed and the amount left when the 

pig leaves the feeder, the system can monitor the exact feed consumption of the individual pig. By 

combining this data with regular weight measurements, the breeders can select those pigs which 

utilize the feed most efficiently. Lastly, some commercial slaughter pig producers use feeding 

systems such as those produced by Big Dutchman (Big Dutchman A/S 2016b), which will feed the 

growing pigs according to a predefined feeding curve, which can be adjusted during the growth 

period if need be. By using sensors such as the LevelCheck sensor which continuously measure the 

level of liquid feed in the through (Big Dutchman A/S 2016a), these systems can be made able to 

automatically measure how quickly the feeding through is emptied, which can provide the farmer 

with useful information. If, for example, the pigs are quick to finish a portion, a better growth can 

probably be achieved by increasing the next feed dosage, thus improving production. On the other 

hand, if the pigs are slow to finish the feed, it may be a sign of disease.   

Several other animal-focused sensors have been tested in scientific settings, but are not yet common 

in commercial production. A review by Cornou and Kristensen (2013) provides a useful overview 

of this research. The review describes a number of animal characteristics which can be monitored 

using sensors, such as live weight, drinking and feeding behavior, body temperature, activity, and 

the sow's interest in visiting a boar.  

Most of the research concerned with real-time monitoring of these characteristics focus on using the 

technologies to address health and welfare issues in sows. This is most notably true of various 

measures of sow activity which can be used to detect the onset of farrowing  (Cornou and Lundbye-

Christensen, 2012; Oliviero et al., 2008) as well as the onset of oestrus in sows (Freson et al. 1998). 

Oestrus has also been shown to be detectible via the sows interest in visiting a boar (Ostersen et al. 

2010) and feeding behavior (Cornou et al. 2008), and the onset of farrowing has been shown to be 

detectible through changes the body temperature of the sow (Bressers et al. 1994). Feeding behavior 

was additionally used to detect lameness and other non-specified health-relevant conditions in 

group housed sows (Cornou et al. 2008).  

One notable exception to the otherwise sow-focused monitoring inclination, is the use of monitoring 

drinking behavior in weaned pigs (4-11 weeks old) for detecting health problems with these pigs 

(Madsen & Kristensen 2005).  

Lastly, some researchers have experimented with monitoring coughing, which can be a sign of 

respiratory infections regardless of the sex or age of the pigs. Specifically, some researchers have 

focused on developing models to distinguish between coughing sounds from healthy pigs and 

infected pigs (Exadaktylos et al. 2008; Ferrari et al. 2008) while others have shown that a higher 

frequency of coughing is positively correlated with the probability of PCR and ELISA tests for M. 

hyopneumoniae being positive (Nathues et al. 2012), although the authors advise against relying 

solely on the coughing index for making this diagnosis.  
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1.3.2 Environment-oriented data 

Pigs are known to be particularly sensitive to their environment (Young 1981; Close et al. 2010) as 

well as to rapid fluctuations in that environment (Lopez et al. 1991a). It is further known that the 

optimal comfort temperature of the pigs will change as they grow. Specifically the optimal 

environmental temperature is 20
o
C when the pigs weigh 15-30 kg, 18

o
C when they weigh 30-60 kg, 

and 16
o
C when they weigh above 60 kg (Kyriazakis & Whittemore 2006). If the pigs experience 

temperatures either above or below their comfort temperature, they will grow less efficiently; when 

they are cold they will spend more of the energy provided in the feed on generating body heat, and 

when they are hot they will have diminished appetite (Kyriazakis & Whittemore 2006), thus in both 

cases reducing the productivity. Furthermore, pigs are known to foul the pen in response to 

uncomfortably high temperatures, with the magnitude of the problem increasing with higher 

temperatures (Aarnink et al. 2006), and to have increased susceptibility to diarrhea-causing 

pathogens when the temperature is fluctuating (Shimizu et al. 1978). Moreover, if the humidity 

becomes too low, the pigs' mucus membrane will dry up, thereby increasing the risk of respiratory 

infections.  

For these reasons, a detailed control of the environment within the herd is necessary in order to keep 

the pigs healthy and ensure a high productivity, and thus section level climate monitoring for the 

purpose of climate control is commonplace in modern pig production. Climate control can for 

example be done with integrative climate control systems such as the ones produced by the Danish 

company SKOV A/S (SKOV A/S 2016). Such systems will use sensors to monitor section level 

factors such as temperature and humidity. Readings from these sensors can then be used to 

automatically or manually adjust the section level environment.  

For the purposes of model-based monitoring systems, it is perfectly reasonable to assume that this 

climate monitoring data, which is already routinely collected, could be used to infer the conditions 

of the pigs and thereby provide forewarnings of undesired events. By using more detailed 

observations, e.g. at the pen or the individual animal level, these warnings could be more specific. 

This idea is supported by the findings of Andersen et al. (2008), who showed that ear skin 

temperature, automatically measured for the individual pigs, was closely related to established 

behavioral indicators of thermal comfort.  

1.3.3 Data combination methods in precision livestock farming 

Based on the scientific literature, it seems that only little research has been aimed at combining the 

data and/or information produced by different sensors when it comes to detecting undesired or 

desired conditions in pigs. This is probably due to the fact that using animal-oriented sensors to 

monitor the pigs with the intention of detecting undesired events is a relatively new phenomenon, as 

the overview given above will attest to. A few noteworthy examples do however exist.   

Cornou et al. (2008) combined sensor and non-sensor data in an attempt to achieve better detecting 

of oestrus, lameness, and/or other unspecified conditions for sows in a group housing system. The 

authors used a dynamic linear model (DLM) to model of the sows' feeding rank within the group. 
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The ranking of each sow was modeled separately. Information about introduction or removal of 

other sows was included by allowing the DLMs to adapt more rapidly in response to such changes 

than it otherwise would have. 

Ostersen et al. (2010) combined two behavioral variables, which were being automatically 

monitored in sows, to detect oestrus: the frequency and the duration of visiting a boar. The duration 

of the visits were modeled with four distinct dynamic linear models, each describing a different 

scenario, including the scenario where the sow was in oestrus. By comparing the forecasted 

durations from each of the four models with the observed duration, combined with the prior 

probability of being in each of the four states, the probability of being in each of the four states 

could be calculated. If the oestrus model had the highest probability of being correct, an oestrus 

alarm was raised.  

The visit frequency over periods of 6 hours was modeled using a dynamic generalized linear model. 

If the relative difference between observed and forecasted visit frequency was above a set threshold, 

an oestrus alarm was raised.  

These two variables were combined using Bayes' theorem, which updates the probability of a 

category being true. Since a probability of oestrus was generated for each observation of the visit 

duration, this was used as the prior probability of oestrus. The probability of oestrus could then be 

updated using the presence or absence of an alarm being produced for the visit frequency model, i.e. 

the likelihood that an alarm was raised if the sow was in oestrus (sensitivity) and the likelihood that 

an alarm would not be raised if the sow was in oestrus (1-specificity). This combination managed to 

raise the sensitivity of oestrus detection sensitivity compared to what was achieved with either 

variable alone, while at the same time not reducing the specificity.  

Many more examples of combining several different animal-oriented sensor data can be seen in 

relation to dairy cows, perhaps most notably in relation to detection of mastitis. A review by 

Hogeveen et al. (2010) gives a good overview of the modern attempts at improving the detection of 

dairy cow mastitis, usually by combining several lines of data using various data handling methods. 

Some interesting methods for handling these different data are artificial neural networks, Kalman 

filters, decision trees, and simple thresholds.  

The most straight forward sensor combination method is the one where two sensor values are 

considered, and both have to surpass a set threshold in order to raise an alarm. This was the case for 

the threshold-based combination of electrical conductivity of milk (EC) and somatic cell count 

(SCC) presented by Mollenhorst et al. (2010).  

More advanced data handling includes using the relevant variables as inputs in classification 

systems such as artificial neural networks, as done by e.g. Cavero et al. (2008), who used EC and 

milk flow as input variables. In addition to the absolute value of these variables, the authors 

forecasted the expected values of EC and milk flow based on the average of the last 10 milkings, a 

procedure commonly known as the moving average method. The deviations between the expected 

and the observed values were also used as inputs for the artificial neural network. 
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Even more complexity can be added by producing derived variables from primary variables. As an 

example,  Kamphuis et al. (2010) started with five sensors, namely an EC sensor, a milk flow meter, 

and three color sensors (red, green, blue) for measuring the color of the milk. From these, they 

produced a total of 1065 derived variables, all of which were considered to be independent. From 

the color sensors, a simple average of the three color values served as a "combined color". From the 

milk flow meter, a number of milk flow-related variables could be derived, such as overall milk 

yield in a milking, the time from attachment of the teat cup until milk flow began, and others. From 

these initially derived values, even more could be derived by including various descriptor types 

such as mean, maximum, minimum, range, standard deviation and others, each of which was found 

for the sensor values during the first 500 ml, the last 500 ml, and the entire milking. All values were 

also compared to several different expected values calculated using moving averages of different 

lengths. The resulting 1065 descriptive variables were used to build a total of 16 different decision 

threes, which after pruning included from 5 to 55 of the descriptive variables.  

In some of the above examples, the time series component of the data is addressed using the moving 

average method. Several alternatives to this method exist, however, for example dynamic models 

with Kalman filters. Kalman filters have been used by e.g. de Mol et al. (1997) to produce a 

multivariate dynamic model describing activity level, milk yield, milk temperature, and EC for 

individual cows, as well as a univariate dynamic model to describe the probability distribution for 

the amount of leftover feed per day for individual cows. These models were made for the purpose of 

detecting mastitis and oestrus in the individual cow. Some of the variables were considered relevant 

for both conditions, while others were only relevant for one condition. Just as with the moving 

average method, the Kalman filter would provide a forecasted value for each of the variables for 

each observation. These forecasts were then compared with the actual observations, and if at least 

one of the condition-relevant variables deviated significantly from the forecast, an alarm was raised 

for the relevant condition.  

Lastly, a few examples exist of combining sensor and non-sensor data in order to improve mastitis 

detection. For example (Steeneveld et al. 2010) used a naive Bayesian network to combine sensor 

and non-sensor data to reduce the number of false mastitis alarms. The idea was that if a cow had 

been flagged as mastitis positive by an automated milking system, an updated probability of the 

cow actually being mastitis positive could be calculated using Bayes' theorem by considering other 

information, such as the parity of the cow and the season of the year.  

The examples above serve simply to demonstrate that there is precedence for combining different 

streams of sensor data collected in livestock production for detection of relevant events, and as such 

the performances achieved by the cited authors are not important here. What is important is the 

realization that nothing in principle stands in the way of implementing any one of these methods, or 

any combination of them, with the intention of detection of or forewarning about undesired events 

in growing slaughter pigs, so long as relevant data can be collected. 
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1.4 Central hypotheses 

Three central hypotheses serve as the fundamental motivations behind the work presented in this 

thesis. These are: 

1. The core hypothesis, serving as motivation for the overall PigIT project:  

By systematically placing cheap sensors in the production pens of growing slaughter pigs, 

and by integrating the information which can be derived from these sensors, it is possible to 

significantly improve the production process in terms of both welfare and productivity. Thus 

the investment in the extra sensors will result in a net gain for the farmer.  

 

2. The environment hypothesis, serving as the motivation for Papers 1 and 2:  

The local environment (i.e. at the pen and/or section level), to which the pigs are exposed, 

will affect the health and welfare of the pigs. Therefore, by monitoring the local 

environment, the health state and comfort of the pigs can be inferred. 

 

3. The normality hypothesis, serving as the motivation for Papers 3, 4, and 5: 

When monitoring a dynamic system with a model which is optimized to describe the normal 

state of that system, the model will be able to accurately predict new observations, so long 

as the system maintain a normal state. Therefore, when the model is unable to provide 

accurate forecasts, the system has either changed or is in the process of changing to an 

abnormal state.  

Please note that only the environment hypothesis and the normality hypothesis were tested in the 

papers described in this thesis.  

1.5 Specific research goals 

This section outlines the goals of the individual papers included in this thesis. Collectively these 

papers address all the challenges listed in section 1.2. 

1.5.1 Paper 1: The effect of wind shielding and pen position on the average daily weight gain and 

feed conversion rate of grower/finisher pigs 

In Paper 1, the overall goal was to investigate whether observing the environment experienced by 

finisher pigs at the pen level would be likely to provide useful information related to the health and 

welfare of the pigs. Since no pen level environment measurements were available, two proxies were 

used: whether or not the outside of the section was shielded against the wind, and the pen's distance 

from the entrance of the section. The implicit assumption was that the pen level environment would 

vary consistently with these two proxies. Furthermore, no registrations of disease or other undesired 

events were available. Instead the average daily gain (ADG) and feed conversion ratio (FCR) were 

considered the outcomes of interest.  
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1.5.2 Paper 2: Temperature as a predictor of fouling and diarrhea in slaughter pigs 

With Paper 2, the intention was to evaluate the potential of pen level temperature measurements for 

providing forewarnings of pen level diarrhea and pen fouling. Paper 2 further served as a first 

attempt at condensing data streams with high observation frequency, as well for producing derived 

data based on primary sensor data. As described in section 2.2.1, the continuous observations were 

aggregated, first to 60 minute averages and then to four daily summary values for each of the two 

temperature sensors per pen. Lastly, Paper 2 demonstrated the use of one classification tool for 

raising the alarms, namely a logistic regression model.  

1.5.3 Paper 3: A multi-dimensional dynamic linear model for monitoring slaughter pig production 

In Paper 3, the goal was to demonstrate a method for combining multiple different streams of sensor 

data with different observational frequencies while taking the interactions between the different 

variables into account. It was decided to use a multivariate DLM, as described in section 3.3. 

Furthermore, Paper 3 presented a second classification tool for raising alarms, namely the 

unification of the forecast errors through Cholesky decomposition and transformation combined 

with a threshold value for the unified error. This combination of a multivariate DLM and the 

Cholesky decomposition for forecast error unification was called the DLM/Cholesky method.  

1.5.4 Paper 4: A multivariate dynamic linear model for early warnings of diarrhea and pen fouling 

in slaughter pigs 

With Paper 4, there were three main objectives: to demonstrate that the DLM/Cholesky method 

could be used to provide forewarnings of diarrhea and pen fouling on a large scale data set, to 

estimate the relative information value contained in each of the seven variables which were 

available at the time of the study, and to compare the performance of the DLM/Cholesky method 

with the summary/logistic regression method used on just temperature data in Paper 2. Paper 4 

further evaluated the predictive performance of the alarms when using different prediction 

windows. For Paper 4, only registrations concerning diarrhea and pen fouling were available, and so 

only these events were considered when evaluating the performance. 

1.5.5 Paper 5: Bayesian integration of sensor information and a dynamic linear model for prediction 

of dairy cow mastitis 

Paper 5 introduced a third classification tool for raising alarms, namely a naïve Bayesian Classifier 

(NBC). This tool served as a way of combining the information from sensor and non-sensor data. 

The sensor data were processed via a multivariate DLM into forecast errors. These forecast errors 

were categorized into four categories, based on their direction (positive error or negative error) as 

well as their magnitude compared to the forecast variance (more or less than one standard deviation 

from 0). This categorization allowed an easy combination with the categorical non-sensor data by 

means of the NBC. This combination of a multivariate DLM and an NBC was called the DLM/NBC 

method. Paper 5 further served to demonstrate that a DLM-based method could be used to detect 

undesired events in animals other than pigs, as it was used to detect mastitis in dairy cows.   
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For the research described in this thesis, data sets from a total of three different farms were used: 

Bøgildgård, a commercial Danish pig farm, and the University of Florida Dairy Herd. Here, these 

data sets and the herds they originate from, are described.  

2.1 Bøgildgård (Paper 1) 

Bøgildgård is a Danish boar testing facility. The data used in Paper 1 were collected in the 

grower/finisher station, where the pigs would grow from approximately 30 to 100 kg, before being 

selected either for slaughter or for use as breeding animals. The layout of the finishing station can 

be seen in Paper 1, Figures 1 and 2. The station housed three pure breeds of pigs: Duroc, Yorkshire 

and Danish Landrace, with Duroc making up approximately 50 % of the total population, and 

Yorkshire and Danish Landrace making up approximately 25 % each. A total of 961 groups of pigs 

(11-14 pigs per group) were included for Paper 1.   

The pigs were fed using ACIMA-48 feeding stations, as seen on Figure 2A. One such feeding 

station was installed in each pen, where it would dispend dry pelleted feed ad libitum.  Only one pig 

could be fed at a time, and the individual pigs were identified by the feed station via RFID ear tags. 

By weighing the amount of dispensed feed as well as the amount of uneaten feed left by the pig 

after eating, the amount of feed consumed by the individual pigs was automatically recorded.  

Once per week, all pigs were manually weighed using the pig scale seen in Figure 2B. Using the 

RFID ear tags, the weights were recorded for the individual pigs. On the same days, the thickness of 

the pigs back fat was also recorded, but these data were not included in the studies presented in this 

thesis.  

A) 

 

B) 

 

Figure 2: Data collection in the Bøgildgård grower/finisher section. A) The ACIMA-48 feeding station, used to 

record the amount of feed consumed by the individual pigs. B) The pig scale, used to manually weigh the 

individual pigs. The individual pigs were identified with RFID ear tags. 
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Of the weighing data, only the first and last weighing of each pig were used for the purposes of 

Paper 1. For the feed, the sum of total feed consumed for each pig over the growing period was 

used. Using this information, the average daily gain (ADG) and the feed conversion ratio (FCR) 

over the entire growth period could be calculated for the individual pigs using equations 2.1 and 

2.2, respectively. In short, FCR is a measure for the efficiency by which the pig is able to convert 

the consumed feed into growth.  

     
                              

                          
 

2.1 

    
                           

                              
 

2.2 

The ADG and FCR were then aggregated to group average levels. These aggregations were done 

according to equations 2.3 and 2.4, respectively.  

           
     

        

   

      
 

2.3 

           
     

        

   

      
 

2.4 

In equations 2.3 and 2.4,      and      are the individual ADG and the FCR values for the     pig 

in a given group while        is the total number of pigs in that group. 

Missing data was not an issue in the Bøgildgård dataset. 

2.2 A commercial Danish pig farm 

For Papers 2, 3, and 4, data from a single commercial Danish pig farm were used. Specifically, the 

data were collected in the farm's finisher unit, housing pigs while they grew from approximately 30 

kg to 110 kg, after which they were sold for slaughter. Each pen would hold 18 pigs at insertion, 

sorted by sex and size. For all three papers, the used data were collected between November 20
th

 

2013 and December 12
th

 2014 during which three new batches were inserted into the pens.  

As is seen on Figure 3, the finisher unit is made up of five sections, each containing 28 pens, 

corresponding to 14 double pens. Specifically the term double pen refers to two neighboring pens, 

which share the same feed and water supply, as illustrated in Paper 3 Figure 1A and 1B. For the 

PigIT project, a number of sensors were installed for data collection in four pens, i.e. two double 

pens, in four of the five sections, as highlighted of Figure 3. The data being collected were 

temperature, water flow, dispensed amount of feed, humidity, and live weight. 
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Figure 3: Layout of the finisher unit of the commercial Danish pig farm, which provided the data for Papers 2, 3, 

and 4. The unit consists of five sections, each with 28 pens (14 double pens). Data were only collected in four of 

the five sections, and only in four pens (two double pens) per section. The pens, in which data were collected, are 

highlighted with yellow. Source: Krogsdahl (2014) 

The temperature data were collected on pen level. This was done using two thermometers per pen; 

one by the section corridor and one by the back wall of the pen, as shown in Paper 4 Figure 1A. 

Each thermometer would measure and record the temperature approximately once every five 

minutes. 

Water flow was measured continuously on double pen level using flow meters installed in the water 

pipes, which were shared by the two pens in a double pen, as seen in Paper 3 Figure 1B and Paper 4 

Figure 1C. Thus a total of eight flow meters were installed. Each of these was calibrated manually 

to allow for double pen-specific conversion of flow units to liters.  

Liquid feed was automatically dispensed every day according to a feeding curve, which was defined 

for each double pen. The feeding system can be seen in Paper 4 Figure 1D. The farm staff would 

regularly adjust the feeding curves as necessary to correspond to the pig’s actual feed consumption.  

Humidity was collected on section level by the climate computer, produced by the company SKOV 

A/S. The climate computer is seen in Paper 4 Figure 1B. 

Live weight was only measured for the pigs in section 2. These pigs were manually weighed once 

per week using the scale depicted in Paper 4 Figure 1E. The pigs were identified using RFID tags, 

allowing the weight recordings to be made for the individual pigs.  

The staff at the farm would make daily manual registrations about observations of diarrhea, pen 

fouling, tail biting, as well as insertions or removals to or from the pens included in the PigIT 

project. In practice, tail biting events were hardly ever registered and were thus ignored in the 

studies described in this thesis. Insertion and removal registrations were used to know the exact 

number of pigs in a given pen on a given day.  

The data collected at the commercial farm had issues with both missing and nonsensical data. The 

nonsensical data were temperatures registered to be below 1 
o
C, relative humidity values below 1 % 
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and relative humidity values above 100 %. All such values were considered as being missing. These 

nonsensical values were taking into account in the following summaries of missing data. 

The data set covered a total of 4,228 pen-days, corresponding to 100,371 hours. Of these, data on 

dispensed feed amount were found to be missing for 1,222 days (29 %) and humidity data were 

found to be missing for 1,108 days (26 %). Data on temperature by the back wall as well as by the 

corridor were missing for a total of 13,005 hours (13 %). Data on drinking behavior, i.e. water flow 

and water activation frequency, were particularly plagued by missing data, with a total of 56,305 

hours (56 %) missing these observations. Data from the four pens in section 2, where pigs were 

supposed to be weighed once per week, covered a total of 144 weeks. Within these weeks, weight is 

actually registered a total of 112 times, meaning that weight registrations are missing for a total of 

32 weeks (22 %). This corresponds to an average of two weeks per group of pigs, and is a result of 

the fact that the weekly weighing of a given group stopped when the first pigs of that group were 

sent to be slaughtered, while those pigs which were not yet big enough stayed behind to reach the 

appropriate body weights.    

2.2.1 Paper specific data descriptions  

As previously mentioned, the data collected at the commercial farm were used in Papers 2, 3, and 4. 

This subsection elaborates on which data were used in each of these papers.  

For Paper 2, only temperature data were used.  Pens were considered the observational unit.  

These data were aggregated to hourly means, and daily summary statistics of these hourly means 

were calculated for each of the two thermometers. These summary statistics were maximum and 

minimum temperatures, greatest increase in temperature between two consecutive hours, and 

greatest decrease in temperature between two consecutive hours.  

For Paper 3, only feed amount, water flow and live weight data were used. Furthermore, only data 

collected in section 2, from which live weight was recorded, were included. Double pens were 

considered the observational unit. The amount of feed, measured in kg, dispensed per day per 

double pen was normalized by the total number of pigs known to be in the double pen on the 

relevant day. Similarly, the water flow, measured in liters, was aggregated to daily sums and 

normalized by the total number of pigs in the double pen.  The weekly live weights measurements 

of the individual pigs were aggregated to double pen means. Thus the unit of feed usage was 

kg/pig/day with observations every day, the unit of water flow was liters/pig/day with observations 

every day, and the unit of live weight was kg/pig/day with observations once every seventh day.  

For Paper 4, all of the monitored variables were included. Pens were considered the observational 

unit.  

Temperature was aggregated to hourly means for each of the two thermometers per pen. Water flow 

was aggregated to hourly means per total number of pigs in the double-pen. Furthermore, drinking 

bouts frequency, i.e. the number of times the water nipple was activated during each hour, was 

derived from the raw water flow data and normalized by the total number of pigs in the double pen. 

This variable was made to serve as a proxy for the activity level of the pigs. Humidity was 
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sometimes recorded once per hour and other times once per day. During the periods where the 

humidity registrations came with an hour-specific time stamp, those recordings were simply used as 

they were. During the periods with only daily humidity observations, which were not time stamped 

with a specific hour, the observations were simply assumed to be made at noon. Since humidity was 

only recorded at section level, all pens within the same section were assumed to experience the 

same humidity. Feed amount was only recorded as total amount (kg) per day, and with no hour 

specific time stamp, so these values were also assumed to be observed at noon.  

As live weight was only recorded once per week with no hour specific time stamp, these weight 

measurements were likewise assumed to be made at noon on the day where the weighing took 

place.  

Thus the unit of temperature was 
o
C/thermometer/hour, the unit of water flow was liters/pig/hour, 

the unit of drinking bouts frequency was activations/pig/hour, the unit of humidity was either 

percent/section/hour or percent/section/day, the unit of feed amount was kg/pig/day, and the unit of 

live weight was kg/pig/day.  

2.3 University of Florida Dairy Herd 

For Paper 5, data from the University of Florida Dairy Unit in Hague, Florida, were used. The herd 

consisted of approximately 500 Holstein cows at any given time, and the data were collected 

between September 2008 and March 2014. Two types of data were included in this study: sensor 

and non-sensor data. The event of interest was clinical mastitis, where the cows could be either 

positive or negative. The observational unit was the individual cow.  

All sensor data were collected using sensors from the company AfiMilk®, Kibbutz Afikim, Israel. 

The sensor data were collected while the cows were being milked in the milking parlor seen in 

Figure 4A. Milking happened twice per day at 6 AM and 6 PM. The data included milk yield and 

electrical conductivity of the milk, both of which were measured with the milk meter shown in 

Figure 4B on the right. In addition, the percentagewise content of fat, protein, lactose, and blood in 

the milk, as well as somatic cell count (SCC) were measured by the AfiLab system, as seen in 

Figure 4B on the left. Lastly, the body weights of the cows were measured by AfiWeigh automated 

scales when the cows entered the milking parlor. One of these automated scales is seen from two 

different angles on Figure 4C and Figure 4D.  

In summary, the various sensor variables came in three distinct sensor packages, namely the milk 

meter, the AfiLab and the automated scales.  

The non-sensor information included parity (first or later), previous mastitis treatment (yes or no), 

season ("warm season" is May to August; "cold season" is September to April), and days in milk 

(DIM from 1 to 301). All non-sensor data were considered as categorical data. In addition, SCC was 

treated as categorical data, with four categories: 0-200, 200-400, 400-800, 800+ (x 1000 cells/ml). 

All other sensor data were treated as continuous data.  
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A) 

 

B) 

 

C) 

 

D) 

 

Figure 4: A: The milking parlor with one milk meter and one AfiLab per cow being milked. B: The milk meter 

(right), used to collect data on milk yield and milk conductivity, and the AfiLab (left), used to collect data on 

milk composition and somatic cell counts. C and D) The AfiWeigh automated scale, used for weighing the cows 

as they entered the milking parlor, seen from two different angles.  

Positive cases of clinical mastitis were determined by the farm staff during milking. This was done 

by forestripping and visual observation of flakes in the milk. The cows were checked for mastitis 

during both morning and evening milkings, but registrations did not come with hour-specific time 

stamps. All mastitis observations made during the morning milkings were registered on the same 

day as the observations were made. All mastitis observations made during the evening milkings, 

however, were not registered until the next morning, and would thus appear as if they were 

observed a day later than they actually were.  

All sensor variables had instances of missing values. This problem was most prominent in weight 

and SCC data, which had 15.67 % and 6.12 % missing data, respectively. The remaining sensor 

variables had between 1.55 % and 3.10 % missing values. Missing values was not an issue for the 

non-sensor data.  
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Chapter 3: Modeling methodologies 
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For the papers included in this thesis, a number of different methods have been used for modeling 

the data, as well as handling the outputs produced by some of the models. The sections below serve 

to give an overview of the methods used in the different papers. All of the methods described below 

were either implemented in the statistical programming language R or made using existing R 

functions.  

3.1 Linear mixed models (Paper 1) 

In general, linear mixed models are models with a structure as given below: 

                  3.1 

They describe a continuous outcome variable ( ) given some intercept value ( ) plus some 

functions ( ,  , …) of a number of predictive variables which can be either numerical or categorical 

( ,   …), and one or more random effects (  ) when these are relevant. Finally the model contains 

an expression of the residual variation, i.e. the variation which cannot be explained by the any of the 

other variables ( ). In addition, interaction effects between two or more predictive variables can be 

included. If a linear mixed model has been created to describe an outcome given a number of 

predictive variables, an ANOVA analysis can be performed to determine the predictive significance 

of the individual variables in terms of p-values. If any variables are deemed non-significant, usually 

at the 5 % significance level, they can be removed from the model. By iteratively performing the 

ANOVA analysis and removing the least significant variable until all remaining variables are 

significant at the desired significance level, a final model can be achieved. This simple algorithm is 

known as backwards elimination. 

In R, a linear mixed model can be defined using the function lme from the nlme library. In Paper 1, 

this function was used to create separate models for describing ADG and FCR for each of the three 

pig breeds (Duroc, Yorkshire, and Danish Landrace) given the presence or absence of wind 

shielding (categorical), the pen’s distance from the section entrance (categorical), the season of the 

year (categorical), and the average start weight of the pigs in the pen, compared with the overall 

average for the breed (numeric). Furthermore, interactions between each of the two primary 

predictors (shielding and distance to the section entrance) and the comparative start weight as well 

as the season, were included. Backwards elimination was used to reduce the models to include 

variables which were significant at the 5 % level. The resulting models with estimates, describing 

ADG and FCR, can be seen in Paper 1 Tables 2 and 3. Paper 1 Table 2 refers to the models 

concerned with wind shielding, while Paper 1 Table 3 refers to the models concerned with pen 

distance to the entrance of the section.  

3.2 Logistic regression (Paper 2) 

In general, logistic regression models are models with a structure as given in equation 3.2. 

     ( )      (
 

   
)             

3.2 
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In other words, the logistic regression provides a model of the log-odds for a positive outcome of a 

binary variable, and the model describes how much the predictive variables ( ,  , …) affect these 

odds, positively or negatively. In R, a logistic regression can be made using the glm function, with 

the family-variable set to “binomial”. 

