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A B S T R AC T

The aim of this PhD thesis was to investigate whether simultaneous sensor-based monitoring of

drinking patterns in multiple pens across a herd of growing pigs, could be used to detect outbreaks

of diseases in specific areas of a herd of growing pigs. The thesis is a contribution to the collection

of scientific work of the international PigIT alliance, which has the overall research goal to improve

animal welfare and productivity in Danish production of growing pigs, using advanced ICT methods.

Despite a generally high health and welfare status in Danish pig production, outbreaks of diarrhea

and fouling, which is a change in behaviour where the pigs start to lie on the slatted area of the pen

and excrete in the lying area, constitute an everyday challenge in the herds.

The structure of a Danish herd for growing pigs is sectionalized in the way that a herd consists of

a number of identical sections, and each section consists of a number of identical pens. Such a sectio-

nalized structure of a herd enables the use of a spatial model, which can relate specific observations

to specific areas in the herd.

Thus, in this study, water sensors were placed in multiple pens within multiple sections in two her-

ds of growing pigs (weaners 7-30 kg, finishers 30-110 kg), and the specific hypotheses defined in this

PhD study were: Hypothesis I) drinking patterns between pens within a section and sections within

a herd of growing pigs are correlated, and this correlation can be modeled using model parameters

defined at different spatial levels, and Hypothesis II) changes in the drinking patterns of growing

pigs are influenced by diarrhea and fouling. By monitoring the water consumption simultaneously in

multiple pens and sections, outbreaks of the conditions can be detected in specific areas.

In Paper I, an extensive literature review, was conducted. The objective of the review was to provi-

de an overview of different methods for reducing or prioritizing alarms from sensor-based detection

models in livestock production. The performances of detection models, developed over a twenty-

years period, were furthermore compared to three criteria in order to assess their implemental value

in a commercial herd. The results of Paper I showed that only three methods were developed for re-

ducing or prioritizing false alarms. In addition, the results showed that none of the evaluated models

were suited for implementation in a commercial herd. Poor detection performance was the primary

cause for the models being unsuited for implementation.

Based on the literature review, further research is needed on new approaches for improving perfor-

mances and reducing alarms from sensor-based detection models in livestock production.

In Paper II, Hypothesis I was addressed, and a spatial model was developed. The simultaneously

monitored drinking patterns were modeled by a multivariate dynamic linear model, where each mo-

nitored drinking pattern constituted a unique variable. Hereby all monitored drinking patterns were

modeled simultaneously, and different correlation structures could be defined. Thus, seven different

model versions were defined to express different degrees of correlation between the drinking patterns.
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A B S T R AC T

Subsequently their ability to fit the data was measured as mean square error (MSE). The results in-

dicated a correlation in data from pens within the same section for the finisher herd (MSE = 13.850).

For the weaner herd, the results indicated an inverse relation between the model fit and the degree of

correlation, and the best fitting model version (MSE = 1.446) therefore expressed the lowest degree

of correlation between drinking patterns.

Based on the findings in Paper II, there is a degree of correlation between the drinking patterns in

different areas of a herd. However, the results for the weaner herd indicated that there were too few

pigs in each pen to evaluate the model rightfully, and an external validation of the model would be a

first step in identifying how future work on the model should be conducted.

In Paper III, Hypothesis II was addressed. The seven model versions, developed in Paper II, we-

re evaluated for their abilities to detect outbreaks of diarrhea or fouling in either a specific pen, a

specific section, or any pen in the herd. The evaluation was conducted by applying a two-sided ta-

bular Cusum control chart to generate alarms from the output of the models. The accuracy of the

alarms were then evaluated given three lengths of detection windows. The results were reported as

the the area under the curve (AUC), and for both herds, the longest detection window combined with

the strongest degree of correlation detected events in a specific setion with the highest performan-

ces (AUC = 0.98, AUC = 0.94). However, the settings applied to generate these high performances,

showed to be of little managerial value. It was found that the same model version combined with

the medium-length detection window, was able to detect event in a specific section as well, and

contituted better suited setting for implementation. Different postprocessing methods for reducing

or prioritizing alarms generated by the Cusum, were furthermore suggested in Paper III, and the

potential of an alarm-reducing method was presented by an exploratory example in Paper IV.

Based on the findings in Paper III, it is possible to detect outbreaks of either diarrhea or fouling, and

to generate area-specific alarms. However, too many false alarms were generated, and it is suggested

that future focus on improving the detection system is targeted at a) improving model performan-

ces, b) methods for prioritizing or reducing the alarms, and c) methods for distinguishing between

different causes of alarms.

In conclusion, the research presented in this PhD thesis, emphasizes the general challenges in

obtaining high detection performances for the detection of specific events in livestock production.

Especially the use of indirect indicators for the events of interest impedes high performances. The

presented research points out difficulties in using detection performance as an indication for the im-

plemental value of a model in a commercial herd, and suggests that the results of external validation

should be used as an indication instead.
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Formålet med denne PhD afhandling var at undersøge, om det er muligt at påvise sygdomsudbrud

i specifikke områder af en svinebesætning1 på baggrund af overvågning af grisenes drikkemønstre i

flere stier. Afhandlingen bidrager til det samlede videnskabelige arbejde udført i det internationale

forskningssamarbejde, PigIT, der har som overordnede målsætning at øge dyrevelfærden og produk-

tiviteten i danske svinebesætninger ved hjælp af avancerede teknologiske løsninger.

Til trods for den generelt høje sundhed og velfærd i danske svinebesætninger, udgør udbrud af di-

arré og stivending (en adfærdsændring, hvor grisene “vender” stien, og begynder at gøde i lejearealet

og lægge sig i gødearealet) en tilbagevendende udfordring i den daglige drift.

Svinebesætninger i Danmark består typisk af én bygning, der er opdelt i flere identiske sektioner.

Derudover består hver sektion af flere identiske stier. Denne sektionsopdelte struktur gør det muligt

at anvende en spatiel, eller rumlig, model, som kan forbinde en specifik observation til et specifikt

område af besætningen.

Derfor er der, i denne PhD, placeret vandsensorer i flere stier fordelt over flere sektioner i to be-

sætninger med grise i vækst (smågrise, 7-30 kg, slagtesvin 30-110 kg), og to specifikke hypoteser er

formuleret som: Hypotese I) drikkemønstre mellem stier indenfor samme sektion, og mellem sektio-

ner i samme besætning, er korrelerede og denne korrelation kan udtrykkes i en model, hvis parametre

er defineret på forskellige rumlige niveauer, og Hypotese II) ændringer i vækstgrises drikkemønstre

påvirkes af diarré og stivending. Gennem samtidig sensorovervågning af drikkemønstre i flere stier

med grise, kan udbrud af disse uønskede tilstande forudsiges i specifikke områder af besætningen.

Artikel I præsenterer en omfattende litteraturgennemgang. Formålet med litteraturgennemgangen

var at skabe et overblik over de metoder, der hidtil er anvendt til at reducere, eller rangordne, alarmer

fra sensorbaserede alarmsystemer i husdyrproduktionen. Derudover blev performance2 af sensorba-

serede alarmsystemer, udviklet gennem en tyveårig periode, holdt op mod tre kriterier for at vurdere

deres værdi for en kommerciel svineproduktion. Resultatet af Artikel I viste, at der kun var beskre-

vet tre metoder til at reducere eller rangordne alarmer. Derudover viste resultatet, at ingen af de

alarmsystemer, der var beskrevet i den gennemgåede litteratur, egnede sig til brug i kommercielle

besætninger. Den primære årsag til den manglende egnethed var dårlig performance i forhold til at

påvise udbrud af uønskede tilstande hos dyrene korrekt.

På baggrund af denne litteraturgennemgang kan det fastslås, at yderligere forskning er nødvendig

for at øge performance og udvikle nye tilgange og metoder til at reducere mængden af alarmer fra

sensorbaserede alarmsystemer i husdyrproduktionen.

Artikel II adresserer Hypotese I og beskriver udviklingen af en rumlig model. De simultant over-

vågede drikkemønstre fra stierne blev modeleret i en multivariabel dynamisk linær model, hvor hver
1Besætning med vækstgrise: Smågrise (7-30 kg), eller slagtesvin (30-110 kg)
2Præstation, ydeevne, resultat
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enkelt drikkemønster indgik som en unik variabel. Herved blev samtlige drikkemønstre modeleret si-

multant, og forskellige grader af korrelation mellem dem kunne defineres. Syv forskellige modelver-

sioner blev derfor defineret for at udtrykke forskellige grader af korrelation mellem drikkemønstrene.

Efterfølgende blev hver modelversion vurderet i forhold til, hvor godt den passede til de observerede

data, og graden af tilpasning til data blev udtrykt som mean square error (MSE). Resultaterne indi-

kerer, at data er korreleret mellem stier indenfor samme sektion i slagtesvinebesætningen (MSE =

13.850). I smågrisebesætningen indkerer resultaterne derimod, at der er en omvendt relation mellem

modellens evne til at passe til data, og den grad af korrelation, der er udtrykt i modellen. Det betyder,

at den model, der tilpasser sig data bedst (MSE = 1.446) indikerer, at der er den lavest mulige grad

af korrelation mellem de enkelte drikkemønstre.

Resultaterne i Artikel II viser, at der forefindes en grad af korrelation mellem drikkemønstre i for-

skellige områder af en besætning. De resultater, der blev fundet for smågrisebesætningen, tyder dog

på, at der var for få grise i de enkelte stier til at danne grundlag for at vurdere modellens performance

på dette datasæt. En validering af modellen på et datasæt fra en anden besætning vil derfor være

første skridt i at undersøge, hvordan fremtidig videreudvikling af modellen skal foregå.