In Paper 2, the binary outcome in question was the observation of either of two undesired events, 

namely diarrhea and pen fouling, at the pen level in a commercial Danish herd of grower/finisher 

pigs. Initially, the predictive variables were a total of eight summary values for the two temperature 

sensors in each pen. These were reduced to five significant (p < 0.05) or borderline significant (p < 

0.1) variables via backwards elimination, as can be seen in Paper 2 Table 1.  

The log-odds for observing an undesired event can be translated into a probability of observing the 

event by equation 3.3.  

  
      ( )

        ( )
 3.3 

These probabilities were provided automatically by R when using the predict function, and the 

alarms were raised based on these probabilities, as explained in detail in section 3.6. 

3.3 Dynamic linear models (DLMs) (Paper 3, Paper 4, Paper 5) 

In the Papers 3, 4, and 5, the data were modeled using multivariate DLMs. Paper 3 served to 

demonstrate the implementation of a multivariate DLM for pen level sensor data in a pig herd, 

while Paper 4 and Paper 5 demonstrated the application of multivariate DLM for detecting 

undesired events at pen level in a pig herd (Paper 4) and for individual dairy cows (Paper 5). In the 

context of Paper 4 and Paper 5, the basic premise was the validity of the normality hypothesis 

presented in section 1.4. Specifically that a model, which had been designed to accurately describe 

the data pertaining to the healthy state of the relevant animals, would fail to accurately forecast the 

observed values when the health states of the animals were compromised. This assumption is 

corroborated, and the principle illustrated, in Paper 5 Figure 3.   

In general, a dynamic linear model is defined by an observation equation and a system equation, as 

shown in equations 3.4 and 3.5, respectively.  

     
                       (0   ) 3.4 

                          (0   ) 3.5 

The observation equation describes how a vector of observations at time =   (  ) depends on an 

unobservable parameter vector    as well as an observational variance ( ).  

The system equation describes how the unobservable parameter vector evolves from time =     to 

time =  , under the influence of a system variance ( ). The values in the unobservable parameter 

vector is continuously estimated through Kalman filtering, as described by West & Harrison (1997). 
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This filtering involves forecasting the observed values based on the prior estimates of the parameter 

vector, the prior estimates for the co-variances of the values in the parameter vector (  ), as well as 

the forecast co-variance matrix (  ). When co-modeling several variables with a multivariate 

DLM, the co-dependencies between those variables are captured by the various co-variance 

matrices ( ,  ,   , and   ). 

The (transposed) design matrix (  
 ) and the system matrix (  ), as well as the observation and 

system variance-covariance matrices (       ), are defined specifically for the models they are 

part of, as described in detail in the Paper 3, 4, and 5.  

3.4 Cholesky decomposition (Paper 3, Paper 4) 

In Paper 3 and 4, a Cholesky decomposition was used as a means to unify the forecast errors, which 

were produced by the multivariate DLMs.  

In general, a Cholesky decomposition can be found for a symmetric, positive definite matrix. For a 

symmetric, positive matrix,  , the Cholesky decomposition,     ( ), is defined as a lower 

triangular matrix, i.e. a symmetric matrix where all values above the diagonal are 0, which meets 

the criterion stated in equation 3.6. 

      ( )      ( )  3.6 

Due to the co-variances between the forecasted variables, as represented by the forecast co-variance 

matrix (  ), the forecast errors will also be co-dependent, which makes calculating a single, 

meaningful value for the magnitude of the several errors challenging. In Papers 3 and 4, this issue 

was mitigated by finding the Cholesky decomposition of    for each observation in the modeled 

data sets. This decomposed matrix was used to transform the error vectors, resulting in a vector of 

mutually independent values, each of which followed a standard normal distribution. This is 

illustrated by Figure 5 with a hypothetical example of two modeled variables. Before the Cholesky 

decomposition of    and subsequent transformation of the error vector, the two-dimensional 

probability distribution is irregular, as illustrated with the tilted ellipsis. After the transformation, 

we see a two-dimensional standard normal distribution, as represented by a circle with its highest 

density at the coordinates (0,0). In the case of three observed variables, the probability distribution 

of the transposed error vector will be represented by a sphere, and in cases of four or more 

variables, it will be represented by an n-dimensional hyper-sphere, where n is the number of 

variables being observed. In all cases, the vector of transposed forecast errors can be considered as a 

point within the n-dimensional sphere, and a single unified value for the set of forecast errors can be 

calculated as the distance from (0, ... ,0) to that point. 
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Figure 5: Hypothetical 2-dimensional example of the forecast error unification via Cholesky decomposition. 

Before transformation, the DLM forecast errors are mutually dependent, as illustrated by the tilted ellipsis. The 

Cholesky decomposition of the forecast variance matrix is found, and this is used to transform the forecast error 

vector. The values in the transformed forecast error vector are now mutually independent and will each follow a 

standard normal distribution, as illustrated by the circle. The transformed forecast error vector can be thought 

of as a point within this circle, and the distance between (0,0) and this point is taken as the unified forecast error.  

This unified error value,   
 , can be considered as the overall difference between the expected set of 

observations and the actual set of observations. Thus when the DLM is designed to describe the 

healthy situation, the unified error can be thought of as representing the distance to the healthy 

situation. If this difference is above a set threshold (for a sufficient number of consecutive 

observations), an alarm is raised.  

The unified error will follow a    distribution with   degrees of freedom, where   is the number of 

variables being observed at a given time. Specific quantile values of this distribution were used to 

define the control lines, which determined the magnitude of the unified errors required to raise an 

alarm. For Paper 3, the 0.99 quantile was used, corresponding to a 1 % probability of a given 

observation resulting in an alarm, assuming that the situation is normal. For Paper 4, all quantile 

values between 0.05 and 0.95 by steps of 0.05, as well as the 0.99 quantile, were tested.  

To allow for a constant control limit in response to varying degrees of freedom,   
  was adjusted, 

according to equation 3.7. 

      
    

  (
  (             )

  (          )
)  

3.7 

where          is the quantile value used to determine the control line and      is the maximum 

number of variables which can be observed at any given time.  

It is worth noticing that the this error unification can only raise alarms about the system being 

different from what is expected, and so does not provide information about what the specific 

problem is.  
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3.5 Naïve Bayesian Classifier (NBC) (Paper 5) 

In Paper 5, an NBC was used as a way of unifying the forecast errors produced by the multivariate 

DLM, as an alternative to the Cholesky-derived unification of the errors described above. 

In general, an NBC makes use of Bayes' theorem, as seen in its simplest form in equation 3.8. 

 (   |   )   
 (   |   )   (   )

 (   |   )   (   )   (   |   )   (   )
 3.8 

As is seen, Bayes' theorem states that the updated, or posterior, probability of a condition being 

positive after making a given observation ( (   |   )) is given by the likelihood, i.e. the 

probability of making that observation under the assumption that the condition is positive 

( (   |   )), multiplied by the prior probability of the condition being positive ( (   )). This 

probability is normalized by the total probability of making the observation given either condition 

(positive or negative), as seen in the denominator of equation 3.5. Under the naïve assumption, 

multiple observations (e.g. the forecast errors of multiple modeled sensor variables) are considered 

to be independent of each other. In that case, Bayes' theorem can be expanded to the form seen in 

equation 3.9, when a total of n variables are observed.  

 (   |           )

  
∑ ( (    |   ))   (   )
 
   

∑ ( (    |   ))   (   )
 
    ∑ ( (    |   ))   (   )

 
   

 
3.9 

The NBC had the benefit of allowing non-sensor data, such as season of the year and previous 

disease registrations, to be easily combined with the information from the forecast errors. An 

additional benefit was that by using likelihoods related to a specific undesired event, the NBC could 

be used to raise specific alarms of just that specific event, as opposed to the indiscriminant alarms 

raised with the DLM/Cholesky method. In Paper 5, the specific event of interest was mastitis in 

dairy cows. 

Figure 6 illustrates how the likelihoods were defined for the categorical variables, taking the season 

of the year as an example. Two seasons were observed in the data, namely "warm" and "cold". 

From the overall distribution of these seasons it is seen that 34 % of all the observations were made 

during the warm season and 66 % of the observations were made during the cold season, as seen in 

the top circle diagram of Figure 6. By dividing the learning set data into the observations where the 

cow did have mastitis and those where no mastitis was observed, the distributions become as seen 

in the two lower circle diagrams in Figure 6. The interpretation is that if a cow does not have 

mastitis, there is a 34 % chance of being in the warm season and a 66 % chance of being in the cold 

season. If, on the other hand, the cow does have mastitis, there is a 47 % chance of being in the 

warm season and a 53 % chance of being in the cold season. In other words,  (    |   )       

and  (    |   )      , while  (    |   )       and  (    |   )      . When these 

likelihoods are known, it is possible to observe the actual season and calculate an updated 

probability of a cow being mastitis positive, using Equation 3.5.  
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Figure 6: Illustration of how the likelihoods of categorical observations given health states were defined, using 

season (warm or cold) as an example. By splitting the learning set data into observations without mastitis 

(healthy) and observations with mastitis, it is found that the warm season is overrepresented in the mastitis 

positive subset, compared to the healthy subset. Specifically, if the cow has mastitis, there is a 47 % chance of 

being in the warm season, whereas if the cow does not have mastitis, there is only a 34 % chance of being in the 

warm season.  

In the example seen in Figure 6, the healthy distribution is the same as the overall distribution. This 

is incidental and does not necessarily have to be the case. 

For those sensor data which were modeled using a multivariate DLM, the likelihoods were defined 

for the forecast errors. For simplicity, each forecast error for each individual variable was assigned 

to one of four categories, based on how far and in what direction it deviated from zero. Figure 7 

illustrates how this was done, using milk yield as an example.  On Figure 7, the thick black central 

curve represents the forecasted milk yield on any given day of lactation between 1 and 301. All 

observations which are below this curve lead to negative forecast errors while all observations 

above  this curve leads to a positive forecast error. The thinner black curves above and below the 

central curve represent the forecasts plus and minus one forecast standard deviation, respectively. 

The forecast standard deviations were calculated as the square root of the forecast variance, which 

is calculated as part of the Kalman filtering as mentioned above. All observations which fell more 

than one standard deviation below the forecasted values were categorized as "low". Observations 

which fell below the forecasted value but within one standard deviation were categorized as 

"middle low", while those which fell within one standard deviation above the forecasts were 

categorized as "middle high". Lastly, those observations which were more than one standard 

deviation above the forecasts were categorized as "high". By finding the distribution of each of 

these four categories in the mastitis and the non-mastitis associated subsets of the learning data, 

likelihoods for each of the four categories could be found, according to the same principle as 

illustrated in Figure 6. 

It should be noted that Figure 7 shows all the milk yield observations relative to a common set of 

forecasts and a common set of standard deviations. This is only for illustrative purposes. In reality, 

each of the lactations had its own specific set of forecast values and standard deviation defined by 

the DLM of that specific lactation. 
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Figure 7: Illustration of how the likelihoods were defined for those sensor variables which were modeled with the 

DLM. Red circles: all the mastitis-associated observations in the learning set. Green circles: all the observations 

not associated with mastitis in the learning set. Thick central curve: a representation of the forecasted milk yield 

for each day in the lactation. Thinner outer curves: representations of the forecasted values +/- one standard 

deviation, calculated as part of the Kalman filtering. Observations more than one standard deviation below the 

forecasts are categorized as "low", observations less than one standard deviation below the forecast are 

categorized as "middle low", observations less than one standard deviation above the forecasts were "middle 

high", and observations more than one standard deviation above the forecasts were "high". In reality, each of 

the lactations had its own set of forecasts and standard deviations, and the common values shown here are 

purely for illustrative purposes. 

In the example in Figure 7, it is particularly noticeable that mastitis-associated observations (red) 

are overrepresented in the "low" category. In fact, if the cow does have mastitis, there is a higher 

chance of the milk yield forecast error being "low" compared to the chance of getting this error if 

the cow was healthy. In Paper 5 Table 3 it is seen that the exact likelihoods of "low" forecast errors 

(during morning milking) are 0.10 given that the cow has mastitis and 0.02 given that the cow does 

not have mastitis.  

3.6 Performance evaluation 

In Paper 2, 4, and 5, the performances of the alarms were evaluated based on prediction windows 

around the days where undesired events were observed. The idea is illustrated in Paper 4 Figure 7 

and in Paper 5 Figure 2. The prediction window stretches from a fixed number of days before the 

undesired event to a fixed number of days after the undesired event. If any alarms are raised within 

this prediction window, the window as a whole is counted as one true positive (TP). If no alarms are 

raised within a prediction window, the window is counted as a false negative (FN). Any days with 

alarms raised outside of a prediction window are counted as false positives (FP), and any days 

without alarms outside a prediction window are counted as a true negatives (TN). According to 

Hogeveen et al. (2010) this is a common method for evaluating predictive performance in the 
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context of dairy cow mastitis, and for this reason it was decided to use it in the context of the papers 

described in this thesis.  

For Paper 2, prediction windows of -3/+1 days were used, meaning that any alarms raised up to 

three days before an undesired event, or up to one day after, were counted as TP. Alarms were 

raised if the posterior probability of undesired events, as given by the logistic regression model, was 

above a set threshold. 

For Paper 4, different prediction windows were tested, stretching up to six days before and up to 

one day after the observation of the undesired events. Furthermore, because the data used in Paper 4 

was observed hourly rather than daily, any given day could in principle have up to 24 separate 

alarms, which in Paper 4 were referred to as part-alarms. Full alarms were raised if the number of 

consecutive part-alarms within a given day surpassed a set threshold.  

For Paper 5, the data had been collected twice per day, namely at 6 AM and at 6 PM, and the 

morning and evening data streams had been modeled separately. For each of these two data subsets, 

a prediction window of -0/+0 was used. This meant that only those alarms, which were raised on the 

specific day where an undesired event had been observed, were counted as a TP. Alarms were 

raised when the posterior probability given by the NBC surpassed a set threshold.  

By varying the alarm thresholds between 0 and 1 for Paper 2 and 5 (by steps of 0.001), and between 

0 and 25 for Paper 4 (by steps of 1), sets of sensitivities and specificities could be found for each of 

the tested threshold values. Sensitivity and specificity were calculated according to equations 3.10 

and 3.11, respectively. 

             
  

     
 3.10 

             
  

     
 3.11 

By plotting the sets of sensitivities against the sets of error rates, i.e.              , a receiver 

operating characteristics curve (ROC) (Zweig & Campbell 1993) was achieved. The area under this 

curve served as the primary measure of performance in all three papers.  
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Chapter 4: Findings 
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4.1 Paper 1: The local environment systematically affects the pigs  

In Paper 1 two proxies for information about the pen level environment were evaluated as sources 

for information about ADG and FCR of growing pigs. These two environment proxies were 

whether or not outside of the section was shielded against the wind and the distance from the 

entrance of the section to the pen. In relation to the overall goals of the PhD project, ADG and FCR 

similarly served as proxies for the pigs' health and welfare.  

Overall, there were no convincing effects on the FCR from neither shielding nor distance to the 

section entrance. Both proxies could however significantly and convincingly affect the ADG, 

although the effects could only be shown for Duroc pigs. In the case of shielding, this was probably 

due to the low number of non-Duroc groups being observed, resulting in a much lower study-power 

for those breeds. In the case of the pen's distance from the central corridor, this was simply because 

only Duroc pigs were placed at all distances, and thus the effect was only tested for these.  

Shielding alone could not be shown to have a significant effect on the ADG. Significant effects 

were only observed when interaction effects were considered between shielding and comparative 

start weight (p = 0.0002) and between shielding and insert season (p = 0.007).  

By comparative start weight is meant the average weight of a given group of pigs, minus the overall 

average start weight for the breed. On its own, the comparative start weight affects the ADG by an 

estimated factor of 0.011 kg, as is seen in Paper 1 Table 2. From the same table we see that not 

being shielded adds an extra 0.022 kg to this factor. In other words, if the goal is a high ADG, then 

shielding seems to be beneficial for small pigs but detrimental for larger pigs, according to the 

model.  

By insert season is meant the season (winter, spring, summer, and autumn) at which a group of pigs 

is inserted into the pen. The interaction between the binary shielding variable and the four different 

seasons meant a total of 28 pair-wise comparisons. Of these, five comparisons included the 

winter/no shielding-combination being compared to some other scenario, and all of these five 

comparisons showed significant differences (p < 0.05). No other comparisons showed significant 

differences. In other words, the absence of shielding during winter seems to be a consistent 

detriment to the ADG of the pigs, while the absence of shielding at insertion during any other 

season did not significantly affect the ADG, all else being equal.  

The distance to the section entrance, i.e. whether the pigs were placed in the 1
st
, 2

nd
, 3

th
, or 4

th
 pen 

from the entrance to the section, was found to be a significant predictor of ADG on its own, but no 

interaction effects with other variables could be demonstrated. Furthermore, the effect of the 

distance to the corridor was only significant in those pigs which were larger than their breed-

average at insertion. This is likely because pigs with relatively low insertion weights generally tend 

to grow more slowly than larger pigs, as is seen in Paper 1 Table 1. It would thus seem like the 

effect of starting out small outweighs the effect of pen placement relative to the central corridor.  

The parameters for the model describing ADG given the distance to the corridor for larger than 

average pigs are seen in Paper 1 Table 3. Furthermore, Paper 1 Table 4 shows the result of a Tukey 

Honest Significance Difference test, which was done to determine the pair wise differences in ADG 
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given the distance to the corridor. The 4
th

 pen clearly yields the greatest increase in ADG relative to 

the 1
st
 pen, with large pigs in the 4

th
 pen growing 48 grams more per day (p  = 0.0001). 

In summary, the results of Paper 1 show that the specific placements of the pigs within a herd will 

have significant influences on the growth of those pigs. The effects of the placement variables, in 

this case distance to the central corridor and the presence or absence of wind shielding, should be 

considered in relation to both the season of the year and the weight of the pigs at insertion. In short, 

larger-than-average pigs should be unshielded (except during the winter) and placed as far away 

from the section entrance as possible. Smaller-than-average pigs, however, should always have 

wind shielding, but are apparently not affected by their placement relative to the section entrance.  

As previously stated, the motivating hypothesis behind Paper 1 was the environment hypothesis 

stated in section 1.4. This hypothesis states that the pen level environment would be able to affect 

the health, growth and behavior of the pigs in the same way as the overall environment has been 

shown to do in previously published studies, and the findings in Paper 1 are consistent with this 

hypothesis. It is however important to be aware of the fact that while the findings are consistent 

with the environment hypothesis, they do not directly show that the pen level environment is 

causing the described effects, since no pen level environmental observations were available.  

Based on these results and considerations, it would likely be advantageous to monitor pigs at the 

pen level rather than at the section level, which is the current norm in the pig production industry.  

4.2 Paper 2: Pen level temperature predicts undesired events 

In Paper 2, monitoring the pen level temperature was evaluated as a method for providing 

forewarnings about diarrhea and pen fouling. The temperature was monitored in the form of eight 

daily summary values, covering two positions per pen, namely the lying area and the dunning area.   

From Paper 2 Table 1 it is seen that a total of five of the included summary values were found to be 

significant (p < 0.05) or borderline significant (p < 0.10), and thus included in the logistic 

regression model, as described in section 3.2. The intercept estimate is -12.78, meaning that this is 

the estimated log odds for the event that either diarrhea or pen fouling is occurring in a given pen on 

any given day, before making any observations.  This can be translated into an initial probability, 

  , using equation 4.1.  

   
       

         
            4.1 

 

It is worth noting that this value is far below the actual fraction of observed days, on which the 

undesired events were actually observed, which was around 1 %.  

Figure 8 serves to illustrate what the estimated logit-factors in Paper 2 Table 1 actually mean in 

terms of the probability of observing undesired events. The figure shows how the probability of 

observing either of the undesired events change when the values of each of the five variables go 
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from being at their lowest observed value to their highest observed values with steps of 0.01. From 

the top plot in the figure it is clearly seen that higher values of the lowest observed temperature 

increase the probability of observing the undesired events, bringing the probability up to nearly 100 

% when the lowest temperature is above 15
o
C, all other things being equal. Similarly it is seen that 

more extreme decreases in temperature from one hour to the next increase the probability of 

undesired events, when those decreases are observed by the drinking nipple. In the same way, more 

extreme temperature increases measured by the corridor increases the risk of observing events. 

Interestingly, when more extreme decreases in temperature are observed by the corridor, this results 

in a lowered probability of observing events. This seems both counterintuitive and unlikely, given 

the effects we see for the other included temperature change variables, and what is known from the 

scientific literature, as presented in several of the papers included in this thesis. Furthermore, this 

variable is the only one which was only considered borderline significant with a p-value of 0.086, 

which would further legitimize a skeptical attitude towards it. Nevertheless, the model was kept as 

presented in Paper 2. 

 

Figure 8: Graphical representation of the effect of each of the five temperature summary variables on the 

probability of observing undesired events.  
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When this model was tested on a test set, which did not overlap with the observations in the training 

set, good predictive performances were found. Figure 9 shows how the sensitivity and specificity 

change with the probability threshold, i.e. the model-given probability of an undesired event which 

is required before an alarm is raised. Notice that the bottom plot in Figure 9 is a zoomed in version 

of the top plot, made to enhance the readability. To most people it will probably seem most natural 

to set the probability threshold to 50 %. But, as is seen from Figure 9, this strategy would result in a 

sensitivity of 0 and a specificity of 1, meaning that no events will ever be detected. If one desires a 

specificity of 0.8, the threshold need to be set to 0.01, or 1 %. Remember that 1 % is roughly the 

overall prevalence of either diarrhea or pen fouling. It would thus seem that a more fruitful strategy 

is to set the threshold at the observed base prevalence. Similar results from Paper 5 support this 

notion.  

The total area under the ROC curve (AUC) for indiscriminate detection of diarrhea or pen fouling 

was 0.80. Considering the fact that an AUC of 0.5 is expected for completely random guessing, it is 

clear that the pen level temperature observations actually provide real and useful information in 

terms of detecting these undesired events. From this, it seemed obvious that including additional 

pen- and higher level observations was a meaningful next step towards even higher predictive 

performance.  

 

Figure 9: The effect of probability threshold on sensitivity (SE, red) and specificity (SP, blue) of event detection. 

All thresholds between 0 and 1 with steps of 0.001 were tested. The bottom plot is a zoomed version of the top 

plot, made to help the reader interpret the information more easily. An SE of 0.8 is achieved when the 

probability threshold is set to 0.01, or 1 %, which is also the overall prevalence of the events.  
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4.3 Paper 3: Co-modeling diverse variables 

In Paper 3, the goal was to demonstrate an implementation of a multivariate DLM for co-modeling 

multiple diverse variables. It was decided to co-model three observable variables, namely mean live 

weight of the pigs (kg), mean feed usage per pig (kg/day) and mean water flow (L/day). These three 

variables were chosen instead of e.g. pen temperature, as they are more obviously connected with 

each other, thus making the argument for co-modeling them easier to explain to an external 

audience
1
. These variables had the further distinction of being recorded with different time intervals 

and at different observational level.  

This method was found to have a number of appealing characteristics. First of all, the multivariate 

DLM is able to take the co-variances between the different variables into account when forecasting 

the next observations. In other words, the multivariate DLM will make forecasts for each of the 

variables being modeled based on all available information, and not just the current value and trend 

of the separate variables. Secondly, the DLM makes handling missing data easy, as it will only 

update the values in the parameter vector, from which the next observations are forecasted, given 

the variables which are actually being observed at a given time. Thus the forecasts are always made 

given the best available information.  

Paper 3 Figure 2 shows three examples of Cholesky-unified forecast errors being produced by the 

multivariate DLM. Two main things can be learned from this figure: first, this method is capable of 

producing very clear spikes in the unified error in relation to an undesired event, namely pen 

fouling, as seen in the middle plot. Second, the data which are relevant in relation to a given 

undesired event needs to be observed in order for the model to be able to produce an alarm about 

that event. This is exemplified in both the middle and the bottom plot. In both cases, diarrhea is 

observed during a longer period where data on water flow are missing, resulting in both diarrhea 

events going undetected.  

Lastly, it is worth noting that Paper 3 marks the first time where the normality hypothesis was 

explicitly stated: if a model is specifically designed to accurately forecast the observations of a 

healthy system (be that a single animal, a whole herd, or anything in between), one would expect to 

see large forecast errors when the system deviates from this state. It then follows that if such a 

model starts producing very large forecast errors, then the system has shifted from a healthy to a 

non-healthy state. Thus a model optimized for describing a healthy system can be used as part of an 

alarm system for detecting undesired events, such as disease outbreaks. 

Having demonstrated that the multivariate DLM method could be meaningfully used to co-model 

(double) pen level observations in a meaningful way, it made sense to test this method, and the 

normality hypothesis, on grander scales.  

  

                                                           
1
 Paper 3 was made as a conference paper and was presented at the EC-PLF conference in Milan, September 2015. 
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4.4 Paper 4: Evaluating the DLM/Cholesky method 

In Paper 4, the goals were to test the utility of the DLM/Cholesky method for providing 

forewarnings of diarrhea and pen fouling on a large data set, to estimate the relative information 

value of all available data streams for this purpose, and to compare the performance with that 

achieved in Paper 2.  

With respect to the first goal, an AUC of up to 0.88 was achieved, as well as a specificity of 0.81 

when the sensitivity was held at 0.80. This was done using a prediction window of -5/+1 days 

around the days with event observations while using the 0.70 quantile of the    distribution with 

between 1 and 7 degrees of freedom, depending on how many variables were observed at any given 

time. This quantile value determined the control line for part-alarms, as described in section 3.4. 

Figure 10 shows the sensitivity and specificity given the threshold for number of consecutive part-

alarms needed for one full alarm, as well as the corresponding ROC curve. As is seen, a sensitivity 

of 0.80 is achieved with a threshold of either five or six part-alarms required per one full alarm, but 

that a higher specificity is achieved with a threshold of six part-alarms. 

The ROC curves resulting from using the same control line but other prediction windows can be 

seen in Paper 4 Table 9 and in the top plot of Paper 4 Figure 10. 

Regarding the estimation of the relative value of the various variables, this was done by omitting 

one or more variables from the model to see how much this would affect the performance. The 

effects on the performance are illustrated in the middle plot of Paper 4 Figure 10. With the -5/+1 

prediction window, data on live weight, feed usage, and humidity could be completely ignored 

while still maintaining an AUC of 0.88, so long as water flow and drinking bouts frequency data 

were still included. When these drinking behavior data were omitted, however, the inclusion of live 

weight, feed usage, and humidity could actually be seen to contain at least some information. 

 

Figure 10: A) Sensitivity (SE) and specificity (SP) given the number of consecutive part-alarms required for one 

full alarm. The dashed lines indicate that a sensitivity of 0.8 is achieved when the threshold is set to either 5 or 6. 

B): The ROC curve corresponding to the SE and SP values seen on plot A).  
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Specifically, when drinking behavior was omitted, the combination of live weight, feed usage, 

humidity, and temperatures produced an AUC of 0.73, compared to the AUC of 0.65 achieved with 

the temperatures alone. This tells us that live weight, feed usage, and humidity carry very little, 

although some, useful information with respect to warning about diarrhea and pen fouling. This 

small amount of information was contained entirely in feed usage and humidity. This is at least the 

case given the way these data are currently collected and process. In the discussion of Paper 4, the 

argument is made that these variables might be more useful if they were collected more often, such 

as daily for the live weight, or hourly for the humidity.  

Omitting either water flow or drinking bouts frequency caused moderate reduction in the 

performance, reducing it to 0.85 and 0.87, respectively. A much greater reduction was seen when 

both of these were removed at the same time, as this resulted in an AUC of 0.73. This reveals that 

while one of these water variables may substitute partially for the other, the complete omission of 

drinking behavior is severely detrimental to this models performance.  

The omission of temperature measured in the lying area, but not by the corridor, also resulted in 

noticeable reduction of the performance, but not nearly to the same extend that omitting drinking 

behavior did.  

All in all, a list ranking the various data streams from most to least information value, given the 

goal and results of Paper 4, is as follows: 

1. Drinking behavior 

2. Temperature (in the lying area) 

3. Feed usage 

4. Humidity 

5. Live weight 

For comparison with the model presented in Paper 2, remember that the summary/logistic 

regression method reached an AUC of 0.80 for indiscriminate detection of diarrhea and pen fouling 

with a prediction window of -3/+1. It is interesting to note that this was not the case for the purely 

temperature-based model made with the DLM/Cholesky method. As mentioned earlier, and as is 

seen in Paper 4 Table 11, this method, using the same prediction window as in Paper 2, only 

managed an AUC of 0.65. From Paper 2 it is of course known that much more information is 

contained in the temperature data than this rather disappointing performance would otherwise 

suggest. The natural conclusion is therefore that the DLM/Cholesky method is simply not the best 

way to monitor the temperature if the goal is forewarnings of diarrhea and pen fouling.  
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4.5 Paper 5: Evaluating the DLM/NBC method 

The goals of Paper 5 was to demonstrate that the DLM/NBC method could be used for detecting 

clinical mastitis in dairy cows, and to estimate the relative values of each of the sensor packages 

described in section 2.3 (including the collection of non-sensor data) for this purpose.  

The fact that the three ROC curves seen in Paper 5 Figure 5 have respective AUC values of 0.89, 

0.85, and 0.73 is proof that the DLM/NBC method can indeed be used for detecting clinical mastitis 

in dairy cows.  

Much like in Paper 4, the relative value of the different data packages were evaluated by testing the 

predictive performances achieved with the different possible combinations of the three sensor 

packages. In Paper 5, the predictive performances were evaluated using three different 

measurements: the AUC of the ROC curve (as was the case in Papers 4 and 2), the specificity 

achieved when sensitivity was held at 0.80, and the error rate achieved when sensitivity was held at 

0.80. The results of these tests are seen in Paper 5 Table 4. One of the first things to notice is that 

the non-sensor data, designated as package 0, does contain some relevant information, although the 

effect of omitting these data are somewhat modest, but consistent over all three performance 

measures (change in AUC: from 0.89 to 0.88, change in specificity: from 0.81 to 0.79, change in 

error rate: from 0.19 to 0.21).  

The next thing to notice is that the automated scale, designated as package 3, does not offer any 

additional information so long as both the milk meter and the AfiLab (packages 1 and 2, 

respectively) are included. It does however seem to add some modest information when combined 

alone with either the milk meter or the AfiLab. From Paper 5 Table 3 it is seen that observing a 

forecast error for the live weight in the "Low" category (i.e. the live weight is more than one 

standard deviation below what was expected) is more likely if the cow has mastitis than if it does 

not. On the other hand, this relationship is not reflected in the descriptive statistics seen in Paper 5 

Table 1. Here it seems that, if anything, the mastitis positive cows tend to weigh slightly more than 

the cows without mastitis, although the two are well within one standard deviation from each other. 

It therefore seems more likely that the apparent effect of including live weight is an artifact of data 

noise and not in fact a true effect.  

Regarding the milk meter and the AfiLab, however, the effects of omitting either or both of these 

packages seem undeniable. Determining which of the two is more important is a more difficult 

matter. Including the milk meter while omitting the AfiLab yields a slightly better AUC than the 

other way around (AUC = 0.86 vs. AUC = 0.85). If one wish to keep the sensitivity at 0.80, 

however, including only the AfiLab instead of the milk meter results in a slightly better specificity 

(0.74 vs. 0.73) and error rate (0.25 vs. 0.27). But by the same token as with the apparent effect of 

live weight, these differences are so small that they could conceivably be the result of mere noise. 

Thus, if a farmer was forced to buy just one of these sensor packages, the best recommendation 

would be to go for the cheaper option rather than base the decision on these numbers. And at any 

rate, the best performance would be achieved by combining both packages 1 and 2 while also 

including the non-sensor information.  
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Pigs are known to be particularly sensitive to heat and cold. If the temperature becomes
too low, the pigs will grow less efficiently and be more susceptible to diseases such as
pneumonia. If the temperature is too high, the pigs will tend to foul the pen, leading to
additional risks of infection. Furthermore, unpublished data show that the temperature
within a single section of grower/finisher pigs can vary considerably from pen to pen, and
previous studies have shown that pigs can be significantly affected by wind, even when
not directly exposed to it. To address this latter concern, some pig producers and research
stations have implemented a shielding to prevent winds from blowing between separate
sections of the pig housing buildings. However, according to our search of the literature,
no published studies have ever investigated the effectiveness of such shielding.

To determine the significance of the effects of wind shielding, linear mixed models
were fitted to describe the average daily weight gain and feed conversion rate of 1271
groups (14 individuals per group) of purebred Duroc, Yorkshire and Danish Landrace
boars, as a function of shielding (yes/no), insert season (winter, spring, summer, autumn),
start weight and interaction effects between shielding and start weight and shielding and
insert season. Such a model was fitted separately to the data collected for each breed.
Shielding was found to have significant interaction effects with season (p¼0.007) and
start weight (p¼0.0002) for Duroc pigs, but no effect could be shown for Yorkshire or
Danish landrace.

To determine the effect of a group's placement relative to the central corridor of a
grower/finisher station, a similar model was fitted to the data for Duroc pigs, replacing
shielding with distance from the corridor (1st, 2nd, 3rd or 4th pen). The effect could not
be tested for Yorkshire and Danish Landrace due to lack of data on these breeds. For
groups of pigs above the average start weight, a clear tendency of higher growth rates at
greater distances from the central corridor was observed, with the most significant
differences being between groups placed in the 1st and 4th pen (p¼0.0001). A similar
effect was not seen on smaller pigs. Pen placement appears to have no effect on feed
conversion rate.
iented Education, Research and Development, Department of Large Animal Sciences, University of
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No interaction effects between shielding and distance to the corridor could be
demonstrated. Furthermore, in models including both factors, the effect of distance to
corridor completely dominated over the effect of shielding, suggesting that shielding
should at most be considered of secondary importance.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Pigs are known to be more sensitive to heat and cold
than, for example, cattle and will thus be more likely to
expend energy to maintain a constant body temperature in
response to varying surrounding temperatures (Young,
1981). This means that when exposed to temperatures
below a critical threshold, the animal will expend energy
on maintaining a constant body temperature rather than
on growth. When wind is blowing, this threshold is
significantly reduced, even if the pigs are not directly
exposed to the blowing wind (Close et al., 1981; Mount,
1966). This is in line with the findings of Fitzgerald et al.
(2009), who showed both the outside temperature and the
wind speed to be significant factors relating to the risk of
pigs arriving dead or exhausted after a transport to the
abattoir, despite being shielded by the walls of the truck.
Fitzgerald et al. (2009) found that low temperature gen-
erally increased the risk of pigs dying, while high wind
speeds increased the risk during winter and reduced the
risk during summer.

In addition to metabolism and stress, the temperature
to which a pig is exposed can also affect the risk of
infections. For example, lower temperatures increase the
risk of pigs being infected with Mycoplasma hyopneumo-
niae, the bacterium which is the main causative agent of
enzootic pneumonia and porcine respiratory disease com-
plex (Segalés et al., 2012). Aside from being a welfare
problem, such infections can significantly reduce the daily
weight gain of the pigs, as demonstrated by Wilson et al.
(2012). Also, it is known that pigs which experience
temperatures above the limits of their comfort (typically
20–25 1C) will tend to foul the pen (Aarnink et al., 2006).
The pigs will thus excrete in the resting area and rest in
the dedicated excretion area of the pen, which can cause a
series of potential health problems. Furthermore, currently
unpublished data, given to us by the Danish research
centre Foulum (AU Foulum 2013), show that within the
same section of a pig production building, the temperature
can vary considerably between individual pens.

Given the sum of the above information, it is meaningful
to assume that certain areas of a given pig production
building would pose problems for the growth and health of
the pigs, which we expect would be evident from a slower
average growth rate and/or less efficient utilization of the
feed given to the pigs in those troublesome areas. Such
troublesome areas might be pens with back walls exposed
to the wind and temperature of the outside environment, or
pens placed near the central corridor of a production
building, as these will experience more draft. Based on
the first of these assumptions, the Danish Pig Research
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Center (Danish Agriculture and Food Council, 2013) has put
up wooden walls intended to provide shielding, preventing
the wind from blowing between separate sections of
Bøgildgård, their fish bone-shaped research and boar
breeding station in Kjellerup, Denmark (see Fig. 1A). How-
ever, from our search of the scientific literature, there seem
to be no studies examining the utility of such shielding, nor
of the effect on the pigs being placed near the central
corridor. A better understanding of the true effect of these
factors would help farmers to make informed decisions
about the best placement of pigs in terms of efficient
production. Thus, the purpose of this study is to assess
the effect of wind shielding and pen placement relative to a
station's central corridor on average daily weight gain
(ADG) and feed conversion rate (FCR). These primary
predictive factors are examined in combination with the
effects of varying seasons and pig start weight.

2. Materials and methods

This study was concerned with the effect on the main
outcomes (ADG and FCR) at the level of the pen. Thus, ADG
and FCR were first calculated for the individual pigs in the
dataset, and subsequently the data was aggregated to the
level of groups. We use the term “group” to mean up to 14
individual pigs, which are sharing the same pen during the
same period of time. ADG and FCR were calculated at the
individual pig level according to the following equations:

ADG¼ WeightEnd�WeightInsertion ðkgÞ
AgeEnd�AgeInsertion ðdaysÞ

ð1Þ

FCR¼ Total feed consumption ðkgÞ
WeightEnd�WeightInsertion ðkgÞ ð2Þ

The aggregation of ADG and FCR to group level was then
done according to the following equations:

Group_ADG¼ ∑i ¼ Ngroup

i ¼ 1 ADGi

Ngroup
ð3Þ

Group_FCR¼ ∑i ¼ Ngroup

i ¼ 1 FCRi

Ngroup
ð4Þ

where ADGi and FCRi are the ADG and FCR values for the
ith pig in the group respectively and Ngroup is the number
of pigs in the group.

2.1. Source and study population

This study was done using data collected at the Danish
research station Bøgildgård (Danish Agriculture and Food
Council, 2013), primarily used for boar breeding. The study
population was purebred grower/finisher pigs (30–100 kg)
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in a grower/finisher station with mechanical and natural
ventilations. The mechanical ventilation was placed in the
ceiling of the sections and automatically controlled accord-
ing to a number of set points for temperature and
humidity. The windows were as a rule never open. The
boars were given dry pelleted feed ad libitum. The feed
consisted of 1.05 FUgp (Feed Units for growing pigs),1

16.1% crude protein, and 0.9% lysine per kilogram feed. The
feed intake for each animal was individually recorded
using “ACEMA-48” electronic feeding stations. The data
set contains manual weight measurements and automatic
feed consumption registrations from 18,525 individual
pigs of three different breeds (Duroc, Yorkshire and Danish
Landrace) from September 2008 to December 2011. The
18,525 individual pigs made up a total of 1473 groups.
Groups of 11–14 individuals made up 93% of the observa-
tions. For this reason, only groups with a size of 11 or
above were included in the study. To get realistic estimates
of the average daily weight gain over a group's time in the
grower/finisher station, only groups with a realistic aver-
age start weight of 40 kg or below were included in the
study. Table 1 provides descriptive statistics of the study
population.

The structure of the grower/finisher station at
Bøgildgård is illustrated in Fig. 1. As shown, the station is
laid out as a symmetrical fishbone structure with a central
corridor and eight sections (sub-buildings) on each side
(Fig. 1A). Each section holds four pens along each long
wall, i.e. eight in total. For the purpose of this study, the
layout of the station was considered as an (X,Y)-coordinate
system with the west–east direction representing the
X-axis and the north–south direction representing the Y-
axis. The centre of the coordinate system is set at the
centre of the central corridor. Pens east of the central
corridor (vertical shaded area in Fig. 1B) are represented by
positive X-values while pens west of the corridor are
represented by negative X-values. Similarly, pens north
of the central section, which does not house any pigs
(horizontal shaded area in Fig. 1B), are represented by
positive Y-values, while pens south of central section are
represented by negative Y-values. The circles (Duroc),
triangles (Yorkshire) and crosses (Danish Landrace) indi-
cate which breeds are most commonly placed in the
various pens. As is seen, the breeds are not placed
randomly throughout the station, but are systematically
put in specific pens. Neighboring sections on the same side
of the corridor have open space between them. To prevent
wind from blowing between the neighboring sections,
wooden walls are placed between neighboring sections,
as seen in Fig. 2. In Fig. 1B, this shielding is marked by
thicker lines.

The Duroc groups are found most evenly distributed
throughout the station, as they are generally placed in
every pen on the right-hand side of the section, as seen
when entering from the central corridor. Groups of York-
shire and Danish Landrace are generally placed at the left
hand side of the section with Danish Landrace groups
generally being placed in the pens closer to the central
1 FUgp approximates 12.5–12.8 MJ metabolizable energy.
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corridor and the Yorkshire groups being placed at the far
end of the section. Beyond the eight pens of each section is
a separate room (not depicted in Fig. 1B) which is used for
keeping the pigs for weighing purposes. This separate
room means that the walls of the farthest pens, which
run parallel with the central corridor, are not directly in
contact with the outside environment.
2.2. Data analysis

All data analysis, models and data representations were
made using the free statistical software tool R, version
2.15.3 (The R Core Team, 2013).

The main outcomes of this study are ADG and FCR. The
predictors of the two main outcomes are
a.
 Wind shielding (yes/no) and distance from the central
corridor (1st, 2nd, 3rd or 4th pen) were the primary
predictors of interest.
b.
 Start weight, i.e. the average weight in kg of the pigs in
a given group, measured two days after insertion.
c.
 Insert season, i.e. the season (winter, spring, summer,
autumn), during which the pigs were placed in the
grower/finisher station which was included to account
for the influence of the season at the time when the
pigs are supposedly most vulnerable. The seasons
were defined as follows: winter¼December, January
and February; spring¼March, April, and May; sum-
mer¼ June, July, and August; and autumn¼September,
October, and November.

2.2.1. Linear mixed models
Linear mixed models were made using the R function

lme. Using ANOVA tests, the models were used to assess
the significance of the predictors for ADG and FCR.
Different models were fitted with respect to the two
primary outcomes. Backwards elimination was used to
arrive at a final model, consisting only of significant
factors. Normality was checked by observing normal
quantile–quantile plots of the residuals of the reduced
model, using the R function qqnorm. The assumptions of
normality were considered to be met if the plot presented
a straight line.
2.2.1.1. Effect of shielding. From Fig. 1B, it is seen that the
sections facing the north and south ends of the station are
not shielded against the wind, as indicated by the lack of
thick solid lines at these positions. To assess the effect of the
shielding, the groups occupying the pens placed at these
unshielded walls were compared with the groups in
the shielded sections. Those groups, which were placed in
the sections with unshielded walls, but not directly at the
unshielded walls (Y-coordinates (7) 7), were not
considered in this context. Thus, in Fig. 1B, the unshielded
pigs are those placed at the Y-coordinates (7)8, while the
shielded are placed at the Y-coordinates (7) 1, 2, 3, 4, 5 and
6. The unshielded subset includes 76 Duroc-, 43 Yorkshire-
and 43 Danish Landrace-groups while the shielded subset



Table 1
Descriptive statistics of the source population. In the study population, only groups of pigs of 11 or more with an average start weight at or below 40 kg are
included.

Variable N Outcome varibles Variables included in the calculation of outcome variables

ADG FCR Days in station Insertion weight, kg End weight, kg Feed consumption, kg

Mean S.D. Mean S.D. Mean S.D. Mean S.D Mean S.D Mean S.D.

Total 1271 0.97 0.12 2.21 0.38 73.86 13.90 27.90 2.25 100.18 14.24 160.96 36.32
Breed

Duroc 560 1.01 0.11 2.08 0.29 68.91 12.02 28.96 2.06 99.15 13.78 147.57 33.07
Yorkshire 353 0.90 0.11 2.33 0.46 79.25 14.82 26.74 2.07 99.39 14.95 169.64 35.48
Danish Land Race 358 0.97 0.12 2.30 0.34 76.28 13.11 27.40 1.96 102.57 13.97 168.64 34.94

Insert season
Winter 315 0.94 0.20 2.14 0.50 70.54 20.83 27.75 2.27 96.72 21.78 153.73 51.70
Spring 288 0.98 0.07 2.23 0.22 77.60 6.48 28.16 2.24 103.69 5.26 169.30 20.11
Summer 282 0.99 0.07 2.20 0.19 76.55 6.90 27.87 2.33 103.40 4.90 167.23 19.99
Autumn 386 0.97 0.09 2.27 0.45 71.81 13.72 27.87 2.18 98.04 14.57 156.06 37.83

Size
Small 628 0.95 0.13 2.19 0.44 74.49 16.19 26.29 1.65 98.08 16.53 158.00 41.15
Large 643 0.99 0.10 2.23 0.29 73.24 11.20 29.48 1.51 102.23 11.20 163.85 30.65

Shieldinga

Yes 961 0.97 0.09 2.24 0.35 73.71 13.57 27.95 2.26 99.98 13.79 160.48 35.72
No 161 0.97 0.15 2.14 0.38 73.55 14.94 27.93 2.30 100.34 15.25 160.19 37.17

Distance to corridora

1st pen 153 0.99 0.09 2.11 0.28 70.19 11.89 27.73 2.10 97.34 13.00 146.89 31.34
2nd pen 127 1.00 0.12 2.04 0.31 67.90 12.53 29.15 1.75 98.34 14.60 144.17 34.50
3rd pen 128 1.00 0.10 2.07 0.22 68.51 11.98 29.41 1.94 99.01 13.54 146.04 32.01
4th pen 152 1.04 0.12 2.09 0.33 68.81 11.75 29.66 1.79 101.76 13.80 152.38 34.20

a Descriptive statistics relating to shielding and distance from corridor is only calculated for the groups which were included when fitting the models.

Fig. 1. (A) An aerial view photo of Bøgildgård. The symmetrical fish bone structure of the station is seen, with the different sections of the stations sticking
out from the central corridor as white rectangle. (B) The (X,Y) coordinate system overlay. The vertical shaded area represents the central corridor. The
horizontal shaded area represents the central section of the building which does not house pigs, separating the north- and south-facing ends of the station.
There are eight sections on each side of the central corridor, as indicated by the solid lines. Each section is divided down the middle with four pens on each
side, as indicated by the dotted lines. The thicker solid lines identify where wind shielding is placed between two neighboring sections. Dotted gray lines
represent separate pens within a section. The color coded figures in the pens represent the breed of the groups which are most commonly found in a given
pen. Circles: Duroc, Triangles: Danish Landrace, and Crosses: Yorkshire. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Source: https://www.google.dk/maps/search/b%C3%B8gildg%C3%A5rd/@56.2746066,9.3889412,530m/data=!3m1!1e3
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Fig. 2. The wooden walls separating shielding the space between the sections. The photo is taken on the East-side of the station.
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contains 426 Duroc-, 267 Yorkshire- and 268 Danish
Landrace-groups.

To determine the importance of wind shielding with
respect to each of the three breeds, different models
including this predictor were fitted to the data collected
for the groups of each of the breeds. Interactions between
shielding and each of the other two predictors were
included. The start weight of the group was converted to
a comparative start weight, i.e. the difference between the
start weights of the group and the average start weight
given the breed. A random effect of the pen was included
in the model. Thus for each breed, a model with the
following structure was fitted:

Outcome � Comparative start weightþ Insert season
þShieldingþðComparative start weightnShieldingÞ
þðInsert seasonnShieldingÞþRandom ðPenÞþError ð5Þ

2.2.1.2. Effect of distance from corridor. Because only Duroc
groups are placed at all distances from the central corridor,
only Duroc groups were included in the estimation of the
significance of this factor. Furthermore, there is a tendency
at Bøgildgård towards putting larger pigs further away
from the central corridor, and to account for this, the
groups were split into two subsets (large and small),
depending on their weight at insertion. The cut-off
between large and small was set at the average start
weight for the breed, i.e. 29 kg (Table 1). Further, a
random effect of the pen was included in the model.
Thus for each start weight category the following model
was fitted:

Outcome� Insert seasonþDistanceþðInsert season
nDistanceÞþRandom ðPenÞþError ð6Þ

To determine the significances in differences between each
of the individual levels, Tukey’s Honest Significance
Difference test was performed, using the R function
TukeyHSD. This function provides a pair wise comparison
of each of the included parameters.

2.2.1.3. Interaction between shielding and distance to
corridor. To determine if any significant interaction
effects exist between shielding and distance to corridor,
a third model was fitted to the same set of Duroc data, as
described in relation to Eq. (5). The model was as follows:

Outcome� Insert seasonþDistanceþShielding
þðDistancenShieldingÞþRandom ðPenÞþError ð7Þ
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3. Results

3.1. Effect of shielding

Table 2 shows the estimated coefficients for each of the
factors of the reduced model of Eq. (5) for ADG and FCR.
For Duroc pigs, shielding alone is not a significant pre-
dictor of ADG (p¼0.43) but does appear to be so for FCR,
with an absence of shielding resulting in a higher FCR
(p¼0.038). Shielding does however seem to interact nega-
tively with larger comparative start sizes, in relation to
ADG (p¼0.0002). Shielding could not be shown to have
any effect on ADG of Yorkshire and Danish Landrace pigs,
but not being shielded appears to have a lowering effect on
the FCR of Danish Landrace (p¼0.032).

3.2. Effect of corridor

The initial descriptive analysis indicated that only the
distance from the central corridor was important for ADG,
regardless of the East–West direction, with ADG showing a
positive correlation to greater distance (data not shown).
For this reason, the data has been grouped according to the
numerical X-values, i.e. the distance from the central
corridor regardless of the East–West orientation, for the
purpose of all further analysis.

The estimated coefficients for each of the significant
predictors of ADG and FCR found by backward elimination
of Eq. (6) are seen in Table 3. It is seen that insert season is
a significant factor in relation to ADG for both large (lower
panel) and small (upper panel) Durocs, as would be
expected from the previous results.

As seen from Table 3, the distance from the central
corridor is highly significant (po0.001) for ADG in pigs
which start out relatively large, with these pigs growing
faster when they are further away from the corridor, but it
does not appear to be significant for pigs that start out
small. The specific differences between the effects of each
pair of distances on the large pigs can be identified with
Tukey's HSD test. The result of this test is shown in Table 4.

The most significant difference is seen between groups
placed at the first and fourth pens from the corridor with
the groups with the greater distance to the corridor
growing an average of 48 g more per day. Less, but still
significant at the 95% confidence level, is the difference
between groups in the second and the fourth pens from
the corridor, with an average difference of 27 g of growth
per day. For FCR, only the interaction between insert
season and pen number was found to be significant
(Tables 3, p¼0.02) by ANOVA during the backwards



Table 2
Estimates of the coefficients for the reduced models predicting ADG and FCR for each of the three breeds. The original model was Eq. (5), where estimates
appear for one outcome but not the other; this is due to the given factor only being significant in predicting one of these outcomes. Standard deviations are
calculated from the standard errors of the reduced model.

Breed Variable ADG FCR

Estimate S.D. p-Value Estimate S.D. p-Value

Duroc

Intercept 1.002 0.18 o0.0001 2.101 0.52 o0.0001
Comp. start size 0.011 0.04 o0.0001 0.013 1.46 0.023
Insert season 0.001 0.34

Autumn 0 0
Spring 0.012 0.13 0.015 0.39
Summer 0.030 0.13 �0.023 0.38
Winter �0.006 0.11 �0.007 0.43

Shielding 0.43 0.038
Yes 0 0
No �0.023 0.19 0.027 0.57

Comp. start size: shielding 0.0002
Yes 0
No 0.022 0.05

Insert season: shielding 0.007 0.015
Autumn: Yes 0 0
Spring: No �0.009 0.14 �0.076 0.41
Summer: No �0.009 0.13 �0.022 0.4
Winter: No �0.098 0.14 �0.269 0.42

Random pen effect 0.000 0.09 0.000 0.27

Yorkshire

Intercept 1.002 0.14 o0.0001 2.097 0.18 o0.0001
Comp. start size 0.905 0.09 0.005
Insert season 0.007

Autumn 0
Spring �0.133 0.59
Summer �0.191 0.58
Winter �0.218 0.6

Random pen effect 0.000 0.09 0.000 0.44

Danish Landrace

Intercept 1.002 0.01 o0.0001 2.097 0.01 o0.0001
Comp. start size 0.972 0.01 0.047 0.016 0.02 0.044
Insert season 0.026

Autumn 0
Spring 0.012 0.02
Summer 0.018 0.02
Winter �0.025 0.01

Shielding 0.032
Yes 0
No �0.12 0.02

Random pen effect 0.000 0.09 0.000 0.30
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elimination, and this was only for the pigs with the lower
start weight. The Tukey HSD test showed that only eight of
the 120 comparisons of combinations of pen number and
insert season had significant differences (po0.05, data not
shown). Given the number of comparisons, six significant
differences would on average be expected by random
chance at this level of significance.
3.3. Interaction between shielding and corridor

When reducing Eq. (7) via backwards elimination, the
interaction- and shielding-factors were consistently
removed, regardless of whether the model was fitted on
all included Durocs simultaneously or on large and small
starters separately (data not shown). This resulted in
models which where, in effect, identical to those reached
by reduction of Eq. (6).
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4. Discussion

4.1. Shielding

Shielding on its own does not significantly affect the ADG
of Duroc pigs, but there is a strongly significant positive
correlation between shielding and the comparative start size
in terms of ADG. We hypothesis that this effect is caused by
the fact that larger pigs will produce larger amounts of body
heat (Van Milgen and Noblet, 2003) which will be easier for
the pigs to loose in a section which is not shielded against the
wind. The interaction between shielding and season is also
seen to be strongly significant in relation to ADG. A TukeyHSD
analysis showed that five of the 28 shielding-season compar-
isons (14%) showed significant differences in growth rate.
These were all the cases where being unshielded during
winter was compared to being either shielded or unshielded
during any other season. Pigs which are unshielded during
winter consistently grow more slowly than the alternative



Table 3
The coefficients estimated for the factors included in the reduced model for ADG and FCR. The original model was Eq. (6), where estimates appear for one
outcome but not the other; this is due to the given factor only being significant in predicting one of these outcomes. Standard deviations are calculated
from the standard errors of the reduced model.

Size Variable ADG FCR

Estimate S.D. p-value Estimate S.D. p-value

Small

Intercept 1.000 0.25 o0.0001 2.11 0.99 o0.0001
Insert season 0.0002 0.14

Autumn 0 0
Spring �0.003 0.19 �0.036 0.72
Summer 0.010 0.18 �0.084 -0.69
Winter �0.082 0.19 �0.006 0.71

Distance to corridor 0.31
1st 0
2nd �0.039 0.77
3rd �0.144 0.81
4th �0.073 0.77

Insert season: distance 0.02
Autumn: 1st 0
Spring: 2nd 0.008 0.56
Summer: 2nd 0.148 0.58
Winter: 2nd �0.466 0.53
Spring: 3rd 0.164 0.61
Summer: 3rd 0.201 0.55
Winter: 3rd 0.039 0.54
Spring: 4th 0.041 0.55
Summer: 4th 0.1 0.50
Winter: 4th �0.064 0.60

Random pen effect 0.000 0.13 0.060 0.32

Large

Intercept 0.994 0.25 o0.0001
Insert season 0.033

Autumn 0
Spring 0.013 0.08
Summer 0.028 0.08
Winter 0.016 0.08

Distance to corridor 0.0004
1st 0
2nd 0.021 0.10
3rd 0.023 0.10
4th 0.048 0.11

Random pen effect 0.000 0.06

Table 4
Pairwise comparisons of the difference in ADG given each pair of
distances from the central corridor.

Comparison Difference Lower
estimate

Upper
estimate

Adjusted
p-value

2nd–1st 0.021 �0.009 0.053 0.253
3rd–1st 0.023 �0.007 0.054 0.198
4th–1st 0.048 0.020 0.078 0.0001
3rd–2nd 0.001 �0.026 0.028 1.000
4th–2nd 0.027 0.002 0.052 0.033
4th–3rd 0.026 0.001 0.050 0.033
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scenarios. This is consistent with the findings of Fitzgerald
et al. (2009), as mentioned in the Section 1. Nonetheless, it is
apparently at odds with the observation that FCR is signifi-
cantly lowered when there is no shielding, most significantly
during the winter. However, the average daily feed intake
(ADFI) of unshielded pigs during winter was consistently
significantly (pr0.01) less than both shielded and unshielded
pigs during any other season, with ADFI reductions ranging
from 26 to 43 g, depending on the season. As seen from
Eq. (2), this tendency to not eat would cause the FCR to be
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lower, making it superficially appear that the pigs are utilizing
their feed more efficiently, but with no advantages in terms of
growth. These interaction effects of shielding and seasons of
the year could not be shown for Yorkshire or Danish Landrace.
However, given the much smaller number of pigs of these
breeds, compared to the number of Durocs, it is likely that the
power of the study was simply not high enough to detect any
effects on these breeds. Danish Landrace pigs do however
seem to have a lower FCR when they are unshielded,
regardless of size or insert season. To determine if this
difference is practically significant, we calculated the amount
of feed a group of shielded and unshielded Danish Landrace
pigs would need to grow 70 kg, all other things being equal.
This is simply calculated as weight gain multiplied by the FCR.
The difference was found to be 12 g (146.79 kg and 146.67 kg
for shielded and unshielded, respectively), which cannot be
considered to be of any practical significance. This is also in
line with the observation that no significant different differ-
ence was seen in ADFI for shielded vs. non-shielded Danish
Landrace pigs (data not shown).

The negative coefficients, as seen in Table 2, between
ADG and winter and the more positive coefficients between



D.B. Jensen et al. / Livestock Science 167 (2014) 353–361360
ADG and summer suggest a positive correlation between
warmer weather and faster growth, regardless of shielding.
Negative coefficients are seen between FCR and all non-
Autumn seasons, and so do not indicate an obvious relation-
ship between warm or cold weather and FCR.

4.2. Corridor

A clear trend towards better growth at greater distance
from the central corridor was observed in Duroc pigs with
a start weight above average (29 kg). Large pigs at the far
end of the sections were growing on average 48 g more
per day. Given the mean ADG values shown in Table 3, and
assuming an average start weight of 30 kg, a group of pigs
in the first pen from the corridor would be expected to
reach an average weight of 100 kg after 70 days. For a
group in the fourth pen, this weight would be reached
after only 67 days. This difference of three days means
three days extra where the farmer has to spend feed and
space on an old group rather than inserting a new group of
growers. This trend was only observed for the larger pigs
regardless of whether the sections were pointing towards
the east or the west. As seen in Table 1, pigs that start out
small generally also grow more slowly than larger pigs,
and it thus might be that the effect of being small is
greater than the effect of placement relative to the
corridor, leading to the effect only being relevant in larger
pigs. It thus makes sense to place the larger pigs away
from the central corridor, whenever possible. This differ-
ence may possibly come about through differences in such
factors as temperature, humidity and/or draft, which
would be expected to be different next to a non-tight door
to a long corridor with openings in both ends. The
hypothesis that placements have shown effect on ADG
through such temperature differences seems like a good
potential explanation, given that temperature is well
known to have great influence on the growth of pigs
(Verstegen et al., 1978). Pigs placed by the door to the
central corridor might also, for the same reasons, experi-
ence greater diurnal differences in temperature and
humidity, which was shown by Lopez et al. (1991) to
negatively influence the growth of pigs, compared to
experiencing more constant temperature and humidity.
Regarding the feed conversion ratio, a statistically signifi-
cant effect was only seen for the interaction between the
distance from the corridor and the insert season, and only
for the smaller pigs. Since only 8 of the 120 permutation
comparisons (6.7%) showed a significant difference at the
95% confidence level, given the Tukey HSD test, combined
with the large standard errors observed for these interac-
tions, we find it unwarranted to conclude that this is a real
effect. This of course means that the observed effect of
distance from the corridor on ADG does not come into
effect through the efficiency by which the pig can utilize
the feed for growth, but through the ADFI. Table 1 shows
that pigs in the first pen generally eat less than those in
the in the fourth pen during their time in the grower/
finisher station (146.89 kg vs. 152.38 respectively). When
focusing only on pigs that are larger than average at
insertion, this difference becomes even more pronounced,
with the average total consumption being 146.68 kg and
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155.34 kg for the first and fourth pens, respectively. This is
equivalent to an ADFI of 2.17 in the first pen and 2.26 kg/
day in the fourth pen, a difference which is statistically
significant (p¼0.042). The hypothesis of this reduced ADFI
being a result of variations in temperature and humidity is
consistent with the findings of Huynh et al. (2005), who
showed that temperature and humidity can drastically
affect the voluntary feed consumption of growing pigs.