Artikel III adresserer Hypotese II, og evaluerer de syv modelversioner, defineret i Artikel II, i

forhold til deres evne til at påvise udbrud af diarré eller stivending i en specifik sti, en specifik

sektion eller en hvilken som helst sti i besætningen. Evalueringen foregår ved at anvende en two-

sided tabular Cusum control chart til at danne alarmer udfra data fra hver af de syv modelversioner.

Alarmernes nøjagtighed blev vurderet indenfor tre definerede tidsperioder mellem alarm og udbrud

af en hændelse. Resultaterne blev angivet som area under the curve (AUC), og de viste at for begge

besætninger var det kombinationen af den længste tidsperiode, stærkeste grad af korrelation samt

påvisning af en hændelse i en specifik sektion, der gav de højeste performances (AUC = 0.98, AUC

= 0.94). Denne kombination viste sig dog at ville have meget lille værdi i en kommerciel besætning.

Derimod ville samme model, kombineret med den mellemlange tidsperiode, have en langt højere

værdi i en kommerciel besætning. I Artikel III blev forskellige metoder til at reducere eller rangordne

de alarmer, der blev dannet af Cusum foreslået. Potentialet for en af de alarmreducerende metoder

blev derudover illustreret i et eksplorativt eksempel i Artikel IV.

Resultaterne i Artikel III viser, at det muligt at påvise udbrud af enten diarré eller stivending i

et specifikt område i en besætning. Der bliver dog dannet for mange falske alarmer, og det foreslås

derfor, at fremtidig forbedring af alarmsystemet fokuserer på a) at forbedre performance, b) metoder

til at rangordne, eller reducere mængden af alarmer og c) metoder til at skelne mellem forskellige

årsager til alarmerne.

Den overornede konklusion af den forsking, der præsenteres i denne PhD afhandling, fremhæver

de generelle udfordringer, der ligger til hinder for at opnå høj performance i påvisning af specifikke

hændelser i husdyrproduktion. Det er i høj grad anvendelsen, af indirekte indikatorer for de enkelte

hændelser, der hindrer høj performance. I det præsenterede arbejde udpeges nogle udfordinger ved

at bruge performance som indikation for, hvorvidt et alarmsystem kan give værdi i en besætning.

I stedet foreslås det, at en sådanne nytteværdi af et alarmsystem skal vurderes ved at evaluere på

datasæt fra andre besætninger.
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1
I N T RO D U C T I O N

1.1 B AC K G RO U N D

Pig production has changed over the past 40 years. From small scale farms housing both breeders,

weaners and finishers, into larger centralized herds, which are highly specialized production units

each designed for either breeders, weaners or finisher pigs (Kashiha et al., 2013; Sorensen et al.,

2010).

This multi-site production is a part of a bio-security strategy, which has effectively reduced the

impact and spreading of diseases and improved the overall health of pigs. Particularly the focus on

high health status herds with Specific Pathogen Free (SPF) pigs and All-In-All-Out (AIAO) mana-

gement has improved animal health in Denmark as compared to other parts of the world (Cameron,

2000; Danish Agriculture and Food Council, 2010).

Despite the high health status of pigs in Danish production herds, some diseases still have signifi-

cant impact on the welfare and result in too high mortality and reduced productivity. The increased

number of animals within the herds leaves less time available to attend to individual pigs during the

daily check. It is therefore more difficult for the caretaker to recognize events like diarrhea, tail bi-

ting, and fouling, which is a change in behaviour where the pigs start to lie on the slatted area of the

pen and excrete in the lying area, at the early signs of an outbreak. Interventions implemented after

an outbreak will often reduce the consequences of the condition, but both welfare and productivity

will be compromised to some extent for the rest of the growing period of the affected animals.

If the pigs were monitored around the clock, any early signs of undesired events might be recog-

nized. Hereby interventions could be implemented timely enough to either prevent the events from

occurring, or limit the consequences to a greater extent than with subsequent interventions.

Constant monitoring by personnel is, however, not a realistic option considering both monetary

expenditures and efficiency. Technical solutions are still getting more affordable, though, and by

installing sensors in the herd, the pigs would be monitored automatically around the clock, and

constant data streams could be modeled into early warning systems.

An early warning system can detect early stages of events like changes in behaviour or outbreaks

of diseases. If an event is detected, the warning system will communicate an alarm to the caretaker.

The alarms provide the caretaker with valuable information on the status of the animals and will act

as decision support in the daily management.
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I N T RO D U C T I O N

The research, which will be presented here, focuses on the development of such an early warning

system. The described PhD project is a part of the larger PigIT alliance1, which is an international

cooperation of scientists working on developing monitoring and decision support tools in growing

pigs. By integrating Information and Communications Technology (ICT), PigIT aims to improve

both welfare and productivity in Danish production of growing pigs.

PigIT focuses on three events of interest, which have severe impact on both welfare and producti-

vity in Danish pig herds; diarrhea, tail biting and fouling. Tail bites were, however, not occurring in

the data included in the present work, and will not be discussed any further in this thesis.

1.2 S TAT E - O F - T H E - A RT R E S E A R C H

The development of sensor-based detection models for livestock production has been a field of

increased scientific focus for more than twenty years (Berckmans, 2014; Wathes et al., 2008).

The overall concept of sensor-based detection models is to automatically detect a given condition

based on continuous real-time monitoring by one or more sensors. The data observed by the sensors

serve as input to one or more mathematical models in a detection system, and if a predefined threshold

is exceeded by the modeled data, an alarm is generated. Based on the alarms, the farmer can decide

to target interventions and managerial focus, thus using the detection model for decision support in

the everyday production.

Throughout the years, livestock science detection models in general, have focused primarily on

detecting individual animals with specific conditions like clinical mastitis, lameness and oestrus. Few

detection models have been developed for groups of animals, Madsen et al. (e.g. 2005) developed a

model for prediction of diarrhea in a section of weaner pigs, and recently Jensen et al. (2017) and

Jensen et al. (2016) focused on events in a pen of finisher pigs.

If a warning system could provide precise information on specific animals or groups of animals

in need of high attention, it would be of high managerial value to the farmer. Such precise alarms

would require high performance of the detection model in order to avoid false alarms. False alarms

are both costly and time consuming for the farmer, and in addition to the costs, excessive alarms

devaluate the managerial value, and diminishes the trust in the warning system. In other words, a

warning system, which generates too many false alarms, will not be suited for decision support and

should not be implemented in a livestock producing herd (Hogeveen et al., 2010).

Alarms are generated by comparing the modeled data to a predefined threshold, which is defined

according to the nature of the detection system and the condition sought detected. A simple system

might measure the body temperature of an animal and generate an alarm if a certain temperature is

reached or exceeded, whereas a more complex system might predict the next value of the observed

variable and generate an alarm if the modeled data deviates systematically from what is expected.

Whether an alarm is true or false is determined by comparing the time of each alarm with informa-

tion on whether the condition, or event of interest, occur at the same time or not. For this purpose,

1http://pigit.net
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the gold standard must be known. The gold standard ideally expresses the true state of the modeled

system, hence stating with certainty whether the event is present or absent. In practice, however, the

gold standard often consists of human observations, which will always be associated with a natural

subjectivity, as discussed in Paper II. Although the subjectivity usually is sought minimized by a

clear definition of case vs non-case, there is little or no consensus in such definitions across studies

of the same condition. Thus in the scientific literature, as different clinical mastitis definitions as

“Somatic Cell Count (SCC) above 100,000 cells/ml or treatment performed” (Cavero et al., 2007)

and “one or more alerts given in a defined period around the recorded date of an observed case” (Mol

and Ouweltjes, 2001) can be found.

Since alarms seldom occur at the exact same moment as the events are registered, periods of time,

known as time windows, relative to an event, are often defined (Hogeveen et al., 2010; Kamphuis

et al., 2010a; Sherlock et al., 2008). All alarms generated within a time window are treated as one

single alarm correctly identifying the event. The length of the time window may vary according to

the event of interest, and it can extend from before an event is observed to after an event is observed

(Cavero et al., 2006; Jensen et al., 2017; Mol et al., 1997).

Whether an alarm is associated with an event or not, lays to ground for a categorization into one

of four categories of true and false alarms as follows:

• True Positive (TP) is an alarm occurring in the defined time window around an event

• False Positive (FP) is an alarm occurring outside a time window around an event

• True Negative (TN) is when there is no alarm and no event occurring

• False Negative (FN) is when there is no alarm at an event or during the time window.

As illustrated in Figure 1.1 from Paper III, the length of a time window influences the categoriza-

tion of true and false alarms, and this will affect the performance of the detection model.

Based on the categorization of the alarms, the model performance is measured by the conditional

probabilities sensitivity (Se) and specificity (Sp), which are estimated as:

Se =
TP

(TP+ FN)
(1)

and

Sp =
TN

(TN+ FP)
(2)

where TP denotes the total number of TP cases and accordingly for the other variables, as shown in

Paper III.

Sensitivity reflects the model’s ability to correctly identify the occurrence of the event of interest,

whereas specificity reflects the model’s ability to correctly identify the absence of the event of interest.

Thus a high sensitivity is needed in order to identify the events, but since the event of interest usually

is of low prevalence in the herd, a high specificity is crucial in order to reduce the number of false

alarms.