4.3. Perspectives

This study was performed with data from a pig
research and testing station, but it stands to reason that
the negative effect of growth by the proximity to the
entrance of a given section would be relevant for pig
producers in general. Whether or not the effect of this
proximity is simply due to (diurnal) differences in tem-
perature humidity and draft or some other factors, e.g.
stress induced by human noises in the corridor, is not
obvious from the data analyzed in this study, since no pen
level temperature or humidity data was available. The
temperature, humidity and draft hypotheses are however
consistent with existing literature. If the case truly is that
the differences in these factors, given placements and
season, are affecting the ADG in the way we observe here,
then it should be possible to simply measure these factors
in the individual pens and fit a model to describe the ADG
with an accuracy equal to or better than the models
presented here. A relatively simple study could thus be
done to support or dismiss this hypothesis. From these
observations, we can however say that several sensors
per section in any pig production station might be neces-
sary in order to effectively monitor a pig production
station, as significant differences are clearly found within
a given section of such a station. At present the standard is
at most one temperature sensor per section, which is also
what is used at Bøgildgård, from where the data used in
this study was obtained. A multitude of sensors would be
needed for a complete monitoring of any herd, insuring a
more uniform production.

Our findings of the effects of shielding in interaction
with season on Duroc pigs suggest that larger pigs are
generally better placed in unshielded pens, except during
winter, where the lack of shielding shows a clear detri-
mental effect to the growth rate. It seems intuitively
unlikely that this would only apply to Duroc and not
the other breeds, which were included in this study. To
determine whether this is in fact the case or not, a study
including larger populations of non-Durocs would be
needed. However, given that the effects of shielding were
found to be completely and consistently insignificant
when distance to the corridor and shielding were both
included in the same model suggest that shielding should
at most be a secondary concern when placing new growers
in the station.

5. Conclusion

Larger Duroc pigs are found to generally grow faster when
placed in sections without shielding. An important exception
is when the pigs are inserted in the grower/finisher station
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during the winter, in which case lack of shielding has an
overwhelmingly negative effect on Duroc growth rate. No
effect of shielding could be demonstrated for Yorkshire or
Danish Landrace. Greater pen distance from the central
corridor of the station is found to have a significant positive
effect on the growth of Duroc boars with above average start
weight. Neither shielding nor distance from the central
corridor is shown to affect feed conversion ratio. Rather, the
effect of greater growth further from the central corridor
appears to come about through a different daily feed intake
between groups of pigs close to and further away from the
central corridor of the station.
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The PigIT Project aims at improving welfare and productivity of slaughter pigs by integration of various
sensor systems for alarm purposes. Here we present an exploratory analysis to assess the predictive value of
temperature sensor data with respect to pen fouling and diarrhea. We recorded the temperature at two
locations in 8 pens between November 2013 and December 2014. A single logistic regression model was
made to express the probability of either diarrhea or fouling per pen per day, and was reduced via back-
wards elimination. The predictive performances were evaluated by the area under the receiver operating
characteristics curve (AUC). Indiscriminant prediction of either event reached an AUC of 0.80. Similar per-
formances were seen when predicting each of the events on their own using the same model, with AUC
values at 0.78 and 0.81 for diarrhea and fouling, respectively. Thus, temperature information seems to
provide predictive value in relation to fouling and diarrhea. It would be meaningful to combine this in-
formationwith other available data by usingmore advanced models to achieve an optimal predictive power.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

General and political interest in production and animal welfare
is currently at an all time high in Denmark and other western
countries. Denmark alone produces nearly 30 million pigs an-
nually, distributed between just over 3000 farms (Landbrug og
Fødevarer, 2014). Large herds are at increased risk of infectious
diseases (Claes et al., 2002), and infectious disease will be more
likely to persist for larger herds (Evans et al., 2010). It is further
known that pig health and productivity is affected by a range of
stress factors. One such factor is the temperature, where especially
diurnal changes can cause a stress response, resulting in slower
growth and higher feed intake (Lopez et al., 1991). Temperature is
further known as a key factor for the onset of pen fouling (Aarnink
et al., 2006), where the pigs will rest in the excretion area and in
return excrete in the resting area.

Here, we wish to evaluate the potential of pen level tempera-
ture measurements for predicting pen level outbreaks of two un-
desired events in pig production, namely diarrhea and pen fouling.
An effective prediction of such undesired events would allow the
farmer to react proactively to a problem, thus improving the
overall health and welfare of the herd, and in return secure a
higher production for the farmer.
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2. Materials and methods

2.1. Data source

The data used for this study were collected for the PigIT
Project1 in the finisher unit of a commercial Danish pig farm.
Temperature data was collected continuously in 8 pens in two
separate sections. Each pen contained 18 pigs at insertion, sorted
by sex and size. Two neighboring pens (a double-pen) always
shared feed and water supply. Data from two such double-pens
were included from each of the two sections. Data were collected
between November 20th 2013 and December 12th 2014, during
which time three new batches of 30 kg pigs were inserted in each
pen.

The climate was controlled at section level by a climate com-
puter, model Dol 234 from the company Skov A/S. This computer
adjusted the climate via a combi-diffuse ventilation system,
sprinklers above each pen and heating pipes installed in the back
walls. The set points (depending on age of pigs) were 15–20 °C for
temperature and 70–75% for humidity. Heating was activated
when the section temperature was 1 °C below the set point. The
sprinklers could be activated between 9 AM and 8 PM if tem-
peratures were above the set point. Section temperatures of 0.5 °C
above the set point would activate the sprinklers at 0.1% capacity
1 http://pigit.ku.dk/.
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Fig. 1. a) The pen set-up, with two thermometers installed per pen. One is by the drinking nipple and resting area (smaller dashed rectangle), the other is by the corridor and
excretion area (larger dashed rectangle). b) An example of the temperature measurements from a single pen. Temperatures at the drinking nipple are generally a few degrees
warmer than temperatures near the corridor.

Table 1
The variables included in the reduced logistic regression model after backwards
elimination, along with parameter estimates, standard errors and p-values.

Variables Estimate Std. error p-Value

(Intercept) �12.78 3.53 0.0003
Maximum temperature, drinking nipple �0.89 0.35 0.011
Minimum temperature, drinking nipple 1.24 0.43 0.004
Greatest temperature decrease, drinking nipple �2.13 0.87 0.014
Greatest temperature increase, corridor 2.70 0.90 0.003
Greatest temperature decrease, corridor 1.53 0.89 0.086

Fig. 2. ROC curves for any event (empty circles), pen fouling (solid circles), and
diarrhea (triangles).
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for 0.5 min with 60 min intervals. Section temperatures 3 °C or
more above the set point would activate the sprinklers for 1.5 min
with intervals of 30 min. For temperatures between 0.5 and 3 °C
above the set point the capacity, frequency and duration of
sprinkling are interpolated. Ventilation was controlled according
to a curve, starting at 7 m3/pig at insertion and going up to 15 m3/
pig at the time of delivery.

The pen level temperature data used in this study were col-
lected automatically by two thermometers in each pen, as seen in
Fig. 1a. Specifically VE10-A temperature sensors from the company
VENG System were used. The thermometers were placed by the
drinking nipple (small dashed square) and by the corridor (larger
dashed square). The temperatures at these two locations were
consistently distinct, with the temperature by the drinking nipple
generally being a few degrees warmer than at the corridor, as
exemplified in Fig. 1b.

2.2. Modeling

All data management and modeling was done using R (The R
Core Team, 2013). The continuous temperature data were averaged
over periods of 60 min. It was further summarized to a daily level
by finding the highest and lowest averaged temperature as well as
the greatest decrease and increase in temperature. The data were
subsequently split into a training set (13 events total) and a test set
(15 events total). In each of the two sections, all data from one
double-pen were assigned to the training set, while all observa-
tions of the other double-pen were assigned to the test set. A lo-
gistic regression model with no interaction effects, describing the
daily probability of any event (diarrhea or pen fouling), was fitted
to the learning set data using the built-in function glm. The model
was subsequently reduced by backwards elimination, using the
built-in function step. The reduced models were used to predict
the undesired events in the test set, when the probability of the
events surpassed a set threshold. A positive prediction was con-
sidered a true positive if it was made at most 3 days before or
1 day after an event observation. The predictive performances
were evaluated using area under the receiver operating curve
(AUC) (Zweig and Campbell, 1993), which was calculated using the
function auc from the MESS package (Ekstrom, 2013).

3. Results and discussion

Table 1 summarizes the logistic regression model for predicting
any of the two events, when reduced to including only significant
 6
or borderline significant variables. It is seen that high rates of both
temperature increase and decrease, measured near the corridor, is
associated with a higher risk of undesired events. This could in-
dicate that the pigs are generally sensitive to sudden changes in
temperature, which concievably could cause them to become
stressed (Lopez et al., 1991). Interestingly, a high rate of tem-
perature decrease near the water nipple is associated with a re-
duced risk of undesired events. This makes sense, given that such
quick reductions in temperature is what would be seen when the
sprinkler system is activated in response to undesirably high
temperatures, which is a known causal factor for e.g. pen fouling.
This is similarly reflected by the fact that higher values of the
lowest temperature, recorded during a 24 h period, is positively
associated with higher risk of undesired events overall.

Fig. 2 shows the receiver operating characteristics curves for
prediction on the independent test set of any undesired events
(empty circles), as well as pen fouling and diarrhea separately
6
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(solid circles and triangles, respectively). The corresponding AUC
values are 0.80, 0.78 and 0.81 for any of the events, diarrhea, and
fouling, respectively. As is seen, the predictive performance is
consistently better than would be expected from random chance,
proving that the variables included in the model described above
contribute genuinely useful information regarding the risk of these
undesired events. However, the trade-off between sensitivity and
specificity is still apparent. For example, holding the sensitivity of
the overall event prediction at 0.80, as has been described as ne-
cessary for when detecting e.g. mastitis in cows (Hogeveen et al.,
2010) would result in a false positive rate of 34%. It should how-
ever be noted that this shortcoming could well be a consequence
of the relatively simple linear decision boundary used by the lo-
gistic regression model. It could well be that an even better per-
formance would be seen with the non-linear decision boundaries
used by e.g. artificial neural networks. However, comparing the
performance of such methods to the method applied here is be-
yond the scope of this paper.
4. Conclusion

It is shown that temperature data recorded at the pen level
contains information, which is applicable to prediction of pen
fouling and diarrhea up to 3 days before these events occur. The
area under the receiver operating characteristics curves for indis-
criminant, diarrhea, and fouling predictions are 0.80, 0.78 and
0.81, respectively. However, the logistic regression method used in
this study is not likely to be the best method for practical pur-
poses, as the achieved trade-off between sensitivity and specificity
is such that this information is not likely to be practically useful on
its own. Other methods with non-linear decision boundaries
should thus be tested in the future.
5. Future scope

In the PigIT project, we are currently collecting data on water
and feed consumption, live weight and section humidity as well as
pen level temperature, and there are plans for including automatic
monitoring of pig activity. The information contained in this data
 67
could conceivably be combined with the temperature data pre-
sented in this paper, using a number of methods, such as multi-
variate dynamic linear modeling (West and Harrison, 1997), (na-
ïve) Bayesian networks, artificial neural networks or some com-
bination of these and other methods. We expect such information
integration to yield better predictions than any one line of evi-
dence can provide on its own.
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Abstract 

Scientists and farmers still lack an efficient way to unify the large number of different types of data 

series, which are increasingly being generated in relation to automatic herd monitoring. Such a 

unifying model should be able to account for the correlations between the various types of data, 

resulting in a model which could potentially yield more information than can be gained from the 

individual components separately. Here we present such a model for monitoring slaughter pig 

production, in the form of a multivariate dynamic linear model. This model unifies three types of 

data (live weight, feed- and water consumption), measured at different levels of detail (individual 

pig and double-pen level) and with different observational frequencies (weekly and daily), using 

series collected for the Danish PigIT project. The presented three-dimensional model serves as a 

proof of concept, and it should be straightforward to expand it with additional data types.  

Key words 

Dynamic linear model, information unification, modeling, monitoring, pig production 

Introduction 
For many years, a whole range of sensors have been available for monitoring variables relevant for 

e.g. mastitis detection in dairy cows (Viguier et al. 2009) and the application of sensor technology 

is slowly being introduced for pig herd monitoring. The idea is that the collected data, combined 

with a proper alarm system, can provide the farmer with early alarms, thus allowing proper 

proactive responses to undesired changes in the herd. However, there are serious issues with the 

methods currently described. First, the trade-offs of sensitivity and specificity are generally 

unacceptable (Hogeveen et al. 2010). Furthermore, the systems tend to consider each monitored 

variable in isolation, so that an alarm is based on the value of just one variable, and no interaction 

effects are considered. We therefore believe that better integration of the available information 

could yield better methods for prediction of animal health states.   

We suggest employing a multivariate dynamic linear model (DLM) (West & Harrison 1997) as a 

means of obtaining a more holistic monitoring of animal herds, taking into account the 

interconnectedness of all the variables of interest. Univariate DLM’s have previously been 
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attempted for automated estrus detection in sows (Ostersen et al. 2010) and a multivariate DLM has 

been used to predict litter sizes in sows (Bono et al. 2012), but where only one type of information 

was considered. In general the use of DLM is under-utilized in the fields of animal- and veterinary 

science.  

 

This paper serves as a proof of concept, demonstrating the use of a multivariate DLM for 

monitoring slaughter pigs in a Danish finisher unit, in terms of live weight, feed usage and water 

usage.  

Materials and Methods  

Data source 

The work described in this paper was done using data collected for the PigIT Project
1
 in a 

commercial Danish pig farm. Specifically, the data were collected in the farm’s finisher unit, 

housing slaughter pigs while they grow from roughly 30-100 kg. The unit consists of five sections, 

each with 14 pens. Each pen contains 18 pigs (at insertion), sorted by sex and size. The climate 

within each section is controlled by a combi-diffuse ventilation system, computer-controlled 

sprinklers above each pen and heating pipes installed in the back walls.  

For the PigIT Project, a number of sensors have been installed to automatically record data on feed 

usage, water flow to the drinking nipples and temperature in 16 of the 70 pens in the finisher unit.  

 

Liquid feed is dispensed automatically into troughs, shared between two neighboring pens, as seen 

on Figure 1 A.  Two such feed-sharing pens will be referred to as a double pen. The expected 

amount of liquid feed required for a given double pen is adjusted regularly by manual observation 

of how much of the dispensed feed has been left uneaten.  

Water is dispensed from drinking nipples which, like the feed dispensers, are also shared between 

two pens in a double pen, as seen in Figure 1 B. In the 16 PigIT-pens (eight double pens) flow 

meters are installed above the water nipple to measure water flow to the double pen.  

  

In addition, the individual pigs from two double pens in the same section (section 2) are manually 

weighed once per week from insertion until the first pigs from that section are sent to the abattoir. 

The weight measurements are performed with the pig scale depicted on Figure 1 C. The pigs in 

these pens are individually identified with RFID ear tags.  

 

The data applied in this paper were collected from those two double pens, where live weight was 

recorded in addition to feed consumption and water flow. The used data were collected between 

November 20
th

 2013 and December 12
th

 2014, and included four separate insertions of new pigs. 

Thus the following models were based on a total of eight separate sets of observations.  

  

                                                           
1
 http://pigit.ku.dk/ 
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A) 

 

B) 

 

C) 

 
Figure 1: The sources of the data used in this paper. A) Liquid feed dispensed to the double pen by the feeding 

system. B) Water consumed by the pigs in a double pen, recorded by a flow meter above drinking nipple. C) 

Scale for manual recording of individual animal weights. 

Modeling 

All analysis, modeling and representations of the data were done using the software R, a language 

and environment for statistical computing (The R Core Team 2013). 

 

In this paper, we aim to demonstrate a method for meaningfully combining multiple different kinds 

of observational data (live weight, feed usage and water flow). From farm records on insertion and 

removal of individual pigs, it was possible to know how many pigs were in a given pen at any given 

time, and this information was used to normalize the feed usage and water flow to daily averages 

per pig in the double pen. Although the live weights of the pigs were recorded individually, these 

too were aggregated to a per pig average for the double pen, in order to simplify the model.   

 

A multivariate dynamic linear model (DLM), as described by West and Harrison (1997), was the 

method chosen to combine the data. In general, a DLM consists of an observation equation and a 

system equation (Equations (1) and (2), respectively).  

 

     
                        0     (1) 

                           0     (2) 

 

Equation (1) describes how the values of an observation vector      depends on an unobservable 

parameter vector (  ) to time  . The unit of time used in this model was one day.  

 

In our case, the parameter vector contains the estimated underlying values for live weight (LW), 

feed usage (Feed) and water flow (Water), as well as the rates at which those same values change at 

time   (dLW, dFeed, dWater, respectively), as seen in Table 1,   . The underlying values at time   

were estimated using a Kalman filter as described by West and Harrison (1997). In short, the 

Kalman filter is a method for filtering noise from the data by considering the actual observations, 

the error in the model forecasts and the systematic and observational variances. 

 73



 

For our purpose, the (transposed) design matrix has a structure with a basis as seen in Table 1 (   
 ). 

This structure serves to separate the estimated underlying values of the live weight, feed usage and 

water flow in the parameter vector from their respective trend values, in accordance with Equation 

(1). The structure is varied according to which variables are observed for a given time  , with the 

first, second and third row being included when live weight, feed usage and water flow are 

observed, respectively. Thus missing observations will be ignored when the parameter vector is 

updated.  

 

The structure of the system matrix (    is constant in our case (Table 1,   ). This structure serves to 

add the trend values to the corresponding estimated values of the three parameters of interest, thus 

updating their values from time      to time  , in accordance with Equation (2).  

 

The initial values of live weight, feed usage and water flow were estimated from all available data 

as the average, normalized values observed on the first day of a batch insertion. The initial growth 

trend for live weight and feed usage were estimated as the average daily change in those values 

between the first and eighth day of observation. The water flow was seen to vary greatly from day 

to day, but did not follow any general trend over the grower/finisher periods. The initial rate of 

change was therefore set to 0.  

 

Table 1: The structures of the three matrices, presented in Equations (1) and (2), as they apply to the data used 

for this paper.   : The Parameter Vector.   
 : The Design Matrix (transposed).   : The System Matrix 
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The observational co-variance matrix     and the systematic co-variance matrix     were 

estimated from all available data, using the expectation maximization (EM) algorithm, as described 

by West and Harrison (1997), until convergence, which by visual inspection was found to occur 

after 50,000 iterations.  
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Unification of model forecast errors 

Once the parameters defining the DLM had been estimated, the average live weight, feed usage and 

water flow per pig in each of the eight separate batch observation series were modeled. During the 

modeling, a vector      of forecast errors (Observed values – Forecasted values) was continuously 

generated for each time step. In addition, a matrix describing the forecast co-variances      was 

continuously generated, as described by West and Harrison (1997). A Cholesky decomposition was 

calculated for    using the R function chol. Using the decomposed matrix      , the error vector 

was transformed, as seen in Equation (3). 

 

      
      (3) 

 

This transformation ensures that the transformed error values in    are mutually independent and 

each follow a standard normal distribution. Thus a single value measuring the square of deviation 

from 0, the mean within this frame of reference, can be easily calculated for the set of forecast 

errors, as seen in Equation (4). 

 

  
    

     (4) 

 

This unified error will follow a    distribution with   degrees of freedom, where   is the number 

of elements in   . Thus   
  can be plotted to a conventional Shewhart control chart (Montgomery 

2005) to allow for an easy monitoring of the complex system. The upper control limit was set to the 

0.99 quantile of the    distribution. To allow for a constant control limit in response to varying 

degrees of freedom,    
  was adjusted, according to Equation (5). 

 

      
    

   
          

          
  

(5) 

Results and discussion 

Model parameter values 

The estimated initial values of the parameter vector are seen in Equation (6). 

 

   =                                           (6) 

 

As is seen, the average pig initially weigh 29 kg, grow at a rate of 650 grams per day and eats 3.3 

kg feed per day with a daily increase of 790 grams. The normalized water flow to the double pen is 

0.6 liters per day per pig, with no (0.0) systematic daily change.  

 

The matrices describing the observational and systematic co-variances are seen in Equations (7) and 

(8), respectively.  
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0.005-1.88e-6-3.53e-4-5.00e-6-2.61e

6-7.37e2-1.48e3-2.80e-1.41-3-1.70e1.11

 

 

(8) 

Notice that   has a 3x3 structure, consistent with the three values which can be observed at each 

time  , while   has a 6x6 structure, consistent with the six values in the parameter vector.  

It is worth noting that the diagonal values in both matrices would have been the same if each 

variable of interest had been modeled separately. It is thus the co-variances outside the diagonals 

which provide the extra information about the interconnectedness of each of the monitored 

variables.  

Modeling 

The DLM defined as described in the previous sections was used to model each of the eight 

available sets of batch data. Figure 2 shows three notable examples of the output of this modeling. 

These are the batches inserted on July 7
th

 2014 to pen number 2.5 and 2.10 (top and bottom row, 

respectively) and the batch inserted on October 9
th

 2014 to pen number 2.10 (middle row).  

The left column of Figure 2 shows the observed values for mean live weight (circles), feed usage 

(triangles) and water flow (solid squares). In addition, the left column shows the filtered mean, as 

estimated by the DLM, for live weight (solid line), feed usage (thick dashed line) and water flow 

(dotted line).  

The right column shows the Shewhart control charts of the adjusted unified forecasts errors (circles 

connected by red lines), according to Equation (5). The horizontal lines in the control charts show 

the control value, i.e. the 0.99 quantile of the    distribution with 3 degrees of freedom (11.34).  

For both columns, observations of diarrhea and pen fouling are marked by vertical lines. Diarrhea is 

marked by thick dashed lines, while solid lines represent pen fouling.  

As is seen, the output in the top row is from a batch where no undesired events were observed, and 

all unified errors are all well below the control limit.  

For the middle batch, pen fouling is observed twice (on the 3
rd

 and 4
th

 of December) and one case of 

diarrhea is observed around the 20
th

 of November. The first pen fouling event falls just below the 

control line, but the second one coincides with a very clear spike in the unified error, which would 

yield a successful alarm. However, the system fails to raise an alarm about the diarrhea. This is 
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probably because this event occurs during a period of time where water data is not available, which 

would be expected to strongly correlate with diarrhea.  

 

 

  

  

  
Figure 2: Left column: the observed values of mean live weight (circles), feed usage (triangles) and water flow 

(solid squares) per pig in three separate batches. In addition, the filtered mean values, estimated by the model, 

for live weight (solid line), feed usage (dashed line) and water flow (dotted line). Right column: the unified 

forecast error for mean live weight, feed usage and water flow per pig, corresponding to the observations 

depicted in the left column. Vertical lines in both columns: observations of diarrhea (dashed) and pen fouling 

(solid). 
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The bottom batch provides two interesting examples of how the system can fail in its function. 

First, an undesired event (diarrhea) is observed at July 20
th

. This event happens to coincide with a 

relatively long period of time where the data on feed usage and water flow are both missing, and 

only the weight observation of that day is available. It can only be assumed that this information, 

especially regarding water flow, would have contributed to a more extreme unified error, and thus 

this example illustrates the value of having functioning sensors throughout a monitoring period. 

Conversely, around the 25
th

 of August, a tall peak is seen in the unified error, in spite of there being 

no observed undesired events. This peak is seen to be caused by a sudden dramatic and 

uncharacteristic increase in the water flow. From temperature records it can be found that this 

increase in water flow coincides with a sudden increase in temperature inside the double pen 2.10, 

while a similar temperature increase was not experienced in double pen 2.5 (data not shown). 

Perspectives 

When employing a dynamic linear model, an uncharacteristically large forecast error (here the limit 

was set to 11.34), is an indication that the observed system has changed significantly from the 

assumptions of the model. Thus, if the model has been optimized for describing a perfectly healthy 

batch of pigs, uncharacteristic forecast errors would likely indicate an outbreak of disease. To what 

extend the method demonstrated in this paper allow for more accurate disease detection, compared 

to other methods, will be a subject for further studies.   

 

It should be noted that the form of forecast error unification demonstrated here can only yield an 

absolute magnitude of the error, and thus, unlike conventional univariate control charts, this control 

system cannot take into account whether some errors are positive and others negative. This potential 

problem could be circumvented by parsing the separate, non-unified errors to other classification 

systems, e.g. artificial neural networks or Bayesian classifiers. This would require separate training 

and validation of these systems, in addition to what is needed for the DLM itself. However, it is 

conceivable that such parsing could yield better detection of undesired events, and even allow for 

specific error patterns to be mapped to specific conditions, which would be another natural 

objective for further studies.   

 

Whether or not a multivariate DLM defined from one herd can be directly applied in another herd 

or between different breeds of pigs, and how often such models need to be updated to keep up with 

the biological changes from breeding, are additional questions requiring further studies to answer. 

 

Furthermore, here we have demonstrated the method with three measurable variables, but it would 

be trivial to adapt the model to include more (or fewer) lines of evidence, depending on data 

availability. We could envision modeling the live weight of each pig in the double pen individually 

or including the modeling of some measure of activity captured by video, etc. All that is needed is 

to design the appropriate design- and system matrices and the availability of the relevant data.  
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Lastly, this paper showcased the use of a multivariate DLM for monitoring slaughter pig 

production, but this method could just as well be employed in any animal production where data is 

routinely collected. An obvious example is dairy production, where several lines of data are often 

collected while milking the cows, but where a good standard for combining this data for meaningful 

information extraction is still lacking  (Rutten et al. 2013).  

Conclusions 
We show that one can meaningfully co-model three very different types of monitoring data (live 

weight, feed usage and water flow) from an animal production herd, using a multivariate dynamic 

linear model. The errors in the forecasts produced by such a model can be unified to allow for easy 

monitoring of the health state of the herd using a Shewhart control chart to raise appropriate alarms.   
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ABSTRACT 

We present a method for providing early, but indiscriminant, predictions of diarrhea and pen fouling 

in grower/finisher pigs. We collected data on live weight, dispensed feed amount, water flow, 

drinking bouts frequency, temperature at two positions per pen and section level humidity from 16 

pens (8 double pens) over three full growth periods. The separate data series were co-modeled at 

pen level with time steps of one hour, using a multivariate dynamic linear model. The step-wise 

forecast errors of the model were unified using Cholesky decomposition. An alarm was raised, if 

the unified error exceeded a set threshold a sufficient number of times, consecutively. Using this 

method with a seven day prediction window, we achieved an area under the receiver operating 

characteristics curve of 0.88, and a specificity of 0.81 when the sensitivity was 0.80. Shorter 

prediction windows yielded lower performances, but longer prediction windows did not affect the 

performance.  

Key words: early warning, DLM, modeling, pigs, prediction 

1 INTRODUCTION 

Although it is not yet widely used in pig production, many different types of data could be collected 

in a standard pig herd and used in systems for early detection of disease or undesired behaviors.  

For example, we have previously shown that continuously monitoring pen level temperature will 

yield information, which is useful for early detection of diarrhea and pen fouling (Jensen & 

Kristensen 2016).This makes sense, given that temperature is well known as a key factor for the 

onset of pen fouling (Aarnink et al. 2006), and that in general, pigs are more sensitive to the 

surrounding temperatures than for example cattle (Young 1981). Diurnal temperature differences in 

particular can cause the pigs to show symptoms of stress, as well slower growth rate and higher feed 

consumption (Lopez et al. 1991).  

Similarly, pigs are generally known to have stable diurnal drinking patterns, from which they don't 

typically deviate unless they are affected by disease outbreaks or environmental stressors. A model 

which accurately describes these drinking patterns have been presented (Madsen et al. 2005), and a 
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test of this model on 12 batches of growing pigs suggest that deviations from predicted water 

consumption can provide warning of diarrhea approximately 24 hours before it was otherwise 

detected (Madsen & Kristensen 2005).  

Feed consumption and live weight are typically monitored closely in breeding stations, where 

selecting the most efficient growers is important. Here, feed will often be dispensed ad libitum to 

individual pigs, identified by RFID tags. This type of data has further been used to investigate such 

questions as how some environmental factors affect growth rate and efficiency (Jensen et al. 2014) 

and whether the rate of weight gain affects lean meat production in growing pigs (Stege et al. 2011). 

However, so far as we can tell, continuous weight and feed consumption data have never been 

tested as parameters in systems for early warnings of disease or undesired behavior. This may be 

because neither ad libitum feeding nor accurate, continuous monitoring of pig weights are common 

practices on most slaughter pig producing farms, and thus the utility of a system relying on this data 

would be limited. 

We have previously shown (Jensen et al. 2015) that distinct types of data such as live weight, 

dispensed feed amount and water consumption could be meaningfully co-modeled using a 

multivariate dynamic linear model (DLM) (West and Harrison, 1997) with time steps of one day. 

To our knowledge, that was the first demonstration of combining such different data series with a 

single DLM. A few examples exists of univariate DLM's for detecting events in animal production,  

e.g. the water consumption model by Madsen et al. (2005) and for automated estrus detection in 

sows (Ostersen et al. 2010). Here, we intend to expand on our previously described multivariate 

DLM with the aim of predicting undesired events in a Danish pig herd.  

The multivariate DLM produces one-step-ahead forecasts of the modeled variables, which can be 

compared with actual observations. When drastic changes occur in the modeled system, such as in 

the case of a disease outbreak, the absolute values of forecast errors will increase. The DLM is 

however also adaptive by design, and thus a model starting with some general assumptions can 

adapt to the peculiarities of a specific system, such as a specific batch of growing pigs. 

Furthermore, the co-dependencies between several variables of interest can be taken into account, 

when one-step-ahead forecasts for these variables are calculated.  

We hypothesize that when monitoring a group of pigs with a model which is optimized to describe 

the pigs under normal and healthy conditions, the model will be able to accurately predict new 

observations, so long as the pigs remain healthy. Therefore, when the model is unable to provide 

accurate forecasts, the pigs have either changed or are in the process of changing to an abnormal 

state. We unify the individual forecast errors produced at each observation using Cholesky 

decomposition. We therefore call this method the DLM/Cholesky method.   