3



I N T RO D U C T I O N

TPTP FN

TNFPTN

= Observed event

= Alarm

= One day, midnight to midnight

= Time window related to one event

= Full time window comprised of single or
overlapping time windows

TPTP FN

TNFPTN TN FP TN

TP FN

TNFPTN TN FP TN

FN FN

FP FP TN

3/0

2/0

1/0

Figure 1.1: Example of definitions of true positives (TP), false positives (FP), true negatives (TN), and false
negative (FN). All observed events are associated with a time window, and overlapping time windows are
merged into longer windows. Three lengths of time windows are illustrated; 3/0 = three days before an event
and zero days after, 2/0 = two days before an event and zero days after, 1/0 = one day before an event and
zero days after. All alarms occurring within a time window are counted as one TP alarm. If no alarms occur
within a time window, it is counted as one FP. Days outside of time windows but with alarms, are counted as
FP, whereas days outside of time windows with no alarms are counted as TN. Based on illustration by Jensen
et al. (2017) (Figure from Paper III).
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The importance of correct identification of both cases and non-cases has resulted in a definition

of minimum performance requirements for clinical mastitis detection, which must be met if the

detection system should be implemented in a production herd. Both 70 and 80 have been suggested

as minimum sensitivity levels, whereas a specificity of 99 is agreed on as minimum level (Mein and

Rasmussen, 2008; Rasmussen, 2002). Although no minimum requirements have been defined for

detection of other conditions than clinical mastitis, it is a general challenge to reduce the number

of false alarms from livestock detection systems (Berckmans, 2014), and it can be argued that the

performance requirements defined for clinical mastitis detection, could be used as guidelines for

evaluation of livestock detection systems in general.

Only five sensor-based detection models described in the scientific literature, fulfill the defined

minimum performance requirements, when comparing to either of the minimum requirement for Se:

• Mol and Ouweltjes (2001) (Se = 100, Sp = 99.5) used Fuzzy Logic to detect clinical mastitis,

but also used the same data set for learning and testing the model

• Liu et al. (2009) (Se = 100, Sp = 100) validated their B-spline transformed logistic regression

model for lameness detection by “leave-one-out” for each of the 260 cows included in the study,

which leads to almost identical learning and testing data sets as well

• Kamphuis et al. (2010b) (Se = 71.4, Sp = 99) detected clinical mastitis and used a decision

tree in combination with the ensemble classifying methods bagging and boosting (Witten and

Frank, 2005) to obtain the high performances

• Maertens et al. (2011) (Se = 90, Sp = 100) used linear regression in combination with an

unspecified method, and obtained high performances on identifying severely lame (gait score

3) cows correctly, but reported no performance for lower gait scores

• Cornou and Lundbye-Christensen (2011) (Se =100, Sp = 100) applied a Dynamic Generali-

zed Linear Model (DGLM) to detect sow parturition, but the high performances were to some

extent caused by an overfitting of the model, as was recognized by the authors.

The dynamic approaches used by Cornou and Lundbye-Christensen (2011) and Kamphuis et al.

(2010b) seem well suited for modeling time series of sensor data. This is further supported by high

performances obtained in seven studies, all using Dynamic Linear Model (DLM) with or without

postprocessing methods (see Table 1.1).

Despite the high performances obtained in studies using dynamic linear models, too many false

alarms are still generated, and the developed models are not suited for implementation in livestock

production herds without further customization. A possible explanation for the general difficulties of

reaching minimum performance requirements might be that sensitivity and specificity are epidemio-

logical terms designed for evaluation of binary test output. The majority of conditions in livestock

production, like clinical mastitis, lameness, oestrus, diarrhea, and fouling, progress over time and

are more complex than binary conditions (Friggens et al., 2007, 2010). A precise detection of such

conditions will therefore be difficult when using a fixed threshold for generating alarms.
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Table 1.1: Sensitivity and specificity obtained by various DLM applications
Paper Method Se Sp Focus
Cornou et al. (2008) Univariate DLM 75 95.4 Oestrus
Cornou and Lundbye-Christensen (2010) Multivariate DLM 96 96 Activity types
Ostersen et al. (2010) Multiprocess DLM 89.2 96.9 Oestrus
Mol et al. (2013) DLM 100 95.4 Clinical Mastitis
Jensen et al. (2016) Multivariate DLM 80 81 Clinical Mastitis
Jensen and Kristensen (2016) Multivariate DLM 80 88 Diarrhea
Jensen et al. (2017) Multivariate DLM 80 81 Diarrhea or fouling

In addition to the progressive nature of the conditions, detection performances might be reduced

because the modeled parameter contains more information on the animal than what relates directly

to the event of interest. Studies indicate that this is true for water consumption of pigs in particular.

Thus Jensen et al. (2017) found that water was the one single variable containing most information

in the prediction of diarrhea or fouling in finisher pigs, which coincide with the findings by Aparna

et al. (2014), in a study predicting the onset of farrowing.

Other studies indicate that pigs’ water consumption reflects the true state of the animals more

detailed than when the gold standard is directly observed by human. Thus, a study by Andersen

et al. (2016) showed that changes in the diurnal drinking pattern of finisher pigs could indicate the

presence of stressors in general, rather than specific events. This is also considered in a study by

Madsen et al. (2005), who found that changes in the drinking pattern of weaner pigs can be used to

predict outbreaks of diarrhea, but also that it may reflect the general wellbeing of the pigs.

If alarms caused by reduced wellbeing in the animals are communicated to the farmer, the warning

system would be less event-specific. Unspecific warning systems have a high potential of predicting

very early stages of a condition or other stressors amongst the animals. This is of considerably

managerial value, but some sorting or prioritization of the unspecific alarms are necessary though.

The alarms could be presented to the farmer as risk indicators, as suggested by Friggens et al. (2007,

2010), or they could be prioritized by including non-sensor information in a Naïve Bayesian Network

(NBN), as was done with success by Steeneveld et al. (2010).

An alternative alarm-prioritizing approach is to relate the unspecific alarms to a specific area of

the herd using a spatial model. This would allow the farmer to include any specific knowledge of the

animals in the targeted areas and choose the right intervention timely enough to prevent an outbreak

or reduce the consequences of the condition.

Modern Danish production sites for growing pigs are very well suited for such spatial modeling

due to the construction of the sites and the managerial routines. The sites are organized in identical

sections consisting of a number of identical pens. Pigs are inserted in the sections following an AIAO

strategy where pigs of same age are inserted in a section on the same day, and the section is emptied

and disinfected before the insertion of a new batch of pigs. This construction of the herd allows it

to be modeled as a system consisting of one large unit (the whole herd), which consists of a number

of identical subunits (sections), with each subunit consisting of a number of identical sub-subunits

(pens), as illustrated in Paper II.
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Standardized managerial routines cause a high degree of correlation between pigs in the individual

pen as well as between pens within a section, and sections within a herd. Pigs are inserted in the

individual pens in a section according to gender or size, and for bio-security reasons pigs from one

section do not enter another section in the herd. Both feed mixture and climate control is managed

individually for each section according to the age of the pigs it contains. It is, however, the same

central feeding system which supplies the whole herd, and both power and main water supply are

central as well.

The AIAO strategy described above, constrains the spreading of conditions like diarrhea and fou-

ling between sections. If the conditions do occur, they will spread within a section from one or few

pens to more, but it is not given that all pens within a section get affected.

Some points in time during the growth period are known to constitute higher risk of outbreaks than

others. Thus outbreaks of diarrhea have shown to be related to shifts in the environment experienced

by both weaner and finisher pigs at insertion in the section (Pedersen, 2012) (and personal com-

munication Weber, N.). Routinely shifts in the age-optimized feed mixture two to four weeks after

insertion, often cause diarrhea amongst weaners as well (ibid.). In a study by Aarnink et al. (2006),

it was found that outbreaks of fouling is closely related to room temperature and body weight. Alt-

hough pen density and climate related parameters like humidity and draft have some effects (Huynh

et al., 2005; Randall et al., 1983), most fouling occur amongst finishers in the end of the growing

period, where the increased emission of body heat adds to the environmental temperature (Aarnink

et al., 2006; Spoolder et al., 2012).

The development of a spatial detection system for Danish production units for growing pigs, will

make it possible to predict events at separate spatial levels within the herd. The system will be able

to identify irregularities in a specific pen within a specific section, in a specific section within the

herd, or in a pen within the herd. Such area-specific alarms allow the farmer to include any specific

knowledge of high risk periods and of the specific animals in the pointed area, and choose the best

suited intervention, as discussed in Paper III.
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2
R E S E A R C H G OA L S

2.1 W O R K I N G H Y P OT H E S E S

Hypothesis I: Drinking patterns between pens within a section and sections within a herd of growing

pigs are correlated, and this correlation can be modeled using model parameters defined at different

spatial levels.

Hypothesis II: Changes in the drinking patterns of growing pigs are influenced by diarrhea and fou-

ling. By monitoring the water consumption simultaneously in multiple pens and sections, outbreaks

of the conditions can be detected in specific areas.

2.2 S P E C I F I C A I M S

Paper I: In Paper I, the specific aim is to evaluate the performance of sensor-based detection models

in the scientific literature, focusing on alarm-reducing methods. An extensive review of the scientific

literature is conducted, and performance, modeling methods, and validation methods of the included

models are discussed.

Paper II: Paper II addresses Hypothesis I, and the aim of the paper is to develop a multivariate spatial

model, which can model correlations between drinking patterns in pens and sections in any herd of

growing pigs. The work presented in Paper II is the first of two steps in the development of a full

spatial detection system.

Paper III: Paper III addresses Hypothesis II. The aim of the paper is to evaluate the performance

of the detection system, based on the detection model developed in Paper II. This is done through a

systematic change of model specifications and performance evaluating settings. An additional aim

of Paper III is to present and discuss alarm reducing and prioritizing strategies. The work presented

in Paper III is the final step of two in the development of a full spatial detection system.

Paper IV: The aim of Paper IV is to exemplify the alarm reducing potential of the detection system

developed in Papers II and III.
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3
M AT E R I A L S A N D M E T H O D S

Data collection for the research presented in this thesis is conducted in accordance with PigIT

alliance aims and decisions. The two included herds are chosen by the PigIT alliance in order to

represent different age-groups of pigs, and different managerial resources and routines. Likewise,

sensor types and sensor placement within each herd is decided by the alliance, and standard procedu-

res for event registration are described in a PigIT protocol (Lyderik et al., 2016).

The following sections include a description of the materials and modeling methods used for Pa-

pers II, III and IV in the present PhD study. Since both materials and methods are described in the

papers as well, the following sections serve as an overview, including considerations and motivations

for the choice of data processing and modeling methods. All modeling was done using the statistical

programming language R (R Core Team, 2014).

3.1 H E R D D E S C R I P T I O N

Water data from two Danish herds of growing pigs (weaners 7-30 kg and finishers 30-110 kg) lay

ground for the research presented in this thesis. Herd A is a commercial finisher herd, and Herd B is

the experimental weaner herd,“Grønhøj”, which is owned by the Danish Pig Research Centre1.

Both herds conduct AIAO management, thus inserting pigs of same age in all pens within a section

on the same day, followed by a complete emptying, cleaning and disinfection of the section before

new pigs are inserted. Pigs inserted in the same section at the same time are defined as a batch of

pigs, and the period they stay in the section is defined as the growth period. The growth period for

finisher pigs in Herd A lasts 14 weeks including one week for cleaning, whereas the growth period

for weaner pigs in Herd B lasts 8 weeks including four days for cleaning.

Herd A consists of five sections, of which four are included in this study. Herd B consists of

four sections in total, and all of those are included in this study. Batches are inserted in subsequent

sections in the herds following a production cycle as illustrated in Figure 3.1 from Paper II. This

implies that pigs are of different ages across the sections in the herd at any given time. In Herd A

the study period was initiated in May 2014 and ended in March 2016, thus monitoring water data

from seven batches from each section during the study. Water data from Herd B was monitored from

1www.pigresearchcentre.dk
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Figure 3.1: Production cycle for a finisher herd (A) and a weaner herd (B) (Figure from Paper II).

October 2014 to December 2016, which included 13 batches from three sections and 14 batches from

one section.

A section in Herd A consists of 28 pens each with 18 finisher pigs. Two neighbouring pens

share the same feeding trough and the same water pipe. The water consumption of two pairs of

neighbouring pens, called double pens, per section is monitored, and both sections and pens within

the sections are randomly chosen. A section in Herd B consists of 12 pens each with 15 weaner pigs.

All pens have individual feed and water supply, and four pens from each section are included in the

study. Both sections and pens are chosen by the Pig Research Centre. The structure of the two herds,

and the placement of the pens included in the research, can be seen in Figure 3.2 from Paper II.

3.2 S E N S O R DATA

Water data was monitored using photo-electric flow sensors (RS V8189 15mm Diameter Pipe).

The sensors measured water flow per millisecond as pulses proportional to the velocity of the water

(Anonymous, 2000), and the number of pulses were converted to litres and aggregated per hour,

yielding water use in litres per hour.

The sensors were placed on water pipes supplying either double pens in Herd A, or single pens

in Herd B (Figure 3.3). In Herd A a total of eight sensors were installed, thus monitoring the water

consumption of eight double pens containing a total of 36 finisher pigs each. In Herd B sixteen

sensors were installed, each monitoring the water consumption of 15 weaner pigs.

Sensors were calibrated before initiations of new batches, and no sensor data was obtained during

cleaning periods between batches. Therefore the cleaning periods are considered planned periods of
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Figure 3.2: Plan of Herd A (top) and Herd B (bottom). Sensors were placed in eight double pens in Herd A
(marked with grey) and in sixteen pens in Herd B (marked with grey). (Figure from Paper II).

Figure 3.3: One water pipe supplying two neighbouring pens in Herd A (left) and a single pen in Herd B
(right). (Figure from Paper II).
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missing data, as opposite to unplanned periods of missing data, which are seen in the data sets as

well. Some of these unplanned periods are caused by sensor outages, or other technical irregularities

in the process of transferring data from a sensor to the central data base. The periods may last from

a few hours to several days, although few periods as long as a whole batch are also registered.

In Herd A unplanned periods of missing data occurred almost every night in all pens. Since

it is not possible to distinguish between sensor outages and hours without drinking activity (zero

observations) in the present data sets, it was suspected that the missing data reflected sleeping pigs.

Samples of video recordings from the pens confirmed the suspicion, and therefore missing data of

maximum 5 hours length occurring between 10:00 PM and 4:00 AM, as standard, were interpreted as

zero observations. In Herd B water consumption was registered in every hour during the night, which

may be related to a higher metabolism in smaller animals (weaners) than in larger (finishers). The

cause of this night activity is, however, beyond the scope of this research, and will not be discussed

further.

Data from each sensor constitute an individual time series, and the full data set for Herd A therefore

consists of eight time series, whereas the full data set for Herd B consists of sixteen time series. A full

data set begins with the first observation by any sensor in the herd, and ends with the last observation

by any sensor in the herd.

The full data sets are split into learning data (4 batches from Herd A and 10 (11) batches for

Herd B) used to train the detection model in Paper II, and test data (2 batches from both herds) used

to evaluate the performance of the detection model in Paper III. Data from one batch per sensor

was omitted between training data and test data for both herds, in order to avoid the risk of having

observations from the same pigs occurring in both data subsets.

3.3 E V E N T S O F I N T E R E S T

During the study period, the personnel in both herds registered on a daily basis, if either diarrhea

or fouling had occurred in any of the monitored pens. These registrations of the two event types

constitute the gold standard in the evaluation of the model’s predictive performance in Paper III.

At the initiation of the study period, the personnel was given instructions on how to assess the two

types of events, and a protocol with detailed descriptions were handed out (Lyderik et al., 2016). In

Herd A the assessment routines were calibrated by a trained technician at regular visits, however this

was not considered necessary in Herd B since the herd is a research facility. For the rest of the present

thesis, no distinction between diarrhea and fouling are made, though. This approach is chosen since

the aim of the detection system is to generate area-specific alarms rather than distinguish between

different conditions. Registrations of diarrhea and fouling are therefore merged for each herd under

the common term “event”.

When examining the event registrations from the two herds, it was evident that significant herd-

specific differences occurred in the frequencies of registrations. Herd A experienced multiple repla-

cements of the daily caretaker during the study period, and this resulted in inconsistent event registra-
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tions including periods with none at all. Therefore all available event registrations were included as

gold standard. In Herd B, periods of 14-21 days in a row with positive diarrhea registrations occurred

multiple times. None or few treatments were initiated in those periods, though, and conferring with

the daily manager confirmed that the personnel’s threshold for identifying diarrhea was very low.

Thus, for Herd B, the initiation of an intervention (medical treatment of diarrhea or cleaning of pens

with fouling) were used as gold standard for performance evaluation.

3.4 M O D E L I N G M E T H O D S

Initial evaluation of the drinking patterns from both Herd A and Herd B showed a clear diurnal

pattern (see Figure 3.4). Such a diurnal drinking pattern has previously been modeled by Madsen et

al. (2005), who used a superpositioned univariate dynamic linear model to model the drinking pattern

of a section of weaner pigs. A dynamic linear model is dynamic by nature. It can model fluctuations

over time in the underlying mean, which makes it well suited for modeling the evolution in pigs’

water consumption over time. Therefore, a multivariate spatial dynamic linear model is chosen as

the modeling method in this research, and the model, developed in Paper II, is made on the basis of

the work by Madsen et al. (ibid.).

The characteristics of a general multivariate DLM, can be described, following West and Harrison

(1999), as:

The observation vector Yt = (Y1t, . . . , Ynt) ′ , contains the observation at time t for each of the

n sensors. Both the relation between Yt and the underlying parameter vector θt at time t, and

the evolution of the system over time, are described through an observation equation and a system

equation (Equations (3) and (4) respectively):

O B S E RVAT I O N E Q UAT I O N

Yt = F ′
tθt + νt, νt ∼ N(0, Vt), (3)

and

S Y S T E M E Q UAT I O N

θt = G ′
tθt−1 +wt, wt ∼ N(0, Wt). (4)

The overall aim of the DLM is to predict the next observation of the monitored variable by esti-

mating the parameter vectors, θ1, . . . , θt, from the observations, Y1, . . . , Yt. Every observation is

added to the model’s prior knowledge of the modeled system, and this dynamic updating enables the

model to predict the next observation with increased certainty over time. When a new observation

is made, the predicted value and the observed value are compared, and any differences between the

predicted and the actual observations are due to the two error terms, νt and wt.
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For the modeling of pigs’ drinking patterns, this means, as quoted from Paper IV, that “if the

pigs follow their normal drinking pattern and drink as much water as expected, the prediction of the

next observation is close to perfect, and any prediction error will be small. If, on the other hand,

something is causing the pigs to drink more or less than expected, the prediction error will be larger.

A systematic change in the normal drinking pattern will generate a sequence of larger prediction

errors, and this will lead to an alarm, as will be described later.”

3.4.1 Modeling diurnal patterns

Madsen et al. (2005) tested how many harmonic waves should be included in order to model

the diurnal drinking pattern of pigs. They found, that three waves were sufficient, and in the work

presented in this thesis, the same three harmonic waves are used. Therefore, the modeling of the

diurnal part of the drinking pattern is done by combining three harmonic waves of lengths 24h,

12h, and 8h as illustrated in Figure 3.4. Each harmonic wave is expressed as cyclic models in a

dynamic linear model through the trigonometric Fourier form representation of seasonality (West

and Harrison, 1999) as:

Fht =

(
1

0

)
and Ght =

(
cos(ω) sin(ω)

− sin(ω) cos(ω)

)
. (5)

with ω = 2π/24 yielding a wave with a period of 24h, ω = 2π/12 a wave with a period of 12h,

and ω = 2π/8 a wave with a period of 8h. The three harmonic waves are denoted, H1, H2, and H3

respectively.