Here, we intend to show that the DLM/Cholesky method, including live weight, feed amount, water 

consumption, drinking bouts frequency, pen level temperature, and section level humidity in the 

DLM, can be used to accurately, but indiscriminately, predict diarrhea and pen fouling at pen level. 

We further intend to estimate the relative information value of these observable variables with 

respect to such early warnings.  
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2 MATERIALS AND METHODS 

2.1 Data source  

All data used in this study were obtained from the finisher unit of a commercial Danish pig farm, 

housing slaughter pigs as they grow from approximately 30 to 100 kg. The unit consists of five 

sections, each with 14 pens. Each pen contains 18 pigs (at insertion), sorted by sex and size. The 

climate within each section is controlled by a combi-diffuse ventilation system, computer-controlled 

sprinklers above each pen and heating pipes installed in the back walls. All pens in the section are 

paired into double pens, where two neighboring pens share feed and water supplies.  

Sensors were installed to automatically record data on feed usage, water flow to the drinking 

nipples and temperature in 16 of the 70 pens in the finisher unit, and humidity was monitored on 

section level. Furthermore, the pigs from two double pens (four pens) from one section (section 2) 

of the unit were weighed manually once per week.  

A) 

 

B) 

 

C) 

 

D) 

 

E) 

 
Figure 1: The sensors used to monitor the growing pigs. A) Two thermometers are placed in each pen, one at the 

back wall (blue rectangle) and one at the corridor (red rectangle). Temperatures are measured at single pen 

level.  B) The climate computer, from which we got data on section level humidity. C) Water is dispensed from a 

drinking nipple. A single pipe supplies both pens in a double pen. The water flow is measured at double pen 

level. D) The feeding system, responsible for dispensing predetermined amounts of wet feed to a double pen per 

day. E) Scale for weekly manual weighing of individual pigs from section two.  
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Temperatures were measured continuously at the single pen level. Two thermometers were installed 

in each pen, one near the back wall of the pen, one near the section corridor (Figure 1 A). The 

temperatures were measured at two positions in every pen: near the back wall, i.e. near the 

designated resting area with solid floors, and near the section corridor, i.e. near the designated 

excretion area with slatted floors. The temperature near the back wall was generally a few degrees 

higher than near the corridor.   

Humidity data were retrieved from the climate computer (B).  Humidity data was generally 

available once per day. However, during one spring time growth period, continuous humidity 

recordings were available. 

 

Water flow was measured continuously at the double pen level. Each pen in a double pen has a 

drinking nipple, but both share a single water pipe (Figure 1 C). A flow meter was installed in each 

of these pipes, where it measured rotations per second. A separate calibration was done for each 

water pipe.  

 

Feed was dispensed per double pen by a feeding system from the company Big Dutchman (Figure 1 

D). Feed was dispensed daily according to a preset feeding curve. However, when relevant, the 

amounts would be adjusted daily based on the observed surplus of feed not eaten on a given day.    

 

The individual pigs in section 2 were weighed manually using the scale depicted in Figure 1 E. The 

weightings were performed from the week of insertion until the first pigs from that section were 

sent to the abattoir. The pigs were individually identified with RFID ear tags, and it was known to 

which single pen an individual pig belonged. 

 

Lastly, observations of undesired events were observed at single pen level on a daily basis. This was 

done manually by the farm staff, who noted any undesired event in a log book as part of their daily 

routine. This study focuses on two specific undesired events, namely diarrhea and pen fouling, and 

hence forth "events" shall refer specifically to these two types of observations.  

 

Data was collected between November 20
th

 2013 and December 12
th

 2014, during which time three 

new batches of pigs were inserted in each pen. 

2.2 Data editing 

All data editing, modeling, and various calculations were done using the statistical language and 

environment R (The R Core Team, 2013).  

The collected data were scanned for outliers using simple summary statistics. Humidity and 

temperature were found to be plagued by values below 1 percent and centigrade, respectively. In 

addition, humidity was plagued with values above 100 %. Such values were considered as missing 

observations during the modeling described below. All other variables were found to be within 

acceptable ranges. The water flow and drinking bouts frequency data were particularly plagued by 

long periods of missing observations. From previous work (Madsen & Kristensen 2005) we had 
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reason to think that water flow would be particularly important for the detection of the undesired 

events. For this reason, we only included batches with less than 60 % missing water flow 

observations when testing our model.  

The continuously measured variables, i.e. water flow, temperature, and humidity when relevant, 

were aggregated to one-hour mean values. From the water flow data, we further calculated drinking 

bouts frequency, i.e. how many times the water nipple was activated per pig per (double) pen during 

any given hour. This value served as a proxy for pig activity level. 

The variables measured only once per day or less, i.e. live weight, feed amount, and humidity when 

relevant, had no specific time stamp associated with them. In all such cases it was assumed that 

these observations were made at noon.  

The event observations, also without timestamps, were always assumed to be observed at the zero'th 

our (midnight) of the day where they were observed.  

Table 1 shows the descriptive statistics of the data used in this study, following the above 

mentioned data editing.  

Table 1: Descriptive statistics of the data, used in the present study 

  Outcome variables 

 

No event Any event Diarrhea  Pen fouling 

N 4146 36 17 19 

Predictive variable Mean SD Mean SD Mean SD Mean SD 

LW
1
 51.9 17.4 66.8 13.5 57.4 22.7 71.6 6.6 

Feed amount
2
 15.6 6.3 16.4 7.8 14.7 5.2 17.9 9.4 

Water flow
3
 (day

4
)

 
0.2 0.2 0.2 0.3 0.2 0.2 0.2 0.3 

Water flow
3
 (night

5
) 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 

Drinking bouts frequency
6
 (day

4
) 12.6 16.1 13.7 17.8 14.8 18.0 12.6 17.7 

Drinking bouts frequency
6
 (night

5
) 2.9 5.6 3.2 4.8 3.9 5.6 2.6 3.9 

Temperature
7
, corridor (day

4
) 20.1 2.9 20.1 2.9 19.7 2.8 20.3 2.2 

Temperature
7
, corridor (night

5
) 19.3 2.3 19.5 2.1 19.1 2.3 19.8 1.8 

Temperature
7
, back wall (day

4
) 21.7 2.7 21.6 2.7 21.7 2.8 21.6 2.6 

Temperature
7
, back wall (night

5
) 21.7 2.7 21.4 1.9 21.7 1.7 21.2 2.1 

Humidity
8 

73.1 6.3 84.4 14.9 81.0 14.1 86.9 15.4 
1
Average live weight in kg per pig per pen, over the entire growth period 

2
Average feed amount in kg dispensed per pig per pen, over the entire growth period 

3
Liter per hour per pig per pen 

4
The hours from and including 10 AM to 8 PM 

5
The hours from and including 9 PM to 9 AM 

6
Number of water nipple activation per hour per pig per pen 

7
 
○
C 

8
 % 
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Lastly, the data were split into a learning set and a test set. The learning set was used to estimate the 

variance components and the initial mean vector for the DLM, as described below, and only 

included those batches where no events were observed (N=26). The test set was used to evaluate the 

predictive performance of the DLM/Cholesky method presented in this study. It consisted only of 

those batches were an undesired event was observed at least once and where less than 60 % of water 

observations were missing. Thus 6 batches with events were omitted while 16 were included. The 

included batches contained a total of 12 diarrhea events and 13 pen fouling events.  

2.3 Application of dynamic linear model 

A multivariate DLM with one step Markov evolution (West and Harrison, 1997) were used to co-

model the seven observed variables (live weight, feed amount, corridor temperature, back wall 

temperature, water flow, drinking bouts frequency, and humidity). In general, a DLM consists of an 

observation equation and a system equation (Equations 1 and 2, respectively) as follows: 

     
                        0     (1) 

                           0     (2) 

Equation 1 describes how the values of an observation vector      depend on an unobservable 

parameter vector (  ) at time  . The design matrix    
   serves to separate the true values of the 

observed variables from their inferred rate of change, i.e. their trends.   is the observational co-

variance matrix, describing the co-variance between the observed variables.  

Equation 2 describes how the parameter vector (  ) is updated from time     to time  . The 

system matrix      serves to facilitate this updating by adding the inferred trends to the estimated 

true value of the observable variables.   is the systematic co-variance matrix, describing the co-

variance between the evolution of the observed variables as well as their trends.  

To help decide how the individual sensor variables should be handled by the model, plots based on 

the healthy batches in the learning set data were made to display the average values of each variable 

given an appropriate time frame, as shown below. When referencing seasons, winter is defined here 

as December-January-February, spring is Marts-April-May, summer is June-July-August and 

autumn is September-October-November. On all plots, the color codes are: Blue = winter, green = 

spring, red = summer, black = autumn.  

To ensure that the variances of the seven different variables were approximately at the same level 

when co-modeling, the values of live weight, feed usage, drinking bouts frequency, and humidity 

were divided by 10, water flow was multiplied by 10, and the two temperature variables were kept 

unchanged.   

 

2.3.1 Live weight 

The average live weights given the four seasons are seen on Figure 2. 
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Figure 2: The mean live weight over a growing period given the four seasons of the year. The mean live weight in 

any pen, regardless of season, is initially assumed to follow the linear model represented by the straight, black 

line is. Blue = winter, green = spring, red = summer, black = autumn. 

As is seen, the mean weights approximately follow a linear function with no apparent difference in 

the growth between the different seasons of the year. Thus the mean weights were always assumed 

to initially follow the same linear function with an initial mean weight of 26.2 kg and a growth rate 

of 6 kg/week, approximately 0.04 kg/hour, illustrated as the straight line on Figure 2. 

Thus live weight alone could be modeled using the initial parameter vector (  ), the design matrix 

   
  , and the system matrix    seen in Table 2. 

Table 2: The initial parameters needed for a dynamic linear model of live weight alone 

     
     

 

 
    
     

  

 

 

     

 

 
  
  

  

 

2.3.2 Feed amount 

The mean feed amount dispensed per pig in a double pen over a growth period, given the training 

set, is seen on Figure 3 
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.  

Figure 3: Mean feed amount per day over the growing period, given the four season of the year. Blue = winter, 

green = spring, red = summer, black = autumn. 

As is seen, there is much variation in the amount of feed dispensed per day, even when averaging 

over all included batches. Nevertheless, the initial amount is always relatively low (8.1 kg/pig), 

while the final amount is relatively high (~20 kg/pig), and no consistent differences are seen 

between the four seasons. Thus it was decided to model the feed amount as a linear function of time 

anfter insertion with an initial level of 8.1 kg/pig and an initial trend of 0.06 kg/hour (~9.3 

kg/week). Thus the DLM parameters for feed alone would be as seen in Table 3.  

Table 3: The initial parameters needed for a dynamic linear model of dispensed feed amount alone 

     
     

 

 
    
     

  

 

 

     

 

 
  
  

  

 

2.3.3 Temperature 

Figure 4 shows the average temperatures per hour between midnight and midnight, given the four 

different seasons. It is clearly seen that temperatures near the back wall are generally a few degrees 

higher than near the corridor.  
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A) B) 

  
Figure 4: The average temperatures between midnight and midnight, given the season of the year, near the back 

wall (A) and near the corridor (B). Blue = winter, green = spring, red = summer, black = autumn. 

At both positions, the average temperatures for each season can be described by a season-specific 

harmonic wave. The system matrix describing a harmonic wave is seen in Equation (3) 

   
              
               

  

 

(3) 

, where   is the period. In our case, the waves have a period of 24 hours, meaning that   

       .  

Due to the clear differences between the four seasons, a separate initial mean vector,   , was 

estimated for each of the seasons. This was done by having a single common mean vector of 

  
            

             
 
, where   

         is the overall average temperature at midnight for the 

relevant position, i.e. by the corridor or by the back wall. Using this initial mean vector for each 

season, each of the 14 healthy batches in the learning set was modeled with a DLM and 

subsequently smoothed, as described by West and Harrison (1997). During the modeling, the 

systematic variance,    of the temperature was not yet known, and it was thus assumed that all 

variance was accounted for by the observational variance,    This variance was calculated directly 

from the temperature observations of the healthy batches in the learning set, using the R function 

var(). 

As a result of the modeling and subsequent smoothening, a new estimate of the initial mean vector 

given the season was produced with the modeling and smoothening of each healthy batch. For each 

healthy batch, the new initial mean vector was saved and used when modeling the next batch, for 

which observations started during the same season. Thus the   
        vectors were iteratively 

improved. Their final form can be seen in Table 4. Notice that the two   
      

 vectors retained their 

original form, as no batches, for which data were available, had their initial observations during the 

spring.  
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Table 4: The initial mean vectors given season and sensor placement within the pen.  

   
         

      
   

         
       

Corridor  
    
     
     

   
    
 
 

   
    

      
     

   
    
     
     

  

Back wall  
    
     
      

   
    
 
 

   
    

      
     

   
    
     
      

  

 

The   and    matrices, which would be used when describing the temperatures at both positions, 

are seen in  

Table 5: The design matrix and system matrix used for describing the temperatures in the pen, regardless of 

sensor position.  

  
    

 

      

 

 
   
               
                

  

 

2.3.4 Water flow and drinking bouts frequency 

When estimating the initial parameters for the drinking behavior (i.e. water flow and drinking bouts 

frequency), only batches with at less than 60 % missing observations of the drinking behavior data 

were included (24 of the 26 healthy batches). 

 Figure 5A shows the mean water flow in liters per pig from midnight to midnight, while Figure 5B 

shows the mean frequency of water nipple activations between midnight and midnight.  

 

Figure 5: A) average water flow (L/Pig) per hour between midnight and midnight. B) The drinking bouts 

frequency, i.e. the number of water nipple activations per pig, between midnight and midnight 
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The daily drinking pattern observed in our data (Figure 5 A) is similar to the pattern modeled by 

Madsen et al. (2005), in spite of the two data sets being completely independent. Madsen et al. 

(2005) showed that their data were best described as the sum of three harmonic waves, and it was 

decided to follow their example. Thus the design matrix and the system matrix, which were used to 

model both water flow and drinking bouts frequency, were as is seen in Table 6. 

Table 6: The design matrix and system matrix used for describing the water flow and drinking bouts frequency. 
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As is seen from the system matrix,  , in Table 6, the water flow and drinking bouts frequency has 

an overall trend combined with three harmonic waves.  

As with the temperature models, the initial mean vector was estimated by first modeling the healthy 

water flow and drinking bouts frequency observations from the learning set while assuming that all 

variance was accounted for by the observational variance,  , and subsequently smoothening the 

filtered observations. The resulting initial mean vectors are seen in Table 7. 

Table 7: Initial mean vectors of water flow and drinking bouts frequency.   

 Water flow Drinking bouts frequency 
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2.3.5 Humidity 

The average section level humidity given the hour of the day can be seen on Figure 6.  

. Notice that hourly humidity observations only exist in our data set for one spring time growing 

period. For all other growing periods, humidity is generally only available once per day. These 

observations are assumed to be made at noon. 

 

Figure 6: The mean humidity observation given hour between midnight and midnight. Hourly humidity 

observations are only available for a single growing period during the spring time. All other humidity 

observations are made once per day, which is assumed to be at noon. Blue = winter, green = spring, red = 

summer, black = autumn. 

As is seen, the observed hourly humidity values are relatively constant at between 70 and 75 % 

between midnight and midnight. Although the mean autumn humidity (~80 %) seems higher than 

the mean humidity values of the other seasons (~70-75 %), it was decided not to include separate 

humidity sub-models for the four different seasons. Instead it was decided to model humidity as a 

single linear function with a starting value estimated as the mean value of all humidity observations 

said to be observed at noon after data editing (mean humidity = 75.4 %) with a trend of 0. Thus the 

initial DLM parameters for humidity alone were as seen in Table 8.  

Table 8: Initial parameters for DLM of humidity alone.  

     
     

 

 
    
 

  

 

 

     

 

 
  
  

  

 

The trend of 0 means that we expect the humidity not to change, but that we allow for the 

possibility that a trend can be learned during the run of the DLM.  
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2.3.6 Combined model 

To co-model the seven different observable variables, the DLM parameters corresponding to the 

separate variables, described above, were combined into a single model. Thus the combined initial 

parameter vector,     was a column vector with a length of 28. Because the initial mean values 

related to temperature depended on the season of the year, the appropriate    vector was defined 

before modeling each batch.  

The design matrix,   
 ,  only contains the rows corresponding to the variables observed at a given 

time,  . Thus when all variables are observed at the same time,    
  has a 7x28 structure, while when 

only one variable is observed,   
  has a 1x28 structure.  

  had a constant 28x28 structure. 

2.4 Estimation of variance matrices 

The observational and systematic co-variance matrices (  and  , respectively) were estimated 

using the expectation maximization (EM) algorithm (West and Harrison, 1997), on the healthy 

batches in the learning set. By plotting the diagonal values of   and   against the number of 

iterations, visual inspection was used to determine when the algorithm had converged.  

2.5 Unification of forecast errors 

In this study, the forecast errors produced by the DLM were unified in the same way as was done in 

(Jensen et al. 2015). Specifically, during the modeling, a vector      of forecast errors (Observed 

values – Forecasted values) was continuously generated for each time step. In addition, a matrix 

describing the forecast co-variances      was continuously generated, as described by West and 

Harrison (1997). The Cholesky decomposition was calculated for    using the R function chol. 

Using the decomposed matrix      , the error vector was transformed, as seen in Equation (4). 

 

      
      (4) 

 

This transformation ensures that the transformed error values in    are mutually independent and 

each follow a standard normal distribution. Thus a single value measuring the square of the 

deviation from 0 can be easily calculated for the set of forecast errors, as seen in Equation (5). 

 

  
    

     (5) 

 

This unified error will follow a    distribution with   degrees of freedom, where   is the number 

of elements in   , i.e. the number of variables observed at time  . Thus   
  can be plotted to a 

conventional Shewhart control chart (Montgomery 2005) to allow for an easy monitoring of the 

complex system. Several quintiles for the    distribution were tested as the basis of alarm control 

limits, as described in detail below.  

 

To allow for a constant control limit in response to varying degrees of freedom,    
  was adjusted, 

according to Equation (6). 

 95



 

      
    

   
              

              
  

(6) 

 

A notable risk associated with the use of Cholesky decomposition is that the DLM will fail if    is 

(computationally) singular or not positive definite. When running the DLM on the test set, such 

errors were handled by setting the unified error to 1, effectively meaning that no alarm would be 

associated with any observation which caused this error. This problem was irrelevant when 

estimating the variance components using the EM algorithm.   

2.6 Performance evaluation 

Part-alarms were said to be raised if the unified error exceeded the control limit, as defined by the 

quintiles for the    distribution and the degrees of freedom. Full alarms were said to be raised if a 

sufficient number of part-alarms were raised consecutively. Predictive performance was estimated 

based on prediction windows around the days with observed undesired events. A review by 

Hogeveen et al. (2010) describes this as a standard method for evaluation the performance of 

mastitis detection in dairy cows, and we have previously used the method to evaluate a temperature-

based model for early warning of diarrhea and pen fouling in slaughter pigs (Jensen & Kristensen 

2016). A number of different windows were tested. Figure 7 illustrates the method when using one 

of these windows, which includes three days before and one day after an event observation, hence 

forth designated as a -3/+1 window. In this case, if at least one full alarm occurred at most three 

days before or one day after the day of an event observation, that was counted as a true positive 

(TP). If no full alarms were raised within such a prediction window, it was counted as a false 

negative (FN). Days with full alarms which occurred outside of a prediction window were counted 

as false positives (FP), and days without full alarms which were outside a prediction window were 

counted as true negatives (TN).  

 

Figure 7: Hypothetical examples to how true positives (TP), false positives (FP), true negatives (TN), and false 

negatives (FN) are defined. In this illustration we use the -3/+1 prediction window, but other windows were 

tested as well. When using the -3/+1 window, any number of full alarms occurring at most three days before or 

one day after an event observation is counted as one TP. If no full alarms occur within this window, it is counted 

as one FN. Single days without events but with full alarms are counted as FP. Single days with no events and no 

full alarms are counted as TN.  
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Having counted up the TP's, FP's, TN's, and FN's, sensitivity and specificity were calculated as 

                       and                       . By varying the number of 

consecutive part alarms required for one full alarm between 0 and 25, a receiver operating 

characteristics (ROC) (Zweig & Campbell 1993) curve was made. The area under the curve (AUC) 

served as the value, by which the predictive performance was measured. AUC was calculated using 

the function auc from the library MESS in R. 

2.7 Testing part-alarm threshold 

To determine the control line, above which unified errors would produce a part-alarm, all quantile 

values between 0.05 and 0.95 (by steps of 0.05) as well as 0.99 were tried for the    distribution of 

the unified errors. A ROC curve was made for each of the 20 control lines. The control line which 

resulted in the ROC curve with the highest AUC was selected to be used with the test set.  

2.8 Sensitivity analysis 

To investigate the relative contributions of the various variables to the performance of the described 

DLM/Cholesky method, each of the variables were left out during modeling and performance 

evaluation. The performance was then evaluated based on the AUC of the ROC curve. Furthermore, 

those variables, which caused the greatest reduction in AUC by their omission, were tested alone. 

3 RESULTS AND DISCUSSION 

3.1 Variance components 

The EM algorithm was initially allowed to run for 50 iterations, at which point the visual inspection 

was done. This inspection revealed that the variance values had converged essentially immediately 

and no further iterations were run.  The systematic co-variance matrix was found to be too large 

(dimensions: 28x28) to meaningfully include in the pages of this paper. Instead both matrices were 

submitted as supplementary materials, along with a matrix showing the observational correlations 

between the 7 variables.  

3.2 Part-alarm threshold 

Figure 8 shows the AUC values of the ROC curves achieved on the test set, when using different 

quantiles for the    distribution, which determines the control line for the alarms. All values are re 

made with a prediction window of -3/+1 days. The highest AUC (0.83) is achieved with a quantile 

value of 0.70. This value has been used in the generation of all results from this point on.  
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Figure 8: AUC given quantile values for the    distribution of the unified forecast errors 

3.3 Model output 

Figure 10 shows the unified forecast errors given the observation time for a group of pigs, for which 

no diarrhea or pen fouling events were observed. The red line marks the control line given the 

quantile of 0.70 (9.04). As is seen, it is not uncommon for the unified errors to exceed the control 

line, even when neither diarrhea nor pen fouling is observed. This is why multiple consecutive part-

alarms are required to form one full alarm. 

 

Figure 9: Unified forecast errors for a single healthy batch of pigs.  

Table 9 shows the predictive performance of event predictions given different prediction windows. 

As above, e.g. -3/+1 means that the prediction window covers observations up to three days before 

and up to one day after the day on which a given event was observed. In the same way, -0/+0 means 

that only full alarms raised on the same day as an event was observed would count as a true positive 
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alarm. As is seen, this one-day window results in a predictive performance which is just barely 

better than random guessing (AUC = 0.57), while including full alarms raised up to five days before 

an event observation raises the performance to 0.88. The performance is not further improved by 

including more than five days before the event observation. This fact suggest that true deviations 

from e.g. normal drinking behavior may start up to five days before a problem becomes apparent, or 

that the effect of e.g. sudden temperature changes does not manifest as visually identifiable 

problems until several days after the change. Table 9 further shows that while some information is 

clearly gained from including the +1 part of the window, i.e. allowing events to be detected up to 

one day after problems are physically visible, the majority of the information is actually contained 

in the days before the event.  

Table 9: Predictive performance given several different prediction windows. As an example, -3/+1 means that if a 

full alarm is raised at most three days before or one day after the day where an event was observed, that whole 

period is counted as one true positive prediction.  

Prediction window AUC 

-0/+0 0.57 

-0/+1 0.66 

-1/+1 0.72 

-2/+1 0.81 

-3/+0 0.78 

-3/+1 0.83 

-4/+1 0.87 

-5/+0 0.84 

-5/+1 0.88 

-6/+1 0.88 

 

Figure 10A shows five ROC curves corresponding to selected AUC values in Table 9, including the 

one produced with the -5/+1 window (triangles). This curve shows that if the sensitivity is held 

0.80, as recommended for e.g. detection of diseases in dairy cattle by Hogeveen et al. (2010), the 

false positive rate would be 0.19, corresponding to a specificity of 0.81. 

Table 10 shows the effect on the predictive performance of the DLM/Cholesky method when each 

of the variables are left out of the model. All performances in Table 10 are achieved with a 

prediction window of -5/+1 days, and the control line being defined by the 0.70 quantile of the    

distribution for the unified forecast errors. ROC curves corresponding to selected AUC values are 

seen in Figure 10B.  

As is seen, omitting mean live weight, feed usage, and humidity all have no discernible effect on the 

predictive performance, as the AUCs remain 0.88 in these cases. This matches Figure 10B, where 

the ROC curves given the omission of each of these variables are essentially indistinguishable from 

the ROC curve achieved when all variables are included.  
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Omitting only the temperature measurements by the corridor apparently does not influence the 

performance either, whereas omitting the temperature data collected by the drinking nipple reduces 

the AUC by three percentage points. Omitting both temperature measures simultaneously has the 

same effect. This is somewhat consistent with some of our previous findings (Jensen & Kristensen 

2016), where five temperature summary variables were used to model the risk of diarrhea or pen 

fouling with a logistic regression model. Three of the five summary variables pertained to the 

temperature measurements by the drinking nipple, and two pertained to measurements by the 

corridor. Of these two variables, only one was statistically significant (p < 0.05).  

Both drinking behavior measures, i.e. water flow and drinking bouts frequency, are seen to affect 

the performance when omitted, reducing the AUC by 3 and 1 percentage points, respectively. When 

both of these variables are omitted, however, a more drastic decrease of 15 percentage points is 

seen.  

 

Figure 10: A) ROC curves given five selected time windows when all seven variables are included. B) ROC 

curves given the omission of selected variables. Drinking behavior refers to both water flow and drinking bouts 

frequency. Temperatures refer to both back wall and corridor temperatures. C) ROC curves achieved when only 

selected variables (temperate and/or drinking behavior) are included.     
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Table 10: The predictive performance achieved when omitting the various variables 

Omitted variables AUC 

None 0.88 

Mean live weight 0.88 

Mean feed usage 0.88 

Humidity 0.88 

Temperature, corridor 0.88 

Temperature, drinking nipple 0.85 

Temperatures, corridor & drinking nipple 0.85 

Water flow 0.85 

Drinking bouts frequency 0.87 

Water flow & drinking bouts frequency 0.73 

 

Based on the fact that temperature and drinking behavior are the only two variables seen to affect 

the predictive performance, it was decided to test what performances could be achieved when 

including only both of these as well as each of these alone. It was further decided to test these 

values with both a -5/+1 window and a -3/+1 window. The -5/+1 window shows what performance 

can maximally be expected given the DLM/Cholesky method using the model described in this 

paper. The -3/+1 window allows the best possible comparison between the performance of the 

DLM/Cholesky method with the temperature-only summary/logistic regression method presented in 

a previous study (Jensen & Kristensen 2016). All results are seen in Table 11, while the ROC 

curves for the -5/+1 windows are seen in Figure 10C. Notice first that for the -3/+1 window, the 

AUC produced when including both temperature variables and drinking behavior is 0.82,  compared 

to the 0.83 seen in Table 9. This means that when using this prediction window, the combined 

omission of live weight, feed usage, and humidity amount to a reduction of 1 percentage point of 

the AUC. When using the -5/+1 window, however, this combined effect is not seen. 

 

Secondly, only including temperature reduces the performances by between 21 and 18 percentage 

points, i.e. to 0.67 and 0.65, given the -5/+1 and the -3/+1 prediction windows, respectively. It 

should be noted that the AUC of 0.67 is considerably lower than the AUC of 0.73, as seen in Table 

10 when both water flow and drinking bouts frequency were excluded. This shows that live weight, 

feed amount, and/or humidity actually do add some information when drinking behavior data is not 

available, but that this information value disappears completely when drinking behavior is 

available. Further testing showed that all of this information was primarily contained in feed usage, 

secondarily in humidity, and that live weight added no information (data not shown).  

Only including drinking behavior reduces the AUC by a mere 2 and 4 percentage points, compared 

to including all variables.  
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Table 11: The predictive performances given the inclusion of only drinking behavior (water flow and drinking 

bouts frequency), temperature measurements (by the back wall and by the corridor), or both drinking behavior 

and temperature measurements.  

Included variables Prediction window AUC 

Drinking behavior; Temperatures, corridor and back wall 
-5/+1 0.88 

-3/+1 0.82 

Temperatures, corridor and back wall 
-5/+1 0.67 

-3/+1 0.65 

Drinking behavior 
-5/+1 0.84 

-3/+1 0.81 

 

Together, these results paint a clear picture that the drinking behavior contain the most information 

in relation to detection and early warnings of diarrhea and pen fouling. The observation that 

drinking behavior of the pigs is significantly altered when undesired events, such as diarrhea and 

pen fouling, are under way, are in accordance with the findings of Madsen and Kristensen (2005). 

Furthermore, the fact that drinking bouts frequency, which served as our proxy for pig activity, can 

be seen to contain information independently of water flow, suggests that better and more direct 

automatic observations of the activity of the pigs would be worth investigating. This could be done, 

for example, via cameras above the pen, combined with some activity analyzing software.  

It is worth pointing out that in our previous study (Jensen & Kristensen 2016), an AUC of 0.80 was 

achieved for indiscriminate warnings of diarrhea and pen fouling when only using temperature 

summaries and a -3/+1 prediction window. In this study, using the same window and including all 

available variables, we achieved an AUC of 0.83, while the performance fell to an AUC of 0.65 

when only temperature data were included. This shows rather convincingly that while the 

DLM/Cholesky method used here may be well suited for harnessing the information in the drinking 

behavior of the pigs, a per-day summary approach is the better choice for the temperature data. The 

challenge of combining these rather different types of monitoring methods will thus have to be 

addressed in later research.  

It is also worth noting that the variables with the least effect on performance were the variables with 

the lowest frequency of observations, namely live weight (observed weekly), feed amount 

(observed daily) and humidity (observed daily, sometimes hourly). It is conceivable that a more 

continuous monitoring of the animals live weight would increase the relative value of the weight 

information, as deviations from expected growing patterns could be detected sooner. This could for 

example be achieved via video monitoring of the pen combined with software capable of estimated 

the average weight of the pigs based on their observed size.  