However, since pigs drink more water as they grow, a trend must be added to the diurnal pattern

in order to model the full drinking pattern. A dynamic linear growth model models the underlying

level of water consumed as well as the increase in the level from time t− 1 to t. It is described by

West and Harrison (ibid.) as:

Flt =

(
1

0

)
and Glt =

(
1 1

0 1

)
. (6)

3.4.2 Modeling correlation

All four elements found by Madsen et al. (2005) always contribute to the pigs’ drinking patterns

at the same time, but in Paper II it is investigated whether each of the three wave elements, indepen-

dently of each other, peak at the same time in all pens in a herd, only at the same time in pens within

a section, or if there are individual differences in the time of peaking between all pens in a herd.

If a wave peaks at the same time in all pens in the herd, then that element of the full drinking

pattern is correlated at herd level (see Table 3.1). This could for example be the wave with 24h

wavelength (H1), and this would then indicate that the pigs have their majority of water intake at the
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Figure 3.4: From top to bottom: H1 (24h), H2 (12h), H3 (8h), Sum of H1+H2+H3, Diurnal drinking pattern
Herd A, Diurnal drinking pattern Herd B
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same time every day (for example at noon) in all pens across the herd, and their minimum of water

intake 12 hours later (at midnight). Since all pigs in the herd experience night and day at the same

time, this correlation would not be unexpected to find.

If, on the other hand, all pigs in one section have their maximum water intake at 10 AM (and

minimum at 10 PM), and all pigs in another section have their maximum water intake at 1 PM (and

minimum at 1 AM), then this would indicate a correlation in the 24h wave element of the drinking

pattern at section level. Since the pigs differ in age and size between sections, this correlation would

not be unexpected to find either.

Finally, if differences in the time of day, where the major water intake takes place, are found

between all pens in the herd, it would indicate little or no correlation in the 24h wave element of

the drinking pattern, and the correlation would then be expressed at pen level. Bearing the AIAO

sectionalized structure of a herd in mind, such a correlation would be less expected to be found for

the 24h wave. It would, however, not be unlikely for the 12h (H2) or the 8h wave (H3) since this

would express differences in the minor peaks of drinking activity between pens.

Table 3.1: Terminology and interpretation of seven model versions applied to the data sets from Herd A and
Herd B. The letters denoting the model versions are: H = Herd level, S = Section level, and P = Pen level. In the
interpretation, H1 = Harmonic wave of length 24h, H2 = Harmonic wave of length 12h, and H3 = Harmonic
wave of length 8h.

Model version Interpretation

HHH: The full harmonic pattern evolves identically for all pens in the herd

HSS: H1 evolves identically for all pens,
H2 and H3 evolve identically within each section but differently between sections

HSP: H1 evolves identically for all pens,
H2 evolves identically within sections but differently between sections,
H3 evolves differently in each pen

SSS: The full harmonic pattern evolves identically within each section
but differently between sections

SSP: H1 and H2 evolve identically within sections but differently between sections,
H3 evolves differently in each pen

SPP: H1 evolves identically within sections but differently between sections,
H2 and H3 evolve differently in each pen

PPP: The full harmonic pattern evolves differently in each pen

3.4.3 Estimating variance components

For each of the seven model versions, the variance-covariance matrices, Vt and Wt, are estimated

on the learning data. Three observation variance components are defined at herd level, section level,

and pen level, respectively, to allow for observational errors to occur in one pen, in all pens in a
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section, or in all pens in a herd. By combining the three spatially defined variance components, the

full variance-covariance matrix, Vt is expressed. The system variances, Wt, are modeled as a fixed

proportion of the posterior variances, Ct, using discount factors. Thus, for each of the three cyclic

models as well as for the linear growth model, a discount factor is estimated.

For estimation of the variance components, the Nelder-Mead algorithm in the optim function in

R (R Core Team, 2014) is used. The algorithm optimizes all parameters with respect to an optimi-

zation criterion. In the present case, the parameters are the variance components of the model (three

Vt components and four discount factors used to express Wt), and the optimization criterion is to

minimize the Mean Square Error (MSE). When variances are estimated in order to optimize the

MSE, there is a risk of bias-variance tradeoff, which leads to excessively large variances and small

MSEs, or vice versa (Hawkins, 2004; Torgo, 2017; Witten and Frank, 2005).

Variance components can be estimated by other methods than optimization. They can be conside-

red unknown and be estimated for each observation using a Kalman filter, as done by Madsen et al.

(2005), or estimated more directly through an Expectation-Maximization (EM) algorithm, as done

by Jensen et al. (2017) and Bono et al. (2012). In the presented work, the estimation by the EM algo-

rithm was initially attempted, but the iterative algorithm repeatedly failed to converge. This finding

was also made by Madsen (2001), and it may be that the EM algorithm is unsuited for estimation

in models which include harmonic elements based on the Fourier form representation of seasonality,

as mentioned in Paper II. In the presented research, the estimation through optimization is therefore

sought investigated, and the outcome of that will be discussed in Section 4.2.4.

3.4.4 Model fit

In order to express how well the models predict the next observation in the water data, the Mean

Square Error MSE is calculated individually for each model version and each herd. The MSE is

defined as 1T
∑T
t=1 e

′
tet, and expresses the average of the squares of the forecast errors. If a model

fits the data well, the differences between the predicted, or forecasted, pattern and the observed

pattern will result in smaller errors than for a model, which fits the data less well. Therefore the

interpretation of MSE is that a smaller numerical value indicates a better model fit. The MSE can not

be compared between herds, but should be compared between model versions applied to the same

data set.

3.4.5 Cusum control chart

Each modeled time series of sensor observations generates a series of forecast errors, et. Moni-

toring of forecast errors can be used to detect whether a process is in control or out of control, as

described in Paper III. Out of control situations may lead to an alarm, which may proceed unwanted

events. In Paper III a two-sided tabular Cusum control chart is used to monitor the generated forecast
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errors of each model version. The model versions are evaluated on their ability to detect unwanted

events in either a specific pen, a specific section, or in any monitored pen within the herd.

Since the multivariate dynamic linear model generates one series of forecast errors per pen, more

forecast errors must be added together in order to express errors at section and herd level. The

procedure for preparing the forecast errors to the Cusum is described in details in Paper III, and only

a short overview is presented here.

The pen level input to the Cusum consist of the series of forecast errors from the sensor in the

corresponding pen (8 in Herd A, 16 in Herd B). The series of forecast errors for a section (4 in both

herds) is generated by adding the forecast errors of all sensors within the section at time t. Likewise,

the series of forecast errors for the entire herd (1 in both herds) is generated by adding the forecast

errors of all sensors within the herd at time t together.

Because pigs drink more as they grow, the numerical values of the forecast errors increase over

time as the underlying level of water consumption increases. The growth-related increase must be

eliminated if an increase caused by a systematic change is to be identified. Therefore the forecast

errors are standardized with respect to the forecast variances, Qt, before they are monitored. Series

of forecast variances for standardization are generated for each spatial level following the method

described in Paper III.

Since each series of forecast error and forecast variances is generated for a specific pen, section or

herd, it is denoted eut or Qut respectively, where u relates to the specific unit (pen, section, herd).

The following is quoted from Paper III and describes the “applied standardized two-sided Cusum

control chart is defined by Montgomery (2013) as:

Since the expected value of eut is 0, the standardized value yut simply becomes

yut =
eut

qut
, (7)

where qut =
√
Qut .

Then, the Upper Cusum for the unit is the series

Cu+t = max[0,yut − k+Cu+t−1] (8)

and the Lower Cusum is the series

Cu−t = max[0,−k− yut +Cu−t−1]. (9)

where k is the reference value”.

The two-sided Cusum generates cumulated sums of the positive and the negative forecast errors

separately over time and plot them as Upper Cusum and Lower Cusum respectively. If either of the

Cusums exceed a defined threshold, h, the monitored process is considered out of control, and an

alarm is generated (see Figure 3.5).
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Subsequently the generated alarms are categorized as true positive (TP), false positive (FP), true

negative (TN), or false negative (FN) based on whether they occur within a chosen time window or

not. Three different time windows were defined, each including either three, two, or one day before

an event, and no days after (denoted 3/0, 2/0, 1/0 respectively). The time windows are illustrated in

Figure 1.1, Section 1.2.

Figure 3.5: Two-sided Cusum control chart. The Upper Cusum reaches or exceeds the threshold seven times,
whereas the Lower Cusum exceeds the threshold once. In total eight individual alarms are generated.

The process of the full performance evaluation is described in details in Paper III. A total of

2× 7× 3× 3 = 126 model combinations are evaluated for their detection performance based on:

• Herd (Herd A, Herd B)

• Model version (HHH, HSP, HSS, SSS, SSP, SPP, PPP)

• Spatial level (Pen, Section, Herd)

• Time Window (3/0, 2/0, 1/0)

For each of the 126 model combinations a Cusum is run with different settings of the two control

chart parameters, k and h, and the final performance of the detection system is evaluated indepen-

dently of a threshold using Receiver Operating Characteristics (ROC) curves and calculating the

Area Under the Curve (AUC) for each curve as described in Paper III. If the AUC = 1, then the

predictive performance is perfect, so values close to 1 are preferred.
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4
F I N D I N G S A N D D I S C U S S I O N

In this chapter, the overall findings from the four original papers will be presented and discussed.

More in-depth and detailed results are found in the papers in Chapters 5, 6, 7, and 8.

4.1 PA P E R I : F O C U S N E E D E D O N A L A R M R E D U C I N G M E T H O D S

Two primary findings are made in Paper I. The first is that further focus on alarm reducing methods

is needed, and the second is that none of the evaluated models are suitable for implementation in

commercial herds based on the three evaluation criteria.

Paper I is a literature review, and the initial aim was to evaluate different alarm prioritizing or alarm

reducing methods for detection models in livestock production. However, an extensive literature

search soon revealed that only three scientific papers focused specifically on this area. Therefore

the focus of the review was expanded to include a performance evaluation of sensor-based detection

models within the field of livestock production.

The literature search showed that a variety of modeling methods have been applied to different ty-

pes of livestock related sensor data for the past twenty years. Therefore, a total of 34 included papers

were sorted into three groups based on the complexity of their methodology and their focus on priori-

tizing alarms. All described detection models were evaluated with respect to minimum performance

demands (sensitivity = 80 and specificity = 99) defined in the scientific literature. Subsequently the

models were evaluated with respect to their study design, which should reflect field conditions, and

a maximum length of 48 hours time window, if one was applied.

4.1.1 Alarm reducing methods

As mentioned above, only three of the evaluated papers focus specifically on alarm reducing met-

hods. In the first paper, Mol and Woldt (2001) use Fuzzy logic to reduce the number of false alarms.

The method is, however, developed for quantifying linguistic values like “a little”, “to some extent”,

or “very much”, and is not well suited for sensor-based data sets of numeric variables (Klir and

Folger, 1988).

In a second paper, Aparna et al. (2014) model the successive behavioural patterns undergone by

sows prior to farrowing. They then use the Hidden phase-type Markov method to predict the precise
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onset of the farrowing. This approach is well suited for conditions known to happen, such as the

farrowing, and with well-defined behavioural stages preceding the event. The general situation for

detection models in livestock production is, however, an uncertainty of whether the condition will

occur or not. Additionally, knowledge on a well defined behavioural pattern prior to a condition

occurring is generally lacking.

The third paper is by Steeneveld et al. (2010a) and introduces Naïve Bayesian Network (NBN)

as a successful method for discriminating between true positive TP and false positive FP alarms in

the detection of clinical mastitis. By combining information from the automatic milking system with

non-sensor cow-specific information, the probability of an alarm being true or false is calculated, and

the number of TP alarms is reduced significantly.

Of the three methods, NBN is found to be the better suited for sensor based models detecting

unforeseen events in livestock production. This is supported in the findings of Jensen et al. (2016),

who recently combined sensor and non-sensor information using a dynamic linear model with a

Naïve Bayesian Classifier (NBC) for clinical mastitis detection as well.

Kamphuis et al. (2010b) used a decision tree combined with the ensemble classifying method

bagging to improve the performance for detecting clinical mastitis. Ensemble classifying methods

are machine learning methods, which combine the output of different models, or of the same model

trained on different data sets, to increase the predictive performance over a single model as described

by Witten and Frank (2005). Retrospectively, the methods used by Kamphuis et al. (2010b) should

therefore have been categorized as an alarm-reducing method as well. Machine learning methods are

well suited for analyzing large amounts of data (Witten and Frank, 2005), but they are not yet widely

used for detecting conditions in livestock production. However, if the amount of sensor-based data in

livestock production increases as expected (Berckmans, 2014; Sorensen et al., 2010), both decision

trees and ensemble classifying methods are likely to be increasingly relevant for further research.

4.1.2 Performance evaluation

In Paper I, the sensor-based detection models for livestock production, presented in 34 scientific

papers published between 1995 and 2015, are evaluated for their suitability for implementation in

commercial herds. The included models were evaluated on three implementation criteria initially

defined by Hogeveen et al. (2010) in a review of 16 models for detection of clinical mastitis. These

criteria are a) a sensitivity (Se) of minimum 80% and a specificity (Sp) of minimum 99%, b) a time

window of maximum 48 hours, and c) the studies had to be conducted under conditions as similar to

practical field conditions as possible. In order to be evaluated in Paper I, the model input also had to

be obtained directly from sensors, and not through laboratory analyzes, as was for example done by

(Chagunda et al., 2006b; Friggens et al., 2007) who modeled the enzyme lactate dehydrogenase in

cow milk.

The evaluation in Paper I show that none of the included detection models, developed over a

twenty years period, were suited for implementation in commercial livestock production in their
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current form. Some of the poorer performances may reflect that focus was on an initial investigation

of new modeling methods (Freson et al., 1998; Kamphuis et al., 2010a), but it is still surprising to

find that fulfilling the implementation criteria appear so difficult.

Two possible explanations may be lying the ground for the findings in Paper I. The first is that the

implementation criteria developed for mastitis detecting models may be too restrictive for models

focusing on other conditions. The second is that the evaluation methods, which are generally applied

to measure model performances, may not apply for livestock production data. Thus, the use of impre-

cise gold standards in combination with sensitivity and specificity has been questioned by Chagunda

et al. (e.g. 2006a) and Friggens et al. (2007, 2010), and in the following the use of these performance

measurements will be discussed further.

4.1.3 Evaluation criteria

The first of the three implementation criteria defines the minimum requirements for the detection

performance. As described in Chapter 1, the sensitivity reflects the model’s ability to identify animals

with the condition correctly, and the specificity reflects the model’s ability to identify animals, who do

not have the condition, correctly. Most animals in livestock production are healthy and sound, which

means that the conditions sought detected by detection models generally are rare. Thus, the minimum

required specificity of 99% is considered necessary for reducing false alarms from livestock detection

systems in general.

The minimum requirement for sensitivity (80%) used by Hogeveen et al. (2010) reflects that un-

detected cases of mastitis may lead to significant consequences. An undetected cow with clinical

mastitis constitutes a risk of infected milk getting in the bulk tank. The consequence of that is, that

the full tank of milk has to be discarded, which implies significant economic consequences for the

farmer (Rasmussen, 2002). However, not all undetected conditions have equally important conse-

quences in livestock production, and as high a sensitivity may not be required for detecting them as

for mastitis.

When considering a condition like lameness, the economic consequences of a detection model

missing a lame animal are smaller than for a missed case of mastitis. A (mildly) lame animal is not

as high yielding as a sound animal (Garcia et al., 2014), but otherwise the production as a whole

is largely unaffected. Within lameness evaluation, different degrees of lameness are defined, and

models for lameness detection generally aim to identify early stages of lameness to allow for early

interventions (Garcia et al., 2014; Maertens et al., 2011; Mol et al., 2013). However, lameness in

general progresses slower than clinical mastitis, and if a mildly lame cow is missed by the detection

system, there will be more chances for it to be detected before neither welfare nor productivity is

significantly affected.

A minimum sensitivity of 80% for mastitis detection may therefore be more restrictive than what

is required for other conditions, and even within the field of mastitis detection a sensitivity of 70%

has been suggested (Mein and Rasmussen, 2008). The higher performance criterion is, however, still
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used in the evaluation of all models in Paper I. This was decided because a sensitivity of 80% is found

to be obtainable by human observation in a study by Quimby et al. (2001), and the consideration was

that a detection system should be able to match that standard.

The second implementation criterion states that studies should be conducted under conditions as

close to field conditions as possible. This criterion is highly relevant if the study aims to develop a

model for implementation in commercial herds. It is less significant if the study is focused on testing

new methods for data modeling, though, but the aim of Paper I is to evaluate the models for their

implementation suitability, which is why the second criterion is applied to all models disregarding

the condition in focus.

The third implementation criterion defines a maximum detection window, or time window, of 48

hours prior to the occurrence of the condition. A time window is a defined period associated with

the occurrence of a condition, and any alarm generated within that time window are considered

true, detecting the condition correctly (see Figure 1.1, Chapter 1). The length of the optimal time

window is related to the specific condition, and may be longer for a slower progressing condition, like

lameness, than for a faster progressing condition like mastitis. However, in the everyday management

of a commercial herd, too long time windows are of little managerial value since the alarm indicates

the occurrence of condition with less precision. The 48 hour time window is therefore considered

suited for evaluation of models detecting all types of conditions in Paper I.

4.1.4 The use of performance measurements

When evaluating the models in Paper I, it was the lack of fulfilling the performance criterion alone,

which caused the majority of models to be categorized as unsuited for implementation in commer-

cial herds. In the development process of livestock detection models, it is, however, very useful to

measure the sensitivity and specificity of different model versions. A performance comparison of the

same model run on different data sets, or different models run on the same data set, can help points

the modeler towards the better choice of modeling parameters and methods. This is widely done in

studies evaluated in Paper I Cavero et al. (e.g. 2006), Cornou et al. (2008), Kamphuis et al. (2008),

and Mol and Ouweltjes (2001) as well as Papers II and III in the present thesis.

However, using sensitivity and specificity to evaluate whether a model is suitable for implementa-

tion may not be reflecting the model’s true potential after all. A lower performance can be founded in

an imprecise gold standard registration, or it can be founded in the modeled parameter reflecting the

wellbeing of the animals, or even subclinical stages preceding the outbreak of a disease. Such a de-

tection model could contain a lot of information on the animals, and may therefore have significant

managerial value. A grading or sorting of the information is, however, crucial for the managerial

value to be realised. For the rest of this section, the challenges of gold standard registrations and

subclinical stages of diseases is sought elaborated.
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4.1.5 Gold standard challenges

As briefly mentioned, most unwanted conditions, such as diseases, in livestock production are pro-

gressive, which means that all stages can not be correctly identified using a fixed threshold (Friggens

et al., 2007, 2010). Furthermore, sensitivity and specificity ares calculated on the basis of a categori-

zation of the generated alarms as true and false by comparison to the gold standard, as described in

Section 1.2. Hence a true alarm is associated with a registered event, and a false alarm is not.