It might further be that the relative value of the feed amount and humidity observations would be 

greater, if the data were modeled with time steps of one day rather than one hour. Alternatively, like 

the temperature data, these variables may need to be monitored in a completely different way from 
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what has been done here in order to provide any useful information. Further studies would be 

needed to evaluate these strategies.  

Furthermore, it is worth noticing some interesting differences between the data observed on days 

with diarrhea compared to the data observed on days with pen fouling, as seen in Table 1. First of 

all, diarrhea is associated with higher water flow and water flow frequencies during the night hours, 

i.e. between 9 PM and 9 AM. This same association is not seen with pen fouling. Diarrhea is also 

associated with lower corridor temperatures, compared to days with no events, whereas pen fouling 

is associated with higher corridor temperatures. Pen fouling is further associated with greater 

diurnal changes in temperature at the back wall, and higher overall temperatures at the corridor. 

Remember that the DLM/Cholesky method presented in this paper is not able to distinguish 

between the two types of events, but merely raise an alarm whenever the system is changing 

compared to the healthy situation. Thus, if the goal is early warning and prevention, a response 

targeted at a specific event would be preferable, as different responses to the two problems would 

be required; in case of oncoming diarrhea, the proper response would be to verify that the pigs have 

an intestinal infection and then treat with the appropriate antibiotics, while in the case of pen 

fouling, the proper response would be to regulate the temperature or to lower the stocking density in 

the pen. Given the differences in the nature of the two events included in this study, as described 

above, making a system to raise specific alarms about a specific events being under way could 

conceivably be achieved. This could be done by, for example, not unifying the forecast errors with 

the Cholesky method used here, but by instead parsing the forecast errors to e.g. a Bayesian 

classifier or an artificial neural network.  

Lastly, it should be remembered that only registrations of diarrhea and pen fouling were actually 

available for this study, yet it is known that other undesired events such as pneumonia and influenza 

did occur. For these reasons, the specificities reported in this paper are likely to be underestimated.  

4 CONCLUSIONS 

We demonstrate the use of a multivariate dynamic linear model as a method for combining multiple 

and diverse precision data sensors, where data with different origin, numerical magnitude, and 

observational frequency can be co-modeled, and the forecast errors of this model translated into 

alarms concerning undesired events. This framework of DLM-based alarms further provide an easy 

method of estimating the relative information value of the various data streams by systematically 

omitting and including single data streams in the model.  

Moreover, we show that early but indiscriminate warnings can be raised for diarrhea and pen 

fouling using the unified forecast errors of the multivariate dynamic linear model using time steps 

of one hour. The best performance was achieved with a prediction window of 7 days (-5/+1 days, 

relative to the assigned event observation), with an area under the receiver operating characteristics 

curve of 0.88 and a specificity of 0.81 when the sensitivity is held at 0.80. Using longer prediction 

windows than this did not improve the predictive performance. Drinking behavior, i.e. water flow 
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and drinking bouts frequency, were found to be by far the most significant predictors of these 

undesired events, followed by temperature measurements.   
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ABSTRACT 

Rapid and an automatic detection of dairy cow mastitis is important so corrective action can be 

taken as soon as possible while labor needs for monitoring are reduced.  Automatically collected 

sensor data used to monitor the performance and the health state of the cow could be useful for 

automatic detection of mastitis. The state of the art in combining sensor data to predict clinical 

mastitis still does not yield sufficient performance to be applied in practice.  Our objective was to 

present the combination of a multivariate dynamic linear model (DLM) with a naïve Bayesian 

classifier (NBC) as a novel method for combining sensor- and non-sensor data for the purpose of 

detecting clinical cases of mastitis. We also evaluated reductions in the number of sensors for 

detecting mastitis. With the DLM we co-modeled 7 sources of sensor data (milk yield, fat, 

protein, lactose, conductivity, blood, body weight) collected at each milking for individual cows 

to produce one-step-ahead forecasts for each sensor. The observations were subsequently 

categorized according to the errors of the forecasted values and the estimated forecast variance. 

The categorized sensor data was combined with other data pertaining to the cow (week in milk, 

parity, mastitis history, SCC category, and season) using Bayes' theorem which produced a 

combined probability of the cow having clinical mastitis. If this probability was above a set 

threshold, the cow was classified as mastitis positive. To illustrate the performance of our 

method, we used sensor data from 1,003,207 milkings from the University of Florida Dairy Unit 

collected from 2008 to 2014. Of these, 2,907 milkings were associated with recorded cases of 

clinical mastitis. With this DLM/NBC method, we reached an area under the receiver operating 

characteristic curve of 0.89, with a specificity of 0.81 when the sensitivity was set at 0.80. 

Specificities with omissions of sensor data ranged from 0.58 to 0.81. These results were 

comparable to other studies, but differences in data quality, definitions of clinical mastitis, and 

time windows make comparisons across studies difficult. We found the DLM/NBC method to be 

a flexible method to combine multiple sensor and non-sensor data sources to predict clinical 

mastitis and accommodate missing observations. The DLM method produces forecasts that are 

approximately normally distributed, which makes forecasts and forecast errors easy to interpret 

and new sensors can easily be added 
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1 INTRODUCTION 

Mastitis is associated with a wide range of characteristics that can be measured in milk. In a 

classic review, Kitchen (1981) described the effect of mastitis on the composition of milk and 

discussed potential diagnostics based upon these effects. In addition to SCC, electrical 

conductivity, milk constituents (especially lactose) and enzymes (such as N-acetyl-β-D-

glucosaminidase and lactate dehydrogenase) have been identified to be affected by clinical 

mastitis.  

Since the 1990s, work has been carried out on automated detection of mastitis using changes in 

one or more milk characteristics (e.g. Nielen et al., 1996). Automated mastitis detection systems 

started to be widely used on commercial dairy farms with the introduction of automatic milking 

systems approximately 20 yr ago. A mastitis detection system consists of at least 2 elements: the 

sensor (hardware), and the algorithms to translate sensor data into alerts (software). A decision 

support system and a decision making system are possibly also part of a mastitis detection 

system (Rutten et al., 2013). The main sensor (hardware) that is being used to detect mastitis 

measures electrical conductivity (e.g., Nielen et al., 1995, Norberg et al., 2004; Cavaro et al., 

2006). Sensor systems based on other milk characteristics are also proposed and on the market, 

such as milk color (Song et al., 2010), lactate dehydrogenase (Chagunda et al., 2006; Friggens et 

al., 2007) and SCC (Whyte et al., 2005; Mollenhorst et al., 2010).  

Most publications on automated mastitis detection systems are aimed at the algorithm to 

transform sensor data into alerts. Quite some different data modeling techniques have been 

proposed, including thresholds (e.g., Mollenhorst et al., 2010), moving averages (Maatje et al., 

1992), neural networks (e.g., Nielen et al., 1992; Cavero et al., 2008), fuzzy logic (e.g., de Mol 

and Woldt, 2001; Kamphuis et al., 2008), time series analysis (de Mol, 2001; Cavero et al., 

2007), discriminant function analysis (Norberg et al., 2004); Kamphuis et al., 2010), and wavelet 

filtering (Miekley et al., 2013). In most of these studies, electrical conductivity was combined 

with other measurements (mostly with milk yield) to improve the performance of the detection 

system.   

So far, the performances of the published mastitis detection systems do not satisfy the high 

accuracy needed for practical clinical mastitis detection systems (Hogeveen et al., 2010). 

Combining data from more sources has been suggested as a possible method to improve the 

performance of mastitis detection systems. It is still unclear how to best combine data from 

different sensors and other data, including accounting for missing observations. Bayesian 

analysis has been used as an approach to prioritize sensor data-based alarms by including cow 

specific information (Steeneveld et al., 2010).  
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Most mastitis detection systems compare observed sensor values to forecasted values and 

monitor forecast errors. Forecasts are typically based on moving averages (e.g. Maatje et al., 

1992) but if the quality of the forecast is improved, then the performance of a mastitis detection 

system may be improved as well.  

As a method for combining the many possible lines of sensor- and non-sensor based data for a 

unified prediction of mastitis, we propose using a multivariate dynamic linear model (DLM) in 

combination with a naïve Bayesian classifier (NBC). The multivariate DLM provides the 

forecast values while the NBC combines all available observations, including forecast errors, 

with a prior probability to achieve a single posterior probability of mastitis.  

A property of the multivariate DLM, as described by West and Harrison (1997), is that it is 

adaptive, and thus the expected values are automatically adjusted to the longer term trend of the 

data. Another property of the multivariate form of the DLM is that the co-dependencies between 

several variables of interest can be taken into account, when one-step-ahead forecasts for these 

variables are calculated, which is attractive for the NBC.  

Similar adaptive forecasting has been applied by Huybrechts et al. (2014), who used a synergistic 

control process to adjust lactation curves in an effort to use milk yield as a predictor of clinical 

mastitis (sensitivity: 0.63). Huybrechts et al. (2014) relied heavily on a specific mathematical 

model for long term forecasting, whereas the adaptive and short-term nature of the forecasts 

produced by a DLM allows for a freer description of multiple (non)-linear trends that may 

predict the short-term observations better. Furthermore, the DLM easily handles missing data, as 

one-step-ahead forecasts are always produced given the available data.  

Few applications of DLM for monitoring animal production systems exist. Univariate 

implementations of the DLM have been developed for applications including detection of estrus 

in sows (Ostersen et al., 2010) and describing the drinking behavior of young pigs (Madsen and 

Kristensen, 2005). To our knowledge, no previous descriptions of applications of a multivariate 

DLM exist with the purpose of detecting diseases in production animals, such as mastitis in dairy 

cows.  

An NBC classifies a new set of observations by estimating the probability that the observation 

belongs to each class (mastitis or healthy). The NBC is a relatively simple classification method, 

but it has been shown to be useful in a wide range of fields, such as prediction of bacterial 

thermophilicity (Jensen et al., 2012), diagnosis of classical swine fewer (Geenen et al., 2011) and 

detection of clinical mastitis (Steeneveld et al., 2009). The NBC has advantages over comparable 

classification methods, such as artificial neural networks or logistic regression functions, because 

missing observations can be easily handled in an NBC by including only those observations 

which are available. Similarly, adding data from a new sensor is relatively trivial with the NBC, 

so long as likelihoods are available for the outputs of that sensor, associated with the outcome 
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variable that needs to be classified. Such likelihoods may be estimated from scientific literature 

or practical knowledge of how mastitis influences milk characteristics and cow physiology, or 

they may be derived directly from observations made on-site using the sensor. Lastly, the 

likelihoods make it easy to see the relative contributions of the various variables of interest, as 

opposed to the black box-nature of for example neural networks.  

A combination of a DLM and NBC is therefore a potentially attractive practical method to detect 

clinical mastitis using data from multiple sources. We have 2 objectives with this study: 1) to 

describe and illustrate the combination of a multivariate DLM and a NBC for detecting clinical 

mastitis; 2) to measure the performance of the DLM/NBC method and estimate the relative 

importance of various combinations of sensor- and non-sensor data on that performance. 

2 MATERIALS AND METHODS 

2.1 Data Sources 

In this study, we refer to 2 types of data, namely continuous data and categorical data. 

Continuous data are those which were obtained with sensors and used by the DLM in their raw, 

numeric form. Categorical data are those which are considered to fall within 2 or more separate 

categories, regardless of whether the information was collected using sensors or not. 

All data were obtained from the University of Florida Dairy Unit located in Hague, Florida, 

between September 2008 and March 2014. The herd consisted of approximately 500 Holstein 

cows which were housed in freestall barns with sand bedding and fans and sprinklers for heat 

abatement. Cows were fed a total mixed ration and milked twice per day with 12-h intervals in a 

double-12 milking parlor.  

In and around the milking parlor, milk yield, milk conductivity, fat %, protein %, lactose %, 

blood %, SCC category and body weight were automatically recorded per cow per milking using 

sensors. Blood % is the volume of blood in 1 ml of milk expressed as a percentage. Milk yield 

and conductivity were measured with milk meters. Milk components and SCC categories were 

measured by real-time milk analyzers (AfiLab). Body weights were measured by automated 

scales when cows exited the milking parlor. All sensors were obtained from Afimilk, Kibbutz 

Afikim, Israel. The accuracies of the sensors for fat, protein and lactose have been evaluated by 

Kaniyamattam and De Vries (2014). The 7 continuous variables from these sensor data were 

used in the DLM.  

The 5 categorical variables were SCC category (0-200, 200-400, 400-800, 800+ x 1,000 

cells/ml), parity (first, later), previous mastitis treatment (yes, no, excluding treatment at the time 

of observation), season (warm: May to August; cold: September to April), and the week in milk 

(WIM). These 5 categorical variables were not used in the DLM but added in the NBC. 
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All records of clinical mastitis cases were obtained from the herd management information 

system.  Clinical mastitis cases were determined in the milking parlor by trained farm staff 

following the farm’s standard operating protocols (Donovan et al., 2011) which included 

forestripping and visual observation of milk. In addition, cows on alert lists for larger than 

expected milk yield deviations were evaluated for clinical mastitis by farm staff. 

If mastitis was diagnosed during the evening milking, the cow was immediately moved after her 

milking to the hospital herd (but not treated) and then evaluated and treated after her next 

milking in the morning. If mastitis was diagnosed during the morning milking, the cow was 

immediately moved to the hospital herd after her milking. The hospital herd was the last group 

milked in each milking shift. Treatment of mastitis occurred in the morning when the hospital 

herd was milked. Diagnosis and treatment were conducted by trained farm staff or veterinarians 

of the University of Florida. Confirmed clinical mastitis cases were treated according the 

standard operating protocol and entered in the management information system.  

All mastitis diagnoses were registered on a daily level, and the milking of first diagnosis was not 

available. For example, if mastitis was registered on a Friday, the actual mastitis diagnosis was 

made either during the Friday morning milking or the Thursday evening milking. Such daily 

mastitis recording is routine in the US because the aim is to track withholding times for meat and 

milk after treatment. 

2.2 Data Editing 

All data editing, modeling and calculations were done using the statistical language and 

environment R (The R Core Team, Austria 2013). 

The sensor data were screened for outliers using simple summary statistics. We judged all 

observations from the 7 continuous sensor variables to be within acceptable ranges.  

Data collected for a given cow within at least 14 days of a new mastitis observation were not 

considered when calculating the updated probability of mastitis, and such data are not included 

in the following data descriptions.  

 All continuous sensor variables and SCC categories contained some missing values due to 

automatic data reading or entry problems in the parlor. The most extreme cases where body 

weight and SCC category, with a total of 157,250 (15.67%) and 61,429 (6.12%) of these 

observations missing, respectably. The remaining sensor variables had between 15,595 (1.55%) 

and 31,071 (3.10%) missing observations. Often the missing data occurred in the same milkings. 

The periods of missing data were on average between 1.32 and 1.84 observations long for the 

individual variables, but in rare cases the periods for individual missing variables were up to 257 

observations. A total of 9 out of 2,051 lactations had periods of missing data for more than 100 
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consecutive observations for at least one sensor variable. None of the other categorical variables 

(i.e. season, parity, previous mastitis treatments, and WIM) had missing observations.  

New clinical mastitis cases were associated with both the morning and evening before milking 

because we could not distinguish if the case was first diagnosed in the evening or in the morning. 

Any case recorded within 14 d (28 milkings) of a new case was considered to be a flare up of the 

same case for that cow and was ignored.  

The descriptive statistics of the edited data are shown in Table 1. Data from 1,003,207 milkings 

were available, including 2,907 milkings (morning and evening) from days where clinical 

mastitis was recorded.  Figure 1 shows the number and prevalence of mastitis observations in the 

first 43 WIM. 

 

Figure 1: The number of mastitis cases (circles; left vertical axis) and the prevalence of mastitis cases (solid 

squares; right vertical axis)  observed for the entire study population, i.e. all cows from the learning set and 

test set, by week in milk (WIM). 
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Table 1. Descriptive statistics of the study data collected at the University of Florida Dairy Unit. Data collected for a given cow within at least 28 

milkings of a mastitis observation are not included. 

Categorical variables N
1
 Outcome Continuous variables 

    

mastitis  milk yield milk fat protein lactose blood body weight  

cases  (kg) conductivity (%) (%) (%) (%) (kg) 

      mean SD mean SD mean SD mean SD mean SD mean SD mean SD 

Total 1,003,207 2,907 16.01 5.12 10.93 1.35 3.67 0.53 3.11 0.28 4.76 0.28 0.22 0.09 625.05 85.23 

Time of day 
                

Morning 502,335 1,464 16.61 5.23 11.03 1.35 3.64 0.53 3.10 0.28 4.77 0.29 0.22 0.10 616.58 83.90 

Evening 500,872 1,443 15.42 4.93 10.83 1.35 3.70 0.53 3.11 0.27 4.76 0.28 0.21 0.09 633.28 85.72 

Current mastitis 
                

Yes 2,907 2,907 13.09 7.27 12.43 2.05 4.02 0.88 3.24 0.50 4.39 0.57 0.29 0.13 638.17 85.13 

No 1,000 300 0 16.02 5.11 10.92 1.35 3.67 0.53 3.11 0.28 4.77 0.28 0.22 0.09 624.98 85.23 

Season 
                

Cold 665,457 1,625 16.06 5.19 10.94 1.38 3.70 0.54 3.11 0.28 4.78 0.30 0.21 0.09 622.22 84.57 

Warm 337,750 1,282 15.92 4.97 10.91 1.30 3.63 0.51 3.10 0.28 4.74 0.25 0.22 0.10 630.49 86.24 

SCC category
2
                 
0-200 768,059 1,152 16.53 4.83 10.86 1.26 3.62 0.47 3.07 0.23 4.85 0.16 0.21 0.09 621.67 83.65 

200-400 82,240 392 14.64 5.16 11.22 1.59 3.85 0.55 3.19 0.26 4.61 0.18 0.23 0.10 646.95 89.27 

400-800 34,342 240 14.08 5.38 11.23 1.65 3.88 0.62 3.24 0.30 4.48 0.21 0.24 0.10 645.07 91.36 

800+ 57,137 563 13.48 5.66 11.24 1.65 3.88 0.73 3.32 0.40 4.21 0.31 0.27 0.11 638.85 91.58 

Parity 
                

First 421,606 611 14.19 3.88 10.58 1.12 3.64 0.50 3.10 0.26 4.79 0.28 0.21 0.09 568.71 64.59 

Later 580,396 2 314 17.32 5.50 11.18 1.45 3.70 0.55 3.11 0.29 4.75 0.29 0.22 0.10 664.89 74.96 

Previous mastitis
3 

                
Yes 356,866 1 689 16.18 5.26 11.23 1.49 3.70 0.53 3.11 0.27 4.74 0.27 0.23 0.10 662.19 81.66 

No 646,341 1 218 15.92 5.04 10.77 1.24 3.66 0.53 3.10 0.28 4.78 0.29 0.21 0.09 604.71 80.14 
1
 Number of milkings 

2
 SCC is listed as thousands of cells/ml 

3
Binary variable, becomes Yes after a cow has completed its first mastitis treatment 
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The available data were split evenly into a learning set (500,442 milkings, 1,455 of which were 

on days with mastitis diagnosis) for estimating parameters for the DLM and the likelihoods for 

the NBC, and a test set (502,765 milkings, 1,452 of which were on days with mastitis diagnosis) 

for validation of the method. This was done by randomly assigning cows to the learning or test 

set and subsequently writing all observations from all lactations of the selected cows to their 

assigned set. This ensured that the observations in the 2 sets were as independent of each other as 

possible.  

2.3 Application of Multivariate Dynamic Linear Models  

Multivariate dynamic linear models with one step Markov evolution (West and Harrison, 1997) 

were used to forecast the continuous sensor values for each individual cow at each milking. 

Because the mean level at any given DIM was clearly different between morning and evening 

milkings (Palmer et al., 1994) for several of the sensors, as indicated in Table 1, the morning and 

evening data were modeled separately. Thus each DLM model would continuously forecast the 7 

continuous sensor observations for the next morning or the next evening milking.  

We expand on these methods, as they are relatively unknown in the dairy science community. In 

general, a DLM consists of an observation equation and a system equation (equations 1 and 2, 

respectively) as follows: 

     
                        0      (1) 

                           0      (2) 

Equation 1 describes how the values of an observation vector      depend on an unobservable 

parameter vector (  ) to time  . To describe both level and trend for each sensor, the parameter 

vector (  ) contains the underlying values for each of the continuous sensor variables, as well as 

the trend of the variable, i.e. the rates at which those same values change at time  . The initial 

mean levels for each variable were set as the mean value of the first observations of the 

respective variables across all lactations in the learning set. The initial trend was estimated as the 

average change in mean level from DIM = 1 to DIM = 2. These initial means and trends were 

estimate separately for morning and evening observations. 

The system matrix (   of equation 2) serves to update the expected values of the observable 

variables from time     to time    by adding the trend to the current level at that time. The 

transposed design matrix    
   serves to extract the expected values of the observable variables 

from the parameter vector, thus yielding a vector which includes only these estimates.  

 116



 

In our case, the system matrix as well as the 2 variance matrices are constant, so that     , 

    , and     .    varies over time because it depends on which of the 7 sensor variables 

have missing observations at a given time, as explained in the multivariate case below.  

2.3.1 Univariate Example 

Assume that we wish to model the morning milk yield alone with a univariate DLM. We 

estimate that the initial morning milk yield on day 1 is 0.47 kg and that the initial trend in 

morning milk yield is +0.21 kg/d. Thus we can describe the change in morning milk yield from 

DIM = 1 to DIM = 2 according to equation (2) as follows:  

          

    
  
  

   
    
    

    

    
    
    

    

(2.e) 

We can further describe the estimated milk yield observation at DIM = 2 according to Equation 

(1) as follows: 

     
       

         
    
    

    

          

(1.e) 

In other words, the prior estimates of the expected observations to a given time are calculated 

using the common rules for matrix multiplication. 

2.3.2 The Multivariate Case 

Constructing the multivariate DLM is accomplished by combining the univariate models needed 

to describe the individual variables, as shown in the example above, while taking into account 

the co-variances between those variables. Here the transposed design matrix    
   and the system 

matrix (   have repeated structures corresponding to the number of variables being modeled, as 

illustrated by equations 3 and 4, respectively.  

  
   

     
   

     
  (3) 
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 (4) 

When all 7 sensor variables are included,   
  has 7 rows and 14 columns, while   has 14 rows 

and 14 columns. As seen in equation 4,   is a block-diagonal matrix, where each 2x2 block 

serves to update the expected value of a specific sensor variable, by adding the appropriate trends 

to the current values, as in the univariate example above. Also in accordance with the univariate 

example, the structure of   
  serves to separate those same observable values from the 

unobservable trends, yielding a vector of expected observations to each time,  .  

For   
 , only those rows corresponding to the variables which are actually observed at a given 

time are included at that time. This ensures that missing observations are ignored when the 

parameter vector is updated through Kalman filtering (West and Harrison, 1997). Kalman 

filtering is a method for reducing the noise in the observed data by considering the difference 

between the observed and forecasted values (i.e. the forecast error), while taking into 

consideration the variances associated with forecasting and observations.  

The co-dependencies between the various observable variables (1 to  , with   = 7 in this study), 

as well as their unobservable trend values (   to   ) are accounted for by the observational co-

variance matrix     and the system evolution co-variance matrix    , as illustrated by equations 

5 and 6, respectively.  

   

         

   
         

  (5) 

  

 
 
 
 
 
         

           

 
 

         

           

     
         

           

 
 

         

            
 
 
 
 

 (6) 

For example, if milk yield is considered variable number 1 and electrical conductivity is variable 

number 2, then      is the observational variance of milk yield,      is the observational variance 

of electrical conductivity, and      is the observational co-variance between milk yield and 

electrical conductivity. Similarly,      is the systematic variance of the evolution of milk yield, 

     is the systematic co-variance between milk yield evolution and the evolution of the trend 

(rate of change) of milk yield and      is the systematic co-variance between the evolution of 

milk yield and electrical conductivity. Thus the co-variances found for the off-diagonal positions 
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of the  and   matrices are what provides the extra information about variable interaction, 

compared to the information available in the univariate models.  

We estimated the values in the   and   matrices using the expectation maximization (EM) 

algorithm (West and Harrison, 1997), applied to the learning set. The variances of the different 

variables were adjusted to similar scales by dividing all milk yield observations by 10 and all 

body weight observations by 100 before modeling. To ensure that the DLM was optimized for 

modeling the healthy, non-mastitic, state of the cows, only lactations with at least 43 full WIM, 

with at most 10 % missing data overall, and missing data periods of at most 2 consecutive 

observations, were used (N = 41 lactations) from the learning set. Convergence of the EM 

algorithm was determined by plotting variance values, i.e. the diagonal values of V and W, 

against the number of iterations, and inspecting these plots visually. Convergence was reached 

when the EM algorithm was run for 300 iterations for the morning model and 230 iterations for 

the evening model.  

To demonstrate how the multivariate DLM’s ability to accurately forecast the continuous 

variables was affected by the presence of mastitis, the normalized forecast errors from the test set 

were selected for all morning milkings on days with and without mastitis, separately. For each 

continuous variable, the mean for non-mastitis forecast errors were calculated for each DIM. 

These healthy-associated mean errors were then plotted along with the individual forecast errors 

made for the same sensor variable, on the days where the cow was positive for clinical mastitis.  

2.4 Learning Likelihoods for Bayesian Classification 

The forecast errors of a multivariate DLM are normally distributed, and any interdependencies 

between data from the 7 sensors are accounted for by the co-variance matrices. This makes them 

suitable input parameters for an NBC. The DLM was run from DIM = 1 to DIM = 301 for all 

lactations in the learning set. For each observation time     within a given lactation, a vector of 

forecast errors for all variables      was generated. Simultaneously, a matrix describing the 

forecast co-variances      was generated, as described by West and Harrison (1997). Using the 

standard deviations     
   derived from the forecast variances for each of the observed 

variables    , the values of the forecast errors for the individual variables    
   where categorized 

in 1 of 4 observation categories (    ): low    
       

  , middle low       
       

  , 

middle high       
       

  , and high    
       

  .  

The likelihoods for each of the possible observation categories within each variable, given the 

possible 2 states (mastitis positive (=clinical mastitis) or negative (= healthy)), was calculated as 

                     
               and                      

              , where          
     is 

 119



 

the number of occurrences of a particular observation category when the observed cow is known 

to be mastitis positive, while           is the total number of mastitis positive observations. 

Similarly,          
    is the number occurrences of the observation category when the observed 

cow is known to be mastitis negative, while           is the total number of mastitis negative 

observations. 

For each of the 5 categorical variables, the likelihood of observing each possible category given 

the 2 mastitis conditions (positive or negative) were calculated in the same way as for the 

categorized forecast errors from the 7 continuous sensor variables.  

2.5 Application of Naïve Bayesian Classification 

For each milking, the 5 categorical and 7 continuous variables were combined using an NBC, 

and a posterior probability of the cow being mastitis positive was calculated according to Bayes’ 

formula in equation 7. 

                  

  
                       

   

                       
                           

   

 
(7) 

, where             is the probability of the observation of the     categorized variable given 

that the cow is mastitis positive,             is the probability of the observation of the     

categorized variable given that the cow is mastitis negative,        is the prior probability that 

the cow is mastitis positive and        is the prior probability that the cow is mastitis negative. 

In the learning set, we observed that        = 0.5% and        = 99.5%.  

If the observation of any variable was missing, then no likelihood related to that variable was 

included in the calculation of the posterior probability. The cow’s milking was classified 

(predicted) as mastitis positive if the posterior probability was greater than a set threshold.  

2.6 Performance Evaluation 

All thresholds for positive classification between 0 and 1 with steps of 0.001 were evaluated. A 

posterior probability of mastitis above the set threshold was considered a mastitis alarm.  For 

each threshold and milking, each mastitis alarm, or lack thereof, was compared to the diagnosis 

of mastitis provided by the farm staff.  

In this study the morning and evening data were modeled separately and thus the performance of 

the DLM/NBC method was evaluated when applied separately to these 2 subsets. In this case, 

alarms were categorized as true positives (TP), false positives (FP), true negatives (TN), and 

false negatives (FN) on a single milking basis, depending on the whether or not the farm staff 

had identified the cow as mastitis positive for that milking.   

 120



 

We also evaluated the performance achieved when combining the alarms produced by the 2 

models. Because all mastitis cases had either been observed in the morning on the day they were 

registered or in the previous evening, we allowed for there to be 3 ways in which a TP would be 

assigned to a single mastitis observation: 1) an alarm was raised both by the morning model and 

the evening model, 2) an alarm was raised only by the morning model, 3) an alarm was raised 

only by the evening model. Any of these 3 scenarios would count as one TP observation. 

Similarly, 1 FN observation was counted if no alarm was raised by neither the morning model 

nor the evening model for a given mastitis observation. The FP and TN were still assigned on a 

single milking basis. These definitions are illustrated in Figure 2.  

 

Figure 2: Illustration of the definitions of true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) alarms. Note that these examples only serve as illustrations and do not represent any actual 

observations. Grey blocks represent morning milkings, black blocks represent evening milkings, and the thin 

vertical lines represent the separations between days.  Mastitis observations are always associated with a 

morning milking and the preceding evening milking. Black arrows represent alarms raised by the considered 

models (morning, evening, or both). Grey arrows represent alarms raised by the model, which is not 

considered (either morning or evening). A) When the alarms raised by the separate morning and evening 

models are both considered. B) When only alarms from the morning model are considered. C) When only 

alarms from the evening model are considered. 
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This resulted in lists of sensitivities, calculated as              , and specificities, 

calculated as              . The lists of sensitivities and specificities, given the various 

thresholds, were used to plot receiver operating characteristics (ROC) curves (Zweig and 

Campbell, 1993), which was summarized by calculating the area under the curve (AUC) using 

the function auc from the library MESS in R. 