The registration of the gold standard is usually conducted by human observation, often the daily

caretakers in the herds. The presence or absence of the event is registered on the basis of a defined

threshold or a description of what the event should look like, when present. For lameness detection,

there is no consensus of how to assess different degrees of lameness, which has resulted in more than

twenty different lameness scoring scales (Tello et al., 2011). For mastitis detection, a consensus for

gold standard definitions has been proposed multiple times (Mein and Rasmussen, 2008; Rasmussen,

2002, 2005), but it has not been reached.

4.1.6 Subclinical stages

However, neither consensus nor clear definitions of the gold standard guarantee a true reflection

of the state of the animal. The natural subjectivity embedded in human observation will always have

an impact, but sometimes it may not even be possible to assess the gold standard by observing the

animal. For diseases like diarrhea, clinical mastitis, and laminitis (causing lameness), subclinical

stages may precede the clinical stage (Maatje et al., 1997; Somers et al., 2003; Weber et al., 2015). A

disease is clinical when it is observable, which means that the subclinical stage is unobservable in a

direct assessment of the animal. In a study by Weber et al. (2015), one-third of the weaner pigs, who

were assessed healthy by the personnel, actually did suffer from subclinical diarrhea when faecal

samples were analyzed.

An animal will always be affected to some extent by the subclinical stage of a disease, and if

the modeled parameter in a detection model reflects the true state of the animal, an alarm will be

generated. Such an alarm will be classified as a false alarm when compared to the observed gold

standard, and reduce the performance measurement of the model. Even though subclinical stages

of diseases are not sought detected in the papers included in Paper I, the possible effects of reduced

model performance are addressed (Hertem et al., 2014; Kamphuis et al., 2010a, 2011).

In Section 1.2 it was mentioned how changes in the general wellbeing of growing pigs may be

reflected in their drinking patterns (Andersen et al., 2016; Madsen et al., 2005). The same is not

described for other modeled parameters or other groups of animals, but is is not unlikely, that changes

in the general wellbeing affect the outcome of a detection system. If alarms are generated due to

changes in the general wellbeing of the animals, they too will be categorized as false alarms.
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4.1.7 Future focus

A clear distinction between reduced wellbeing and subclinical conditions may not be possible, and

such a distinction may not represent a managerial value either. It would, however, be of managerial

value to get a warning timely enough to prevent an outbreak of the condition. Both reduced wellbeing

and subclinical conditions can progress to unwanted conditions (Andersen et al., 2016; Kamphuis et

al., 2011), and therefore alarms generated for the reasons presented above, all contain information

on the livestock animals. If the alarms are categorized as false, valuable information may be lost.

Therefore, the future challenge is to include the alarms, but in a prioritized structure, or presented in

a conceivable form to the farmer. Hereby the total number of alarms communicated will be reduced,

while the value of the information is preserved.

Alternative approaches to alarm handling have been suggested or applied. Friggens et al. (2007,

2010) suggested the use of a risk index for grading alarms, Steeneveld et al. (2010b) included non-

sensor information in an NBN in order to reduce the number of false alarms, and Kamphuis et al.

(2010b) improved the model performance significantly by applying an ensemble classifier. However,

a spatial approach has not yet been investigated as an alarm reducing method, which is why this is

developed, evaluated and explored in Papers II, III, and IV.

4.2 PA P E R I I : C O R R E L AT I O N S C A N B E M O D E L E D S PAT I A L LY

In Paper II, I addressed Hypothesis I “Drinking patterns between pens within a section and secti-

ons within a herd of growing pigs are correlated, and this correlation can be modeled using model

parameters defined at different spatial levels.”

Multiple water sensors were installed in multiple pens across a finisher herd (Herd A) and a weaner

herd (Herd B) as described in Section 3.2. Simultaneous monitoring of the drinking patterns in more

pens, allowed for interactions, or correlations, between the patterns to be identified. For this a spatial

dynamic linear model was developed, and the degree of correlation was sought modeled separately

for each of the two herds.

4.2.1 Correlations in drinking patterns - an introduction

As described in Section 3.4.2, the full drinking pattern consist of four elements. The fourth ele-

ment, the underlying level, describe the amount of water consumed by the pigs in a pen over time.

Pigs drink more as they grow, which means that the underlying level increases over time as well.

Since the sections in the herd each are filled with pigs of same age and size at different times (see

Figure 3.1, Section 3.4), the underlying level is assumed to evolve identically for all pens within

a section but differently between sections. The model, which described the underlying level, was

therefore defined at section level in all model versions.
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In both Paper II and Paper III, each model version was denoted by three letters. The first letter

responds to the 24h harmonic wave (H1), the second letter responds to the 12h harmonic wave (H2),

and the third letter responds to the 8h harmonic wave (H3). The letter “H” reflects a correlation at

herd level, whereas the letters “S” and “P” reflects correlations at section and pen level respectively.

Thus, the model version, which defines a herd level correlation between all three waves, is denoted

“HHH”, and the model version defining H1 at herd level, H2 at section level, and H3 at pen level is

denoted “HSP” (see Table 3.1). Generally speaking, the more pens a wave describes, the higher the

degree of correlation. Therefore, the HHH model version expresses the highest degree of correlation,

whereas the PPP model version expresses the lowest.

4.2.2 Findings Herd A

As seen in Table 4.1, the SSS model version obtained the best fit (MSE = 13.850) of the seven

model versions in Herd A. This model version defined the full drinking pattern at section level and

hereby indicated that pigs within the same section were more similar to each other than to pigs of

different ages and sizes in other sections. Thus, the sectionalized AIAO production, which charac-

terize herds for growing pigs in Denmark, was reflected in the pigs’ drinking patterns in Herd A, as

initially expected.

Further results for Herd A (see Table 4.1) showed that model versions, which include minimum

one wave parameter at herd level (HHH, HSS, HSP), fitted data the worst. This indicated that the

drinking patterns were too different between sections in Herd A to be characterized by the same

parameter. Since all sections were placed within the same building and the same central water supply

lead to all pens, there has to be some correlation between sections in the herd as well. However, the

fits of the three model versions, which included herd level waves, indicated that this correlation was

not very strong.

Model versions which included wave parameters at pen and section level (SSP, SPP, PPP) fitted

the data better than any version with a herd level parameter, but worse than the SSS model version.

This indicated that some pen differences were apparent in the data from Herd A, but these differences

were not larger than the section specific similarities.

Since Herd A is a commercial finisher herd, and no major managerial routines were altered for

the sake of the present study, it is likely that we can find a similar correlation between pens within

sections to be found in other commercial finisher pens as well.

4.2.3 Findings Herd B

For Herd B, the fit of the model versions got poorer as the degree of correlation increased (see

Table 4.1). Thus, the best fitting model version was PPP (MSE = 1.466), whereas the worst fitting

was HHH (MSE = 1.750). This result indicated, that the drinking patterns in the individual pens, both

within a section and across the herd, differed too much to be characterized by a common parameter.

33



F I N D I N G S A N D D I S C U S S I O N

Table 4.1: MSE (mean square error) for seven model versions for Herd A and Herd B (test data). The lowest
numerical value of the MSE indicate the best model fit. The MSEs are herd-specific and can not be compared
between herds. Notations: H1 = Cyclic model of length 24, H2 = Cyclic model of length 12, H3 = Cyclic
model of length 8. H = Herd level, S = Section level, P = Pen level

Model Version MSE

H1 H2 H3 Herd A Herd B

HHH 15.687 1.750

HSS 14.535 1.727

HSP 14.612 1.712

SSS 13.850 1.621

SSP 13.976 1.559

SPP 13.946 1.556

PPP 13.924 1.466

This apparent lack of correlation structure between the drinking patterns in Herd B did not match

the initial expectations of a section level correlation structure. The correlation in the evolution of

the drinking patterns over time, is still expressed by the system variance (Wt) though, and it may

be sufficient to describe any interactions in the system. However, since Herd B is a research facility,

there are some factors, which were expected to reduce the difference between pens within a section,

and hereby increase their correlation as compared to a commercial weaner herd. These factors are

a) the pigs are more uniform, considering weight and condition, at insertion (unpublished data), b)
there are more managerial resources available, and c) the production environment, including feed

management, is highly controlled. Such an increased correlation between pens in a section was,

however, not recognized by any of the seven model versions.

Although the results from Herd B were unexpected, explanations can be found in the complexity

of the model, the estimation of the variance components, and a high degree of random noise in the

data from Herd B. These aspects all point towards an overfitting of the learning data, which will be

discussed in the following section.

4.2.4 Overfitting

If a model is so flexible that it adjusts to any irregularities, or random noise, in the data set, it is said

to be overfitting the data (Hawkins, 2004; Torgo, 2017). Since random noise by nature is random,

the noise will be different in all pens, and by adjusting to the random noise, an overfitting model will

fail to recognize a general underlying pattern in the data.

In Herd B, a high degree of random noise is present in all pens, which is expressed by drinking

activity throughout the night. In all pens, one or two weaner pigs get up at some point during

every hour to eat and drink a little, while the rest of the pen sleeps (validated by samples of video

recordings). Since a pen in Herd B contains 15 weaner pigs, such night activity by a few pigs
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constitutes a relatively large degree of random noise. It is therefore likely that the model versions with

wave parameters defined at pen level, adjust to the random noise in each pen, and fail to recognize

any correlation.

A model can be overfitting for more causes. One is, if the modeled variables are highly correlated.

Another is, if the model consists of more parameters than what is needed to describe the pattern

in the data. A third is if the estimated variance components are very high as a consequence of a

bias-variance tradeoff (Hawkins, 2004; Torgo, 2017; Witten and Frank, 2005).

As described above, the variables, or drinking patterns, are likely to be highly correlated in Herd

B. All pigs within a section are very uniform at insertion. In addition to that, pigs are inserted in

subsequent sections with one week in between. Of this follows that there is a little weight span bet-

ween the youngest and oldest pigs across the herd, which ought to support a degree of correlation in

drinking patterns at herd level as well. Correlated data, which is the first possible cause of overfitting,

is therefore present in Herd B.