In addition to the AUC of the ROC curve, the performances of the DLM/NBC method were 

evaluated based on the specificities achieved when sensitivity was set at 0.80, as recommended 

by Hogeveen et al. (2010), as well as the error rate of the predictions, calculated as 

                                 . The 95 % confidence interval for 

sensitivity was calculated as                               and the 95 % 

confidence interval for specificity was calculated as                          

    .  

2.7 Sensitivity Analysis 

The sensors used in this study come as 3 separate sensor packages, each of which can be 

obtained independently of the others. Package 1 included milk meters which measured milk yield 

and electrical conductivity. Package 2 included the AfiLabs which measured fat %, protein %, 

lactose %, blood %, and SCC category. Package 3 included the automatic scales which measured 

body weights. We measured the performance of the DLM/NBC method achieved by each of the 

7 possible combinations of the 3 sensor packages, as well as the effect of omitting the always 

available 4 non-sensor variables, which we refer to as package 0. These 8 combinations of 

information packages are summarized in Table 2. Statistically significant differences between the 

specificities of 2 information packages were identified by comparing their 95 % confidence 

intervals.  
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Table 2. The various combinations of the 4 information packages. Package 1: milk meter, package 2: AfiLab, 

package 3: automated scales, package 0: non-sensor information 

Package combination  Included sensor packages Included variables
 

1-2-3-0 

Milk meter  

AfiLab  

automated scales  

non-sensor information 

Milk yield, conductivity, fat %, protein %, lactose %, 

blood %, SCC category, body weight, parity, mastitis 

history, season, week in milk 

1-2-3 

Milk meter  

AfiLab  

automated scales 

Milk yield, conductivity, fat %, protein %, lactose %, 

blood %, SCC category, body weight 

1-2-0 

Milk meter  

AfiLab,  

non-sensor information 

Milk yield, conductivity, fat %, protein %, lactose %, 

blood %, SCC category, parity, mastitis history, season, 

week in milk 

1-3-0 

Milk meter  

automated scales  

non-sensor information 

Milk yield, conductivity, body weight, parity, mastitis 

history, season, week in milk 

2-3-0 

AfiLab 

automated scales  

non-sensor information 

Fat %, protein %, lactose %, blood %, SCC category, 

body weight, parity, mastitis history, season, week in milk 

2-0 
AfiLab  

non-sensor information 

Fat %, protein %, lactose %, blood %, SCC category, 

parity, mastitis history, season, week in milk 

3-0 
Automated scales  

non-sensor information 

Body weight, parity, mastitis history, season, week in 

milk 
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3 RESULTS 

3.1 DLM-based Forecast Errors and Likelihoods 

As is seen in Figure 3, milk conductivity, and to a lesser extend fat % and blood %, showed 

tendencies towards positive forecast errors, when mastitis occurred, while milk yield and lactose 

% showed tendencies towards being lower than forecasted by the DLM in mastitis positive cows. 

From a purely visual inspection of these plots, the presence of mastitis did not notably affect the 

tendencies of protein % and body weight towards being either above or below the forecasted 

value.  

 

Figure 3: Normalized forecast errors given health state for each of the 7 continuous sensors. Horizontal axis: 

days in milk (DIM). Vertical axis: normalized forecast errors. Points are errors when mastitis is observed. 

The thick grey lines are the average errors when no mastitis is observed. The thin horizontal line marks the 

position of 0. 
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The likelihoods of the 5 categorical variables and the 7 categorized continuous variables are 

shown in Table 3.  The likelihoods associated with both morning and evening milkings for the 

categorical variables were generally identical. For most continuous sensor data, the likelihoods 

differed considerably between morning and evening milkings.  

Table 3. Likelihood table for morning and evening milkings. p(Obs|Pos) is the likelihood of the observation 

given that the cow was diagnosed with mastitis. p(Obs|Neg) is the likelihood of the observation given that the 

cow was not diagnosed with mastitis 

    Morning Evening 

Variable Observation p(Obs|Pos) p(Obs|Neg) p(Obs|Pos) p(Obs|Neg) 

SCC
1
 category 

0-200 0.50 0.82 0.50 0.82 

200-400 0.15 0.09 0.15 0.09 

400-800 0.11 0.04 0.11 0.04 

800+ 0.24 0.06 0.24 0.06 

Previous Mastitis 
No 0.43 0.65 0.43 0.65 

Yes 0.57 0.35 0.57 0.35 

Parity 
Later 0.78 0.57 0.78 0.57 

First 0.22 0.43 0.22 0.43 

Season 
Cold 0.52 0.67 0.52 0.67 

Warm 0.48 0.33 0.48 0.33 

WIM
2 

1 0.12 0.03 0.12 0.03 

2 0.04 0.03 0.04 0.03 

3+ ~0.02 ~0.03 ~0.02 ~0.02 

Milk yield 

Low
3 

0.31 0.09 0.31 0.21 

Middle Low
4 

0.37 0.59 0.32 0.43 

Middle High
5 

0.23 0.30 0.21 0.24 

High
6 

0.10 0.02 0.16 0.12 

Conductivity 

Low
3 

0.24 0.20 0.27 0.21 

Middle Low
4 

0.20 0.37 0.19 0.36 

Middle High
5 

0.17 0.32 0.17 0.29 

High
6 

0.40 0.11 0.37 0.14 

Fat % 

Low
3 

0.12 0.09 0.14 0.13 

Middle Low
4 

0.21 0.32 0.20 0.28 

Middle High
5 

0.28 0.40 0.23 0.35 

High
6 

0.39 0.19 0.43 0.25 

Protein % 

Low
3 

0.18 0.13 0.13 0.10 

Middle Low
4 

0.25 0.34 0.21 0.23 

Middle High
5 

0.28 0.37 0.29 0.37 

High
6 

0.30 0.16 0.37 0.29 

Lactose % 

Low
3 

0.38 0.16 0.69 0.59 

Middle Low
4 

0.29 0.36 0.17 0.27 

Middle High
5 

0.22 0.38 0.06 0.07 
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High
6 

0.11 0.11 0.07 0.07 

Blood % 

Low
3 

0.06 0.06 0.18 0.21 

Middle Low
4 

0.20 0.27 0.18 0.20 

Middle High
5 

0.38 0.50 0.24 0.27 

High
6 

0.36 0.18 0.40 0.32 

Body weight 

Low
3 

0.47 0.31 0.29 0.15 

Middle Low
4 

0.26 0.31 0.22 0.22 

Middle High
5 

0.18 0.25 0.24 0.28 

High
6 

0.09 0.13 0.26 0.36 
1
SCC is listed as thousands of cells per ml. 

2
 Week in milk, from 1 to 43. After week 3, the likelihood given mastitis condition is approximately constant. 

3
The observed value is more than one standard deviation below the forecasted value 

4
The observed value is less than one standard deviation below the forecasted value 

5
The observed value is less than one standard deviation above the forecasted value  

6
The observed value is more than one standard deviation above the forecasted value  

 

3.2 Posterior Probabilities 

Figure 4A shows the average posterior probabilities produced with the DLM/NBC method for 

lactations with no mastitis cases based on all available sensor and non-sensor data (Table 2, 

Package combination 1-2-3-0). Morning and evening milking probabilities are shown 

sequentially. In the beginning of the lactation, the DLM-informed probability of mastitis is 

fluctuating and generally high, before it settles to a more constant level of nearly 0. This is a 

typical pattern, as the DLM is adapting to the data of the individual cow during these first few 

days. Thus there is an elevated risk of FP in this stage of the lactation, which on average takes 15 

d, as indicated by the vertical line.  

Figure 4B shows a lactation where a mastitis events is observed, marked by the dashed vertical 

line on DIM = 103. Notice the sharp spikes in the mastitis probability coinciding with this event, 

followed by at least 14 days where the posterior probability is not considered. Notice that spikes 

in the probability start to occur a few milkings before the event is observed. In this study, those 

premature spikes would be counted as FP, but they could conceivably be used for early 

warnings. Also, similarly to Figure 4A, fluctuations and higher-than-normal mastitis 

probabilities are seen at the beginning of the lactation, in spite of there being no observed 

mastitis event.  

 126



 

 
Figure 4: A) The average posterior probability of mastitis given DIM for healthy lactations. The vertical line 

indicates DIM = 15. B) Posterior probabilities of mastitis for one cow during a single lactation. The thick, 

dashed vertical line on DIM = 103 indicates the observation of a mastitis event. Probabilities for morning and 

evening observations are plotted sequentially in both plots. 

3.3 Predictive Performance  

Table 4 shows the predictive performances of the 8 information packages described in Table 2. 

Table 4 is sorted by the error rate, specificity, and AUC, which were achieved by combining the 

alarms of the morning and evening models. In all cases, sensitivity was held at 0.80 with the 95% 

confidence intervals being from 0.77 to 0.83 for morning, evening, and the combined alarms.  

The best performance of the DLM/NBC method using the full set of available sensor and non-

sensor information (combination 1-2-3-0 in table 2) resulted in an AUC of 0.89 with a specificity 

of 0.81 and an error rate of 0.19. 
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Table 4: The predictive performance of the 8 combinations of information packages as measured 

by the area under the receiver operating characteristic curve (AUC), specificity (SP) and error rate. 

Sensitivity was kept at 0.80. Package 1 includes the milk meter, 2 includes the AfiLab, 3 includes 

the automated scale, and 0 includes of non-senor information 

Package 

Combination 

Milking 

Time of Day AUC SP SP C.I. 95% Error rate 

1-2-3-0 

Combined 0.89 0.81 0.809-0.811 0.19 

Morning 0.85 0.75 0.748-0.752 0.25 

Evening 0.73 0.50 0.498-0.502 0.51 

1-2-0 

Combined 0.89 0.81 0.809-0.811 0.19 

Morning 0.85 0.75 0.748-0.752 0.26 

Evening 0.73 0.50 0.498-0.502 0.49 

1-2-3 

Combined 0.88 0.79 0.789-0.791 0.21 

Morning 0.82 0.68 0.678-0.682 0.33 

Evening 0.67 0.42 0.418-0.422 0.60 

2-3-0 

Combined 0.85 0.75 0.749-0.751 0.25 

Morning 0.79 0.64 0.638-0.642 0.35 

Evening 0.75 0.55 0.548-0.552 0.47 

2-0 

Combined 0.85 0.74 0.739-0.741 0.25 

Morning 0.78 0.63 0.628-0.632 0.37 

Evening 0.76 0.56 0.558-0.562 0.46 

1-3-0 

Combined 0.86 0.74 0.739-0.741 0.25 

Morning 0.82 0.65 0.648-0.652 0.34 

Evening 0.70 0.49 0.488-0.492 0.52 

1-0 

Combined 0.86 0.73 0.729-0.731 0.27 

Morning 0.81 0.63 0.628-0.632 0.38 

Evening 0.74 0.53 0.528-0.532 0.47 

3-0 

Combined 0.76 0.58 0.579-0.581 0.42 

Morning 0.73 0.53 0.528-0.532 0.46 

Evening 0.70 0.50 0.498-0.502 0.50 

 

The combination of morning and evening alarms consistently outperformed alarms raised based 

on either model alone. This was true for all 3 performance measures. Similarly, the 3 

performance measures consistently showed that the morning model alone outperformed the 

evening model alone. These relationships are also evident from the ROC curves in Figure 5A.  

From the ROC curves in Figure 5B we see that the predictive performances achieved with the 8 

information packages fall into 3 distinct groupings. The highest ROC curves are for the 

combinations 1-2-3-0, 1-2-0, and 1-2-3. In terms of all 3 performance measures, combinations 1-

2-3-0 and 1-2-0 yield exactly the same performances for the combined alarms, while the 

specificity of combination 1-2-3 is significantly lower the other 2 at the 95% confidence level.  
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Figure 5: Receiver operating curves (ROC) for mastitis prediction. A) ROC curves for the combined alarms, 

the morning alarms and evening alarms, when all sensor and non-sensor information is included. B) The 

ROC curves for the combined alarms, given the 8 information package combinations included in this study. 

Package 1 includes the milk meter, package 2 includes the AfiLab, package 3 includes of the automated scale, 

and package 0 includes of non-sensor information.   

The second-highest group of ROC curves consists of the combinations 2-3-0, 1-3-0, 2-0, 1-0. 

When sensitivity is held at 0.80, the specificities and error rates of combinations 3-1-0 and 2-0 

were similar, although the AUC was slightly greater for the 3-1-0 combination (difference 0.01). 

Even though the AUC of the 1-0 combination was greater than that of the 2-3-0 combination, the 

2-3-0 combination achieved preferable specificity and error rate values, when the sensitivity was 

set at 0.80.  
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The third group consists solely of combination 3-0, showing the least favorable values with 

respect to all 3 performance measures.   

4 DISCUSSION 

Our main objective was to describe and demonstrate the combination of a multivariate DLM and 

an NBC as a novel but intuitive method for combining sensor and non-sensor data for detecting 

mastitis. We further assessed the performance which can be expected from this method when 

some sensor packages are not available.  

4.1 DLM/NBC Methodology 

The basic premise behind the NBC is that all included variables are mutually independent and 

are only affected by the outcome of interest, but e.g. milk yield, the various milk components and 

conductivity are known to be highly correlated (Yoshida et al., 2005).  The interdependencies 

between the 7 continuous variables are however accounted for by the act of co-modeling these 

variables in the multivariate DLM, taking into account the observational and systematic co-

variances between them, as described by the   and   matrices, respectively. No 

interdependencies between the 5 categorical variables are taken into account in our DLM/NBC 

method. For example, it is known that season as well as parity affects milk composition (Yang et 

al., 2013).  Never the less, the NBC can yield excellent performances, even if the assumption of 

independence is violated (Pazzani, 1997). Furthermore, Steeneveld et al. (2010) attempted to 

improve their classification of TP mastitis cases by expanding their naïve Bayesian network to 

include dependencies between their included variables, but found that the resulting classification 

performance was not improved. We thus consider the multivariate DLM/NBC method to be a 

reasonable compromise between accounting for dependencies between continuous variables 

while still allowing for easy incorporation of all available data, including the categorical non-

sensor variables. 

4.2 Performance of the DLM/NBC Method and Contribution from Sensor Packages 

As seen in table 4, the omission of the non-sensor information leads to a reduction in all 3 

measures of predictive performance. This is in agreement with the finding of Steeneveld et al. 

(2010) that including non-sensor information to distinguish between TP and FP mastitis alarms, 

raised by an automatic milking system, reduced the number of false positives by 35 %, thus 

increasing the specificity. Furthermore, while Steeneveld et al. (2010) included similar non-

sensor data as were included in this study, they also included several other sources of non-sensor 

information, which were not available for this study, and which they found to have considerably 

higher significance in distinguishing between TP and FP mastitis alarms. Thus it stands to reason 

that even better performances could be achieved by including still more information.  

Package combination 3-2-1-0 yielded the same performance measures as package combination 

2-1-0, which suggests that if a farmer uses milk meters and the AfiLab, there is nothing more (in 
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terms of mastitis detection) to be gained from investing in the automated scales. This does not 

mean that the body weight contains no information, however. This is evident from the fact that 

package combination 2-3-0 performs better than 2-0 in terms of specificity and package 

combination 1-3-0 perform better than 1-0 in terms of specificity as well as error rate. As for 

package 1 compared to package 2, it is worth noticing that the AUC is higher for package 

combination 1-0 compared to combination 2-0 (AUC = 0.860 vs. 0.848). One might thus be 

inclined to think that the milk meter provides better mastitis detection than the AfiLab, if one had 

to choose to have only one of these sensors. This is however not the case when sensitivity is held 

at 0.80, as the corresponding specificity and error rate are both favorable for the AfiLab, with the 

difference in specificity being outside the 95% confidence interval.  

A clear cost-benefit analysis of investment in sensor packages was not feasible because real 

market prices were not available to us and sensors are usually also used for other purposes than 

mastitis detection. Routine maintenance time and costs were negligible for all sensors. 

4.3 Results of the DLM/NBC Method Compared to the Literature 

A direct comparison between our results and those reported in other studies does not fairly judge 

the performance of various methods, given that the different studies include data of different 

origins and unknowable quality. For example, case definitions of mastitis are not standardized 

and time windows of detection vary (Hogeveen et al., 2010). We do however consider the 

following considerations to be worthwhile for comparison. 

Some authors reported greater mastitis specificities than we found. For example, de Mol et al. 

(2001), Kamphuis et al. (2010) and Mollenhorst et al. (2010) presented mastitis detection with 

specificities of 0.979, 0.987 and 0.990, respectively. The associated sensitivities were 0.67, 0.32 

and 0.474, respectively, as compared to our set sensitivity of 0.80. Greater specificity results in 

lower sensitivity. Figure 5 shows that higher specificities are obtainable at the cost of lower 

sensitives. 

Other authors presented both high sensitivities and specificities, but these authors typically used 

wider time windows in their performance evaluation, as opposed to the 2 milkings window used 

in our study when we combined the morning and evening alarms. For example, de Mol et al., 

(1997) used a time window of 17 d around the day of diagnosis (-10 d to +7 d, sensitivity 0.90, 

specificity 0.982), while Cavero et al. (2009) used a 5-d window (-2 to +2, sensitivity 0.929, 

specificity 0.939). Such long time windows may not be useful in practice.  If an alarm is raised 

several days before clinical signs of mastitis are visible, the farmer will likely believe the alarm 

to be a FP. If this happens too frequently, the farmer will lose trust in the system, which would 

make it worthless (Hogeveen et al., 2010). Conversely, if an alarm is not raised until several days 

after clinical signs appear, treatment will be needlessly delayed. Thus a very narrow time 

window is needed for practical mastitis detection applications.   
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We found only 3 studies with a combination of predictive performance and narrow time 

windows comparable to those presented in this paper. These studies presented mastitis detection 

based on artificial neural networks  (Nielen et al., 1995; Sun et al., 2010) and fuzzy logic 

(Kamphuis et al., 2008). These 3 studies were all conducted with relatively small study 

populations, which invariably reduces the reliability of any results. Specifically, Nielen et al. 

(1995) included only 55 cows (31 with mastitis) and Kamphuis et al. (2008) included 18 mastitic 

cows. Given the reported number of cases and non-cases in these studies, the 95 % confidence 

intervals for the reported sensitivities would include values as low as 0.71 and 0.59 for Nielen et 

al. (1995) and Kamphuis et al. (2008), respectively. Sun et al. (2010) considered 194 cows, of 

which 43 (88 udder quarter milkings) were actually observed to be mastitic. However, Sun et al. 

(2010) inflated the number of infected quarter milkings to 895 by assuming that the quarters of 

the 43 cows were also mastitic at other times than indicated in the log book, if the observed milk 

yield, conductivity and SCC showed values above or below specific thresholds. They 

subsequently trained neural networks to detect mastitis, based on observed values of milk yield 

and conductivity, thus making the detection depend on the same variables that were used to 

define the majority of the events. Thus, the impressive performance (SE = 0.87, SP = 0.91) 

shown by Sun et al. (2010) is likely due to incorporation bias.  

A common approach in studies like the ones cited above is to clear the data set of missing data 

before applying a detection method. This will invariably give an unfairly favorable impression of 

the performance which ultimately cannot be transferred to practice where missing data are 

unavoidable. In contrast, the DLM/NBC method is cable of handling missing observations, as 

was demonstrated on our realistic data sets with all instances of missing data preserved.  

4.4 Perspectives 

The performance of the DLM/NBC method might be improved if milk yield was corrected for 

the interval between milkings. Longer intervals are associated with greater milk yield (Palmer et 

al., 1994). The effects of other design choices, such as the selection of “healthy” lactations to 

estimate variance components, should also be further evaluated. The expectation maximization 

algorithm is time consuming, which can be a hindrance for the practical application of the 

DLM/NBC method. In this study, we chose to only include high quality data when estimating the 

variance components, in part to reduce computation time. It would make sense to study the effect 

of the amount versus the quality of the data with respect to final model performance, which to 

our knowledge has not been done elsewhere. An alternative method could be to assume an 

unknown, non-constant system variance, which would be continuously estimated as described by 

West and Harrison (1997).  

Given the performance demonstrated in this study, it is reasonable to investigate the method’s 

value for detecting other conditions in dairy cows, or indeed health states in other production 

animals, such as pigs or poultry. Furthermore, one of the main advantages of using the NBC for 

information integration was the relative simplicity with which specific data could be ignored (for 
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example in the case of missing data) or added to the probability calculation. A relevant follow-up 

study would be to investigate how long after the inclusion of a new sensor the information 

collected by that sensor would add significantly to the performance of the DLM/NBC method, if 

the likelihoods need to be learned from observations in that herd. If the likelihoods of a 

condition, associated with the values of the sensor, can be directly applied between different 

herds, then a new sensor could potentially be useful immediately after its integration. However, 

if the likelihoods have to be estimated using on-site data, then the time before relevant 

information is added will depend heavily on the prevalence of the condition of interest.  

5 CONCLUSIONS 

In this study we showed that a combination of a multivariate DLM to produce forecasts and an 

NBC using mastitis-dependent likelihoods of forecast errors can be meaningfully used to 

combine multiple types of data for detecting mastitis in dairy cows. An advantage of the 

proposed method is the ease with which missing observations can be handled, and information 

from new sensors added, which is a necessary ability in real world farm situations. With this 

DLM/NBC method, we reached an AUC of 0.89, with a specificity of 0.81 when the sensitivity 

was held at 0.80 and when using the alarms raised during both morning and evening milkings.  

We tested the predictive performance using all combinations of the 3 available sensor packages 

as well as the omission and inclusion of non-sensor data. While all sensor packages held some 

information relevant for mastitis detection, the automated scale was by far the least informative. 

Including non-sensor data significantly improved the performance.  
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Chapter 10: Discussion and Perspectives 
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The objectives of this PhD project introduced a number of challenges, as presented section 1.2. 

Here the chosen solutions to those challenges, along with the findings achieved with those 

solutions, are discussed in relation to the existing scientific literature. These discussions raise 

perspectives for future research, which will be suggested during the discussion as well as 

summarized at the end of this chapter.  

10.1 Combining diverse data streams 

As stated in section 1.2, a major challenge raised by the goals of this PhD project, was the matter of 

how to combine the very diverse data streams, which were collected at the farms. From the 

commercial Danish pig farm, these data streams included continuous animal-oriented and 

environment-oriented sensor data, while the data streams from the University of Florida dairy herd 

included continuous animal-oriented sensor data as well as categorical sensor and non-sensor data.  

For continuous time series data, such as the sensor data used in the papers presented in this thesis, it 

is often a meaningful pre-processing method to have some model learn the expected pattern of the 

data stream, and then for each observation compare the forecasted values with the observed values. 

In Papers 3, 4, and 5, this was achieved with multivariate DLM, while the time series element was 

simply ignored in Paper 2. The multivariate DLM is a relatively modern and not yet widely used 

method for handling time series data. More classical time series handling methods include moving 

averages, as used by e.g. Cavero et al. (2008) and Kamphuis et al. (2010). Compared to these, the 

multivariate DLM present a number of advantages. For one thing, the multivariate DLM will by 

design include some estimate of the co-variances between the various observable and unobservable 

parameters included in the model.  

These co-variances can be estimated in different ways. The simplest solution is to assume no co-

variances between the various parameters, as was done by e.g. Madsen and Kristensen (2005). 

Another option is to estimate the variance-covariance matrices using the expectation maximization 

(EM) algorithm, as described by West and Harrison (1997). This was the solution selected in Papers 

3, 4, and 5. As mentioned in section 4.3, this inclusion of co-variances enables the model to take the 

interconnectedness between the modeled variables into consideration when making new forecasts. 

This also means that even when one or more observations of one variable is missing, the model is 

still able to predict changes in the level and the evolution of that variable, based on the changes in 

those variables which are observed.  

Although the use of DLMs in animal science, including PLF, is not yet widely seen, the fact that 

information from the sensor data could be extracted via dynamic modeling is not in itself a novel 

discovery, as this has previously been shown to be useful for detection of relevant events in dairy 

cows (de Mol et al. 2001; de Mol et al. 1997), sows (Ostersen et al. 2010; Cornou & Lundbye-

Christensen 2012), and that they are probably useful for detecting health problems in weaned pigs 

by monitoring their drinking behavior (Madsen et al. 2005). The novel part compared to these 

studies, however, is the ways in which the forecast errors were further processed in order to raise 

alarms concerning the undesired events, which will be discussed further in a later section of this 

chapter. Another major insight, which was first gained from the work related to Paper 3 and does 
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not seem to have been considered in the above listed studies, was that the variances of the data in 

the separate data streams needed to be adjusted to approximately the same level. Not doing this 

meant that the EM algorithm would be unable to estimate the variance-covariance matrices, because 

certain values would become computationally singular. A workable solution was to manually 

upscale or downscale the data in the individual data streams by factors of either 10 or 100 to bring 

the overall variances within the separate data streams to approximately the same level. This method 

was subsequently used in Papers 4 and 5 as well.    

Furthermore, the forecast errors which are produced by the DLM can be further processed in several 

ways before being parsed to a classification model. As an example, de Mol et al. (1997) used simple 

thresholds based on various confidence intervals, where just one of the forecast errors had to exceed 

the threshold for an alarm to be raised. In Papers 3 and 4, the forecast errors were unified via 

Cholesky decomposition and alarms were raised based on a threshold value for this unified error. 

And in Paper 5, the forecast errors were categorized based on whether they were positive or 

negative, and whether they deviated from zero by more or less than one standard deviation, also 

known as 1σ, corresponding to a ~68 % confidence level. The classification cutoffs could also have 

been based on e.g. 2σ or 3σ (~95 % and ~99.7 % confidence level, respectively), or more categories 

could have been made by using all of these cutoffs. Alternatively, the forecast errors could have 

been used in their numerical form rather than categorizing them, or the cumulative sum of the 

forecast errors could have been considered instead. Testing these various forecast error handlings in 

combination with different classification tools, with the purpose of optimizing the predictive 

performance, would be interesting goals for future research.  

10.1.1 Animal-oriented vs. environment-oriented sensor data 

When taken together, the findings in Papers 2, 4, and 5 give the distinct impression that animal-

oriented and environment-oriented data are best pre-processed in different ways. Specifically, the 

information from the behavior-related data such as the drinking behavior of the pigs in Paper 4, as 

well as the physiological data such as the milk yield and EC of the cows in Paper 5, could all be 

extracted meaningfully by means of dynamically modeling the data followed by parsing the forecast 

errors produced by the dynamic models to some classification model. In Paper 2, a strategy of daily 

temperature summary statistics combined through a logistic regression model was seen to be an 

effective method of extracting information related to the undesired events. This is in stark contrast 

to what was seen in Paper 4, where the DLM/Cholesky method applied to environmental variables 

such as temperature was found to be little more than useless. 

At this point, a recap of the main differences between the DLM and the summary values is in order: 

for each hour, where the temperature is observed, the DLM will make a forecast of what value is 

expected. This forecast is based on the values observed up until that point in time and the functions 

describing the evolution of the temperature, which in the case of Paper 4 was a single harmonic 

wave. In other words, the DLM has no choice but to consider the individual observations in relation 

to a wider context. This is important because the forecast errors, i.e. the differences between what is 

observed and what was forecasted, are the basis for raising the alarms. When making the summary 

values, as was done in Paper 2, we look at absolute values, disregarding previous observations and 
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any other context. As an example, assume that a 4 
o
C increase in temperature is seen from one hour 

to the next. If the DLM for whatever reason has come to expect a temperature increase of 

approximately 4 
o
C, this event would be considered normal and no alarms would be raised. To the 

pigs, however, this increase in temperature is still likely to cause a stress response (Lopez et al. 

1991a), which in turn might manifest as an undesired event such as the onset of diarrhea (Shimizu 

et al. 1978), regardless of what wider context the change happened to fit into. In other words, if the 

pigs are likely to experience the different variables in absolute rather than relative terms, then we 

too, with our models and alarm systems, should consider those variables in absolute terms.  

As described in section 1.3.2, environmental variables such as temperature and humidity are 

generally monitored for the purpose of climate control and not directly for the purpose of detecting 

or providing early warnings about undesired events. Probably for this reason, no scientific literature, 

which was concerned with how the environment should be monitored for this purpose, could be 

found. In one study concerned with monitoring the ear skin temperature, the skin temperature was 

modeled using a linear mixed-effects model, but for descriptive and not predictive purposes 

(Andersen et al. 2008). It would thus seem that this insight, that environmental variables are better 

considered with summary statistics rather than deviations from model-based expectations, is 

genuinely new. As such, it should of course be verified rigorously to eliminate alternative 

explanations.  

One such alternative explanation could be that the forecast errors from an environment-oriented 

DLM need to be considered with different prediction windows compared to animal-oriented DLM 

forecast errors in order to exploit their full potential. Under the environment hypothesis, as defined 

in section 1.4, the environmental variables are (or can be) the causing factors for undesired events 

such as diarrhea or pen fouling. Under the normality hypothesis, likewise defined in section 1.4, 

changes in behavior and physiology are expected to precede the onset of visible problems, including 

those that are caused by the environment. In other words, changes in the environment would be 

expected to precede changes in behavior and physiology, which in turn are expected to precede the 

directly observable physical problems.  

Another alternative explanation, which would have to be tested, is that the parts of the DLM related 

to the environmental variables were not optimally defined for the purpose of detecting undesired 

events. For example, it could be that the model is actually too accurate; from Paper 4 Figure 4 it is 

seen that the temperatures on average follow season-specific harmonic waves in a diurnal pattern, 

and the model was designed to reflect this. It is known from the literature, however, that pigs are 

best served with constant temperatures (Lopez et al. 1991b; Lopez et al. 1991a; Shimizu et al. 

1978), and thus a DLM which reflect this fact may provide more informative forecast errors. In 

other words, when it comes to modeling the environment-oriented data, it may be more useful to 

model the environment which is preferable to the pigs rather than the environment which is actually 

expected. If this is the case, however, it might be difficult to argue for how exactly that would differ 

from considering simple summary statistics.    
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10.1.2 Categorical data 

For Paper 5, the categorical sensor and non-sensor data from the University of Florida Dairy herd 

were combined with the forecast errors for the continuous data by means of a naive Bayesian 

classifier (NBC). Thus the DLM/NBC method served as a method for combining animal oriented 

sensor data, which can be meaningfully modeled with a DLM, with other data for which the DLM-

approach is apparently not very useful. Remember that this was found to be a major apparent issue 

in Paper 4. As an example, the somatic cell count (SCC) data is a good analogy to the temperature 

data from Paper 4, even though SCC is animal-oriented sensor data and temperature is 

environment-oriented sensor data. In both cases we are dealing with data collected over time, 

meaning that they could in principle be modeled using a DLM. In both cases, however, it has been 

found more useful to summarize the observations. In the case of temperature, this was done by 

finding the absolute maximum and minimum temperatures, as well as the fastest increases and 

decreases in temperature over the period of one day. Thus the semi-continuous measurements are 

summarized by four numeric values per day per temperature sensor. For the SCC, one measurement 

was made per milking, but due to great uncertainties about these values, they were summarized by 

being placed into one of four predefined categories. 

NBCs have been used in PLF contexts before, such as to improve the sensitivities of the mastitis 

alarms raised by existing  automatic milking systems (Steeneveld et al. 2010). In this sense, the use 

an NBC was not overly novel. The novel part was to show that the information extracted from the 

sensor data (via the DLM) could be directly combined with the information from the categorical 

data. In this way, the DLM/NBC method skips a classification step compared to the one presented 

by Steeneveld et al. (2010). Which of these strategies is best is however hard to tell, given the rather 

different nature of the approaches, combined with the inherent uncertainty about the assigned gold 

standards for true positives and true negatives in the two different datasets.  

10.2 Comparison of the various classification models 

As explained in section 1.2, the classification models were those tools which determined if an alarm 

should be raised or not, based on the pre-processed data. A total of three such classification tools 

were attempted for detection and/or early warning of undesired events, namely logistic regression, 

forecast error unification through Cholesky decomposition and transformation, and NBC. This 

section will discuss the potentials and limitations of these methods. 

10.2.1 Logistic regression 

The summary/logistic regression method was shown in Paper 2 to be useful for extracting 

information from the environment oriented sensor data. Specifically, the part of this method which 

makes it useful for this purpose is the summary part, as discussed in section 10.1.1. The logistic 

regression simply served as a way of combining the summery data in such a way that a single 

posterior probability of undesired events could be calculated. In this sense, the logistic regression 

served the same principle purpose as the NBC from the DLM/NBC method in Paper 5, and those 

two classification tools are arguably closely related. This also means that e.g. an NBC or some other 
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classification tool could have taken the place of the logistic regression in Paper 2. The logistic 

regression method is characterized, and limited, by being a linear classifier. As was seen from 

section 1.3.3, there are plenty of other non-linear classification tools to choose from, such as NBCs, 

artificial neural networks or decision trees, as well as methods which were not mentioned in that 

sections, such as support vector machines. It is conceivable that combining one of these tools with a 

relevant combination of environment-oriented summary statistics could yield even better 

performances of detection and/or early warning of the undesired events, compared to using the 

logistic regression. This assertion is in line with the findings of Nielen et al. (1995a), who found 

that a logistic regression model and an ANN achieved similar performances when trained on the 

same data, but that the specificities were generally higher for the ANN.  

Testing different classification tools in combination with summary statistics for environment-

oriented data would be a relevant objective for future studies. Such future studies should include 

summary values of the (section level) humidity, as well as take into account the fact that the optimal 

temperature and humidity will change as the pigs grows, which was not considered in Paper 2. 

These (probably) improved performances should be compared to those achieved when attempting to 

make better environment-oriented DLMs as part of the efforts to rigorously test the apparent finding 

that a DLM is an inferior pre-processing method for environment-oriented data compared to 

summary statistics, as discussed in detail in section 10.1.1. 

Finally, it is worth mentioning the fact that the summary/logistic regression method was 

implemented in such a way that it could not distinguish between diarrhea and pen fouling. 

Nevertheless, having this option of discriminating between different events could be achieved 

simply by training the logistic regression to recognize each of the events of interest.  

10.2.2 Forecast error unification by Cholesky decomposition  

One important limitation of the DLM/Cholesky method used in Papers 3 and 4 is that it cannot even 

in principle distinguish between different undesired events, unlike other methods such as the 

logistic regression method discussed above. As explained in section 3.4, this is because the 

DLM/Cholesky method will base its alarms on how different the observed system is from the 

normal system, but does not distinguish between which parts of the system (i.e. which sensors) 

show deviations from normalcy or in which direction (positive or negative) the change is leaning. 

This can however be both a disadvantage and an advantage, depending on what type of alarms a 

farmer desires and how the method is implemented. If, for example, the farmer wishes to get 

specific alarms concerning diarrhea, pen fouling, tail biting, or any number of other specific 

problems he might face, then the DLM/Cholesky method will not do him much good. On the other 

hand, if the farmer does not care about event specific alarms but just want to know where to be 

extra aware of signs of any and all problems, a DLM/Cholesky method, made to include all 

available (animal oriented) data, would be able to provide just this. It might also be that the farmer 

could use a combination of both types of systems, thus getting specific alarms for those problems 

which are known to be most common or most costly if left undiscovered, and at the same time get a 

list of indiscriminant alarms as a way of alerting him to more rare and unforeseen problems. If any 

practical and/or commercial implementation of some variation of these methods were to be 
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attempted, it would be beneficial to first consult real world farmers to get their input on what type 

of alarm (specific, indiscriminant, or both) they would prefer to get.  

Furthermore, even alarm systems based on the DLM/Cholesky method do not need to operate on an 

all-or-nothing principle; take for example the problems with metabolic diseases such as ketosis, 

fatty liver, milk fever, and others, which are common in dairy cows in the first few weeks after 

calving. These problems are all identifiable by changes in milk yield and appetite, among other 

symptoms, and the treatments are fairly similar, as they involve giving the cows e.g. glucose or 

calcium orally (LeBlanc 2010; Rajala-Schultz et al. 1999). For this reason, a dairy farmer could 

apply the DLM/Cholesky method to just the relevant metabolism-related data and thus get semi-

specific alarms concerning this collection of metabolic diseases. Demonstrating this application 

would be an interesting goal for future research.  

10.2.3 Naive Bayesian Classifier  

In Paper 5, the DLM/NBC method was introduced as a method for detecting a specific problem 

rather than just any problem, as opposed to what is achieved with the DLM/Cholesky method 

discussed above.  

The ROC curves seen in Paper 5 Figure 5 give a rather convincing impression that the DLM/NBC 

method is useful for extracting information from the available data, which was valuable for 

detecting mastitis. Because the focus in Paper 5 was exclusively on detecting mastitis, no other 

conditions or diseases were considered. In other words, it is not possible, based on the results 

presented in Paper 5, to say exactly how exclusive the detection of mastitis actually is. Specifically, 

if there are other diseases which cause some of the same symptoms as mastitis, these events might 

also raise the mastitis alarm. Ketosis, as an example, is known to result in lowered milk yield 

(Rajala-Schultz et al. 1999), which is also an important symptom of mastitis (Viguier et al. 2009). 

This being said, ketosis does not raise the EC or the SCC of the milk the way mastitis does, which 

illustrates the whole purpose of combining several data sources for specific event detection: if the 

milk yield is lower than expected, but the EC and SCC are normal, we are probably not dealing with 

mastitis, and so the mastitis-trained NBC should not raise an alarm, although another, say ketosis 

trained, NBC might do so. That is the theory, anyway. How event specific the DLM/NBC method 

actually is will depend on how specific the measurable symptoms of the event of interest are. How 

mastitis specific the DLM/NBC implementation presented in Paper 5 actually is, and what types of 

events it will erroneously flag as mastitis, would be interesting questions to answer in a future 

study.  

Just as with the summary/logistic regression method, the NBC part of the DLM/NBC method serves 

as a classification tool, and could in principle be replaced with any one of several other such tools. 

Testing various classification tools in combination with various measures of the DLM forecast 

errors (categorized or numerical) would be a relevant objective for future research.   
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10.2.4 The three methods, summarized 

Table 1 provides an overview of which of the three detection/forewarning methods, i.e. the three 

combinations of the pre-processing and classification models, that are useful for handling 

environment-oriented data, animal-oriented data, and whether or not the method can be used to 

provide event specific alarms, given the discussions seen above. The label "Yes" signifies that a 

method has been found to be useful for the relevant purpose, "No" signifies that the method was 

found not to be useful for the purpose, "(Yes)" signifies that the method should in principle be 

useful for the purpose, but that this was not the case given how the method was implemented, and 

"No?" signifies that the method was not tested for the purpose, but that given what else is known, it 

seems unlikely that it would be useful for it.  

Specifically, the summary/logistic regression method has not been tested on animal-oriented data in 

any of the studies presented in this thesis. It stands to reason, however, that using static summary 

statistics on animal-oriented data, with no concern for the time series element, would probably not 

yield very good performances for detection or early warnings about undesired events. This is 

because animal behavior and physiology will naturally differ between individuals, and by extension 

between groups of individuals such as a group of pen mates in a pig herd. In contrast, the implicit 

assumption behind basing alarms on simple summary statistics concerning the animals is that they 

are all essentially identical. For this reason, much better performances should be expected from 

learning what would constitute the "normal" state for a specific group or a specific individual, and 

then monitor the system for deviations from this particular state of normalcy.  

Of course there may be special cases where summary values are more useful than time series 

modeling, as was the case with SCC in the Paper 5. Those daily sensor values were too unreliable to 

be taken at face value, and were therefore categorized instead, as explained in more detail in the 

discussion of the DLM/NBC method in section 10.1.2. In a few cases in the scientific literature, 

summary data have actually been used as the sole input for classification models, such as the raw 

EC values in milk for detection of mastitis (Nielen et al. 1995b) or the combination of summary 

statistics (inter-quarter ratios) of EC and raw SCC measurements for detecting mastitis (Mollenhorst 

et al. 2010). Both of these studies showed less than impressive predictive performances. 

Table 1: Overview of the three main methods used in the papers discussed in this thesis, and whether or not they 

were found to be useful for three different purposes. Yes = useful. No = not useful. (Yes) = useful in principle, but 

not in the way it was implemented. No? = it was not tested, but given what else we know, it seems unlikely. 

 Method Environment oriented data Animal oriented data Event specific alarms 

Summary/Logistic regression Yes No? (Yes) 

DLM/Cholesky No Yes No 

DLM/NBC Yes Yes Yes 

 

Remember that each of these three alarm methods have only been attempted on data from one herd. 

Investigating the inter-herd applicability of each of these methods would be a relevant goal of future 
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research. This should be done by training the various models on data from one herd and then test 

those models on one or more other herds, where the same or comparable data has been collected.  

10.3 Relative information values 

A key point of interest throughout the research presented in this thesis was to determine which of 

the available data streams were useful for detecting or forewarning about undesired events. In other 

words, to answer the question: where in the data lies the information? Moreover, do some data 

streams contain more information than others, and if so, what are the relative information values of 

the individual data streams? It should be clarified that the term "information value" is only intended 

to refer to the resulting increase in alarm performance when a data stream is included, and the loss 

in performance seen when a data stream is omitted. That is to say no monetary considerations have 

been made when estimating the relative information values in the papers related to this thesis. As 

pointed out in a review by Cornou and Kristensen (2013), calculating the exact numerical monitory 

value of livestock information/monitoring systems are difficult for various reasons, and making 

such estimates is only rarely done in the existing scientific literature. Additionally, the specific 

monetary concerns were simply beyond the scope of the PhD project presented in this thesis.  

In Paper 2, only one type of data was considered, namely pen level temperature data. Nevertheless, 

because two temperature sensors were placed in each pen and a total of eight derived values were 

made from these sensors per day, some relevant conclusions can be drawn. First of all, those 

derived variables which did not prove to be significant (p < 0.05) or borderline significant (p < 0.1) 

were excluded from further consideration by backwards elimination, as explained in section 3.2.  

Of the five derived variables which remained, as seen in Paper 2 Table 1, three were related to the 

rate of change in temperature. This suggest that an unstable temperature is an important predictor 

for the undesired events considered in the paper, which is consistent with existing literature (Lopez 

et al. 1991b; Lopez et al. 1991a; Shimizu et al. 1978). The two remaining derived variables had to 

do with the absolute minimum and maximum daily temperatures in the lying area of the pen. Most 

significantly, higher values of the minimum daily temperature increased the risk of observing the 

undesired events of interest. This is of course consistent with the knowledge that if the temperature 

is above the pigs comfort level, the problem with pen fouling increases with increasing 

temperatures (Aarnink et al. 2006).  

Both of the variables relating to the absolute maximum and minimum temperatures came from the 

sensor in the lying area. This suggest that for the purpose of providing forewarnings about pen 

fouling specifically, the data collected in the lying area probably  has more information value than 

the data collected by the section corridor.  

Conversely, two of the three predictive variables related to the rate of change were collected by the 

sensor near the section corridor, while the last was collected in the lying area. It should however be 

remembered that one of the these variables, namely the rate of temperature decrease by the corridor, 

only showed borderline significance, and that it seemed to have a lowering effect on the probability 

of observing undesired events, when the rate of temperature decrease became greater. This effect is 
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both counterintuitive and goes against the existing literature as described above. This particular 

finding should thus be considered with a high degree of skepticism. This also means that no single 

position, by the lying area or the section corridor, can be said to contain more information than the 

other when the rate of temperature change is concerned, which would be particularly relevant for 

providing forewarnings about outbreaks of diarrhea.  

All of these relative information interpretations will of course have to be verified rigorously in 

future research, as part of the previously mentioned effort to maximize the utility of the 

environment-oriented data.  

In Paper 4, the relative information value of the seven included sensor data streams were estimated 

by a systematic sequence of omission and inclusion scenarios. First, variables were omitted from 

the model one by one or in meaningful pairs (i.e. the two temperature data streams and the two 

water data streams), and reduction in the performance, compared to including everything, 

determined the relative information values. Secondly, those variables which had proven their value 

by omission were sequentially included in the model on their own, or in the same relevant pairs as 

mentioned above. Here, those single variables which resulted in the best predictive performance 

were considered to have the highest relative information value. By comparing the predictive 

performances of all exclusion and inclusion scenarios, the ranked list of information value, which is 

seen in section 4.4, could be made. This list showed temperature information to contain only very 

little information, which sparked the discussion seen in section 10.1.1. The two drinking behavior 

variables were by far the most informative, accounting for almost all of the predictive performance 

achieved in Paper 4. Madsen and Kristensen (2005) argued that deviations from the pigs' normal 

diurnal drinking pattern could be used for detecting disease such as diarrhea or the effect of 

stressors, and the findings in Paper 4 seem to strongly support this idea. In Paper 4 it was further 

seen that the data streams with low observation frequencies, i.e. the weekly live weight 

measurements and the daily feed amount registrations, proved to have the least information value, 

suggesting that more frequent observations provide more useful information.  

In Paper 5, the information value of the various sensor packages, rather than the data from the 

individual sensors within those packages, were assessed by systematic omission of one package at a 

time. The results, which are seen in Paper 5 Table 4, show that both the milk meter and the AfiLab 

(packages 1 and 2, respectively) provide useful information for detecting mastitis. Given that the 

milk meter measures the milk yield and the EC, and the AfiLab measures, among other things, 

SCC, this finding is hardly surprising, as these are probably the three most well documented 

indicators of mastitis (Viguier et al. 2009). What is more interesting is the synergistic effect seen 

when combining these two sensor packages, as the performance with this combination is higher 

than with either of these two packages alone. As SCC is often used as part of the definition for the 

gold standard of a cow being mastitis positive (which was not the case in the data used in Paper 5), 

only two studies could be found where somatic cell count were included as a predictive variable 

(Mollenhorst et al., 2010; Kamphuis et al., 2008) without also being a defining characteristic of 

mastitis. In both of these studies, SCC was combined with EC, and both studies concluded that this 
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combination improved the detection performance compared to using either EC or SCC alone, and 

so the synergistic effect observed in Paper 5 is in line with the mentioned literature.  

The fact that Paper 5 showed that inclusion of the non-sensor information had a small but consistent 

positive effect on the performance, as mentioned in section 4.4, is broadly consistent with the 

findings of Steeneveld et al. (2010). That being said, however, when the sensitivity was held at 

0.80, Steeneveld et al. (2010) were able to demonstrate a 40 % reduction in false positive alarms by 

combining non-sensor data with the information in the alarms raised by the automatic milking 

system. The effect seen from non-sensor data in Paper 5 is nowhere near that great, as the values in 

Paper 5 Table 4 will attest to. In fact, including non-sensor data reduced the number of false 

positives by around 8 % while not affecting the number of true positives (data not shown). It is 

conceivable that some of the explanation for this difference shall be found in how the non-sensor 

data were categorized in the two papers. For example, in Paper 5 the progression of the lactation 

period was categorized into 43 weeks, which was not very informative (data not shown). Steeneveld 

et al. (2010) on the other hand divided the lactation into periods of 30 days, which they found to be 

a significant (p = 0.002) predictor of whether an alarm was a true or a false positive.  

While the relative information value contained in the different data streams may vary, one 

important lesson was consistently demonstrated in all five papers presented in this thesis: precision 

data, i.e. data (animal-oriented as well as environment-oriented) relating to specific animals at the 

group or individual level, are important for the purpose of automatic detection of undesired events 

at those levels.   

10.4 Performance evaluation 

When considering the performances presented in Papers 2 and 4, two things are important to 

remember.  

First of all, only registrations of two types of events were considered in these papers, namely 

diarrhea and pen fouling. It is nonetheless known that several other problems, including pneumonia 

and influenza, were present in the herd, but no information on when or where these problems 

occurred was available when writing Papers 2 and 4. This is probably not a big an issue in Paper 2, 

even though the logistic regression used in that paper was designed to raise indiscriminant alarms 

about diarrhea and pen fouling. In spite of this indiscriminant nature of the alarms, the temperature 

variables which were included as predictive variables were specifically related to the risk of either 

diarrhea or pen fouling, as discussed several times previously. For Paper 4 on the other hand, the 

DLM/Cholesky method should raise indiscriminant alarms about any deviations from the normal 

healthy situation. It is therefore more than likely that at least some of the assigned "false positive" 

alarms were in fact raised in response to some of the other problems. This means that the 

specificities reported in Paper 4 are most likely underestimated.  

Second, the available registrations of diarrhea and pen fouling were made by the farm staff based on 

their visual observations of the pens. These registrations were treated as the gold standard for when 

a true positive event occurred. For pen fouling, these registrations are probably very reliable. For 
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diarrhea, however, Weber et al. (2015) showed that generally for weaned pigs in Denmark, one 

third of the non-medicated pigs, which were assessed as healthy by the farm staff, did in fact have 

diarrhea when they were examined clinically. If a similar tendency holds true for finisher pigs, the 

number of gold standard events will be underestimated. By the same token as above, it would then 

be very likely that the specificity of the alarms was even further underestimated. 

The prediction window method, as described in section 3.6, was chosen as the performance 

evaluation method in Papers 2, 4, and 5, because it is a commonly used for performance evaluation 

in PLF studies related to e.g. detecting mastitis or estrus in dairy cows (Hogeveen et al. 2010). 

Remember that this method starts by determining which observation times (days, hours, milkings, 

etc.) coincide with the observation of an undesired event, and then proceeds to check if any alarms 

were raised within a certain number of observation times before or after the event was observed. In 

other words, this method is based on the assumption of exact foreknowledge about when the events 

will occur, which in reality will never be the case. This means that the forewarning performances 

reported in most studies, including the ones presented in this thesis, may be overestimated.  

The major premises behind this common prediction window approach is that data collected prior to 

an event observation may contain information which could show that the event was under way, or it 

may be that the effects of an event cannot be seen in the collected data until sometime after the 

event has occurred. These are legitimate points, but they need to be addressed in a way which is 

more consistent with the realistic daily operations on a real world farm. One way of doing this could 

be to separate what might be called the observation window from the prediction window, as 

illustrated in Figure 11. The idea behind this alternative evaluation approach is that the observation 

window is always retrospective while the prediction window is generally prospective and minimally 

retrospective.  

This evaluation approach is closely connected to how the alarms would be raised. Specifically, at 

any given observation time, the system should look back a number of time steps (e.g. hours, days, 

milkings, etc.). Based on some criteria, e.g. the greatest increase and decrease in temperature, or the 

greatest cumulative sum of DLM forecast errors, the system could either raise an alarm concerning 

some undesired event or not. This alarm would indicate that the undesired event is expected to 

occur at some time within the range of the prediction window. If an event then does occur within 

the prediction window, the alarm is counted as a true alarm. If no event occurs within the prediction 

window, the alarm would be counted as a false alarm. If the system does not raise an alarm based 

on the observations in the observation window, and no events are seen in the prediction window, 

that observation would be counted as a true negative alarm, while if an event did occur within the 

prediction window, the observation would be counted as a false negative alarm.  

The important point is that the observation window and the prediction window are separate entities, 

even if they do have some overlap, as is the case in the examples seen in Figure 11. This separation 

means that even if undesired events do occur within the range of the observation window as shown 

in Figure 11 B, this does not count as a true positive alarm if it is not also covered by the prediction 

window.  
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Figure 11: Illustration of a performance evaluation method, intended to be a more realistic alternative to the 

prediction window method. The observation window and the prediction window are separate entities, although 

in this example they have a one day overlap. The observation window is always retrospective, while the 

prediction window is generally prospective. Both windows move with the observation time. Alarms are raised 

based on the observations made in the observation window (here four days). A) If no alarm is raised, but an 

event is observed within the prediction window (here either on the observation day or the day before) it is 

counted as a false negative (FN). B) If no event is observed within the prediction window, but an alarm is raised, 

it is counted as a false positive (FP), even if an event is observed within the observation window. C) If no alarms 

are raised and no events are observed within the prediction window, it is counted as a true negative (TN). If an 

alarm is raised and an event is observed within the prediction window, it is counted as a true positive (TP).  

This method of raising generally prospective alarms based on retrospective observation windows 

would make sense in a real world farm scenario. In scenarios such as the ones covered in Papers 2 

and 4, where animal and environment oriented data is available on an hourly basis, the system could 

look back, say 96 hours (as in the example in Figure 11), every hour and thus give an hourly 

updated alarm list. If desired, the alarm list could also be updated less frequently, say once or twice 

per day. Getting an updated alarm list twice per day might actually make the most sense from a 

biological perspective: pigs are known to naturally be most active between 8 AM and 10 AM and 

again between 3 PM and 5 PM (VSP 2010), which makes these the ideal times for the farm staff to 

check on the pigs. Thus having the system provide an updated alarm list at either 8 AM, 3 PM, or 

both, depending on the standard practices and the preferences among the staff, could provide the 

farm staff with the most updated list of high risk pens before starting the routine herd rounds. The 

performance of the detections and forewarnings achieved with each of these three alarm list 

strategies might differ, and therefore it is relevant to have some idea of which of these strategies, or 

any other option, would be preferred by actual farmers, before optimizing for the performance of 

any one strategy.  

It might also be worth investigating whether the farmers would prefer getting retrospective or 

prospective alarms. Retrospective alarms would mean that the farmer would generally get the 

alarms when an event such as diarrhea or pen fouling had already occurred. The upside to this is 

that the problem would be visible, and so the farmer would be within his right to administer various 

treatments such as antibiotics. The drawback is that in this scenario, the problem might already have 

been noticed by the farm staff, in which case the alarm would just bring old news. The prospective 

alarms would by definition mean that the animals would not yet show symptoms of e.g. diarrhea 

 150



 
 

when the farmer received the alarms, and the farmer would thus not be allowed to administer 

antibiotics anyway. That being said, unpublished data
2
 show that treating weaned pigs after 

intestinal infection, but before symptoms are visible, led to an overall increase in daily weight gain 

among the pigs. Therefore, if a non-invasive forewarning system could be shown to be sufficiently 

reliable, early warnings of diarrhea might be a valid reason for the farmer to have relevant fecal 

samples analyzed in order to determine whether or not a pen of pigs have a still un-symptomatic 

intestinal infection, which would then legitimize e.g. antibiotic treatment.  

If one of these implementations of the alternative alarm strategy were to be decided upon, it would 

be relevant to study how the alternative strategy compares to an implementation of the common 

prediction window strategy, in order to determine if detection and forewarning performances are 

currently being systematically overestimated in the literature. To do this, the two implementations 

of the two different methods would have to be as comparable as possible. For example, an 

implementation of the alternative evaluation method, where the observation window and the 

prediction window both cover only the day being observed, would be equivalent of a -0/+0 

prediction window of the common prediction window method, and they should yield the same 

performance. 

 If the observational time unit were one day and the -3/+1 prediction window were to be used with 

the common method, as was done in e.g. Paper 2, this would mean that any alarms raised up to 

three days before or up to one day after an undesired event would count as a true positive alarm. 

The best approximation using the alternative method described here, would be one with an 

observation window stretching from four days to one day before the current observation time, and a 

prediction window stretching from one day before the current observation time until the current 

observation time. This is the same scenario as has been illustrated in Figure 11. In this scenario, an 

alarm can be raised up to one day after an undesired event has occurred and still count as a true 

positive, as is the case in the -3/+1 implementation of the common method, and the data collected 

up to four days before the observation time can be included in deciding whether or not to raise an 

alarm.   

10.5 Summary of research perspectives 

The discussions presented in this chapter raised a number of research questions which should be 

addressed in future research. For the benefit of the reader, these research perspectives have been 

sorted and summarized here.  

10.5.1 Farmer preferences 

To increase the chance that an alarm system will actually be useful in practice, real-world farmers 

should be consulted to determine the nature of the alarm system they would prefer to use. The 

relevant questions to ask the farmers are: 

                                                             
2 Personal communication, Nicolai Weber, veterinarian and PhD student at the University of Copenhagen, Department 
of Large Animal Sciences 
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What is the preferred frequency for updating the list of alarms: 

a. One list of alarms per day? 

b. Two lists of alarms per day? 

c. Hourly updated alarm lists? 

d. Some other frequency? 

 

What type of alarms would be preferable: 

a. Indiscriminant alarms (as with the DLM/Cholesky method)? 

b. Event specific alarms (as with the DLM/NBC method)? 

c. A combination of both? 

 

What temporal orientation should the alarms have: 

a. Retrospective? (when the farmer gets the alarm, the event has already occurred) 

b. Prospective? (if the farmer gets an alarm, he can expect that an events will be observed 

within a specified amount of time in the future) 

10.5.2 Realistic performance evaluations 

A more realistic performance evaluation should be implemented. This method should correspond to 

the kind of alarms which would be useful in a practical herd setting and. This evaluation method 

should be tested against the prediction window method, which is currently commonly used. 

10.5.3 Method improvements 

The methods for extracting information related to event specific detections and forewarnings could 

conceivably be improved by applying alternative data handling and classification tools to the same 

overall method frameworks which have been presented in the papers discussed in this thesis.  

For environment-orientated data, future studies should focus on: 

a. Including summary statistics of humidity in addition to temperature. 

b. Account for the fact that optimal comfort temperature will vary with the pigs' growth. 

c. Evaluate the performance when using alternatives to logistic regression for combining the 

summary statistics, such as artificial neural networks, support vector machines, decision 

trees, and others.  

d. Evaluate the performance achieved when the environment-oriented data are monitored by a 

DLM, which is optimized specifically and solely for the environment-oriented data.  

 

For animal-oriented data, future studies should focus on: 

a. Testing the use of different measures of the DLM forecast error, such as various error 

classification cutoffs, numeric values, and cumulative sums of the forecast errors. 

b. Testing different classification tools for unifying the forecast errors, such as artificial neural 

networks, support vector machines, decision trees, and others. 
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10.5.4 Method verifications 

The methods for detections and early warnings described in the papers presented in this thesis, as 

well as any improved version derived from those methods, would need to undergo further 

verifications before any commercial implementations can be considered. These verifications should:  

a. Compare the best performances achieved when monitoring the environment-oriented data 

with a DLM strategy compared to with a summary strategy. This is to test the finding that 

environment-oriented and animal-oriented data are best handled in different ways.  

b. Test the between-herd applicability of the event specific and the indiscriminant 

detection/forewarning methods. 

c. Determine the degree to which the event specific methods are able to distinguish between 

separate events. 

d. Demonstrate the utility of the DLM/Cholesky method for semi-specific detection of 

metabolic diseases in dairy cattle. 
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The results of the studies presented in this thesis clearly demonstrate that precision data, meaning 

frequently collected data pertaining to specific animals within the herd, are important for the 

purpose of identifying specific groups or individuals with problems relating to health and welfare.  

The results further show that multivariate DLMs are effective tools for combining the very diverse 

data streams which will have to be collected for the purpose of model-based monitoring of animal 

production herds. Specifically the DLM can be used to meaningfully co-model data which differ 

considerably in source, numerical magnitude, and observational frequency. In principle, this 

includes environment-oriented data as well as animal-oriented data, although the results presented 

in this thesis suggest that these two data types would need to be monitored separately in order to 

achieve the best performances of detections and forewarnings.  

It was further shown that the multivariate DLM offers a simple way to establish the relative 

information values of multiple data streams. This is generally achieved by designing a multivariate 

DLM to co-model all variables of interest, and then systematically omit and include selected 

variables from the model while measuring the resulting performance of the alarms produced by said 

model.  

As demonstrated in several papers in this thesis, a DLM-based alarm system will raise the alarms 

based on the forecast errors produced by the DLM at each observation step. There are several 

different methods by which this could be accomplished. The papers described in this thesis 

presented two such methods. The first method was forecast error unification via Cholesky 

decomposition. In this case, the alarms would be raised if the value of the unified error surpassed a 

set threshold. The second method was a categorization of each of the forecast errors at each 

observation step, based on the direction and magnitude of the error. In that case, a probability of 

observing an undesired event was calculated with a naïve Bayesian network, and an alarm was 

raised if this probability surpassed a set threshold.  

An additional important conclusion is that evaluating these performances is in no sense a trivial 

matter, and that the currently common prediction window method is not optimal, as it is too far 

removed from the practical reality of monitoring a herd.  

Although the results presented in this thesis are generally encouraging, a commercial 

implementation of the described methods would be premature at the present time. Rather, the results 

should be seen as a source of inspiration for a varied collection of future research. The overall goals 

of this future research should be to build and improve upon the methods described in this thesis, as 

well as to verify their utility in multiple different herds, representing various realistic farming 

practices.  
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