The second possible cause for overfitting is excess model complexity. And the spatial dynamic

linear model described in Paper II is fairly complex. It includes three variance components (pen level,

section level, herd level) for the full observation variance-covariance matrix, Vt, and four discount

factors for the full system variance-covariance matrix, Wt (see Paper II for further description). The

observational variances depend on rather constant cause of errors included in the observed data. For

a pen, this could be a leaking water bowl, or it could be measurement inaccuracies in the water sensor.

For a section this could be a leak or a cloak in the water pipe supplying the section, and for the herd

it could be a degree of failure in the central water supply.

However, the influence of observation errors at herd level is rather insignificant in both Herd A

and Herd B (see Table 4.2), and a removal of the herd level variance in future work will reduce the

complexity of the model without information loss, whereby the risk of overfitting is reduced as well.

Although Table 4.2 also shows that the contribution of the section level variance component is very

small for Herd B, it is significantly for Herd A, and should therefore not be removed.

The third possible cause for overfitting is a bias-variance tradeoff, which is seen as an increase

in the variance estimates when the MSE is sought minimized (Torgo, 2017), as is done in Paper

II. High variance estimates do not express the true variance, but the values optimizing the MSE.

They do, however, increase the flexibility of the model and enables it to adjust to random noise, as

described for Herd B. Variance estimates as high as 176 litres2/hour are found for Herd A, whereas

the estimates for Herd B are even higher with values as high as 6474 litres2/hour (results in Paper II).

4.2.5 Conclusion Paper II

For Herd A, the results of Paper II indicated a correlation in drinking patterns between pens within

a section, as initially expected. It hereby addresses Hypothesis I, as stated in Chapter 2, and confirms

it.
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Table 4.2: Average contributions in % from observation variance components at different spatial levels to the
full observation variance. The contributions are calculated from the sum of variance estimates within a level
across the seven model versions.

Level Herd A Herd B

Herd 2.32 0.13

Section 50.16 1.25

Pen 47.52 98.62

For Herd B, the overfitting of data was likely to cause the PPP model version to obtain the best fit,

although it may not reflect the true correlation structure in the herd. Different correlation structures

were, however, reflected through other model versions. Although the model should be reduced in

complexity and run on data from a commercial weaner herd in order to clarify the degree of overfit-

ting, Hypothesis I is confirmed for Herd B as well.

4.2.6 Future focus

The better fitting model versions are not necessarily the best predicting model versions, though. In

other words, the ability of a model to detect unwanted events in specific areas of a herd, can not be

concluded on the basis of the model fit. A high fitting model may adjust too well to irregularities and

fail to recognize changes preceding unwanted events. It will therefore be a better choice to build a

detection system on a model with less flexibility. A less flexible model will tend to follow the general

pattern, be less adaptive to changes in the pattern, and therefore be more prone to detect them.

The model developed in Paper II constitutes the initial step of two in the development of a full

spatial detection system, and in Paper III the seven model versions will be applied to a Cusum control

chart, and the detection performances will be evaluated.

4.3 PA P E R S I I I A N D I V: A R E A - S P E C I F I C A L A R M S

In this section, the findings of Papers III and IV will be presented and discussed. Paper III evaluates

the detection accuracy of the seven model versions defined in Paper II with regard to their managerial

value, and discusses both an alarm-reducing and an alarm-prioritizing strategy as well. In Paper IV

a reduced number of alarms for a section is compared to the total number of individual alarms for

pens within the section. This is exemplified on a data sample from each of the two herds, Herd A

and Herd B.

In Paper III, the second working hypothesis is addressed. The hypothesis is, as stated in Chapter

2: “Changes in the drinking patterns of growing pigs are influenced by diarrhea and fouling. By

monitoring the water consumption simultaneously in multiple pens and sections, outbreaks of the

conditions can be detected in specific areas.”
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The overall finding in Paper III was, that area-specific alarms for either diarrhea or fouling could

be generated in a herd of growing pigs based on changes in their drinking patterns. The results

showed that the HHH model version, which defines the strongest degree of correlation for the full

drinking pattern, was the best suited version for detection of unwanted events in both Herd A and

Herd B. This overall finding hereby confirms Hypothesis II.

The overall finding in Paper IV was, that 6 individual pen alarms from pens within the same section

in Herd A could be reduced to 4 section alarms, whereas 42 individual pen alarms were reduced to 8

section alarms in Herd B.

4.3.1 Performance evaluation - an introduction

Each of the seven model versions, defined in Paper II, were all evaluated for their ability to generate

area-specific alarms given different lengths of time windows. In this context, “area-specific alarms”

are alarms, which can detect the occurrence of either diarrhea or fouling at any of the three spatial

levels pen level (in a specific pen), section level (in a specific section), or herd level (in any of the

pens in the herd). By nature, the pen levels describe a more specific area than section levels, which

again are more specific than the herd level.

As described in Section 1.2, time windows are often defined relative to an event when the perfor-

mance is evaluated. If a time window includes a period after the event, then the alarm may occur

after the event as well, and it will still be classified as a true alarm. Such an alarm has, however, little

managerial value, and therefore all time windows in Paper III are defined to include days before the

event and the actual day of the event as follows:

• Time window 3/0 includes three days before the event and zero days after

• Time window 2/0 includes two days before the event and zero days after

• Time window 1/0 includes one day before the event and zero days after

The lengths of the time windows were chosen in order to reflect settings that would have a value in

the everyday management of a herd of growing pigs. It was taken into consideration that longer time

windows allow for less precise timing of managerial interventions, and therefore may encourage the

manager to trust the daily visual assessments of the animals to a greater extent than the information

from the detection system.

Although the defined time windows in this study are relatively short, they will be prolonged if

subsequent events occur before the time window of a previous event has passed. This will lead to

overlap of the time windows as illustrated in Figure 1.1, Section 1.2. Prolonged time windows have

significant impact on the performance evaluation of events at the different spatial levels as will be

discussed later.

When evaluating the performance at pen level, only the events occurring in the specific pen are

used as gold standard. However, when evaluating the performance at section level, all days with
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events registered in any pen within the section are included in the gold standard. The same applies

for the evaluation of the herd level performance, which implies that all events registered at any time

in any pen in the herd constitute the gold standard.

In the present study, the combination of the longest time window (3/0) and events at herd level,

caused overlap of multiple subsequent time windows. As a consequence of that, very high detection

performances for both Herd A (AUC = 0.9358, longest time window = 20 days) and Herd B (AUC

= 0.9842, longest time window 47 days) were found. Although these performance measurements

are close to perfect, the managerial value of such long time windows is low, as is the managerial

value of alarms at herd level regardless of time window settings. Based on these findings, these two

model settings (herd level alarms and 3/0 time window) should therefore not be investigated further

in future studies.

4.3.2 Findings Herd A

In Herd A, the HHH model version, which defines correlation in the full drinking pattern between

all pens in the herd (see Table 3.1), obtained the overall highest performance of all model versions

(results in Paper III). Since the HHH model version obtained the poorest fit in Paper II (see Table

4.1), this finding indicates that the least flexible model version is better at making a clear distinction

between general drinking patterns and systematic changes preceding unwanted events in a pen, in a

section, and in the herd.

The detection performances (AUC) for the HHH model version in the three spatial levels given

all three lengths of time windows are presented in Table 4.3. The results show that the performance

measurements increase as the spatial level gets more general, and the time windows get longer. Ho-

wever, all model versions with herd level settings, and those using time window 3/0, constitute low

managerial value, as mentioned above, and will not be discussed further here.

The results in Table 4.3 also show that the detection performances are almost identical for pen

level and section level given the same length of time window for model version HHH. This indicates

that the model detects an upcoming event with the same accuracy whether the alarm is generated for

a specific pen or for a specific section in the herd. The performance is significantly higher at both

pen and section level with the application of the 2/0 time window than with the 1/0 time window.

This indicates that an alarm generated within a 2/0 time window is more prone to be true than an

alarm generated within a 1/0 time window. Both time windows would likely be of managerial value,

though, and the better choice for an implementation of the detection system would depend on the

preferences of the manager of the individual herd.

Thus, alarms at pen level would allow the manager to target preventive interventions in specific

pens whereby a spreading of the condition throughout the section may be avoided. Alarms at section

level may, however, be generated on the basis of either large changes in the drinking pattern of one

pen, or by simultaneous changes in multiple pens within the section. If a section-specific alarm
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Table 4.3: AUC (area under curve) for the HHH model version (all three harmonic waves defined at herd level)
for both Herd A (commercial finishers) and Herd B (research centre weaners) at three spatial levels given three
lengths of time windows. Herd level = any pen in the herd, Section level = a specific section in the herd, and
Pen level = a specific pen in the herd. 3/0 time window covers tree days before the event and zero days after
the event, 2/0 time window covers two days before the event and zero days after the event, 1/0 time window
covers one day before the event and zero days after the event.

Area-specific Herd A Herd B

level 3/0 2/0 1/0 3/0 2/0 1/0

Herd 0.9358 0.9194 0.8013 0.9842 0.9734 0.8878

Section 0.8882 0.8708 0.8144 0.8715 0.8576 0.7705

Pen 0.8878 0.8701 0.8164 0.7671 0.7348 0.6871

is caused by multiple simultaneous pen-specific alarms, then one section-specific alarm would be

communicated instead of multiple pen-specific alarms.

4.3.3 Findings Herd B

In Herd B, no single model version provided the highest AUC across all spatial levels (results

in Paper III). However, the HHH model version obtained the highest detection performance at herd

and section levels given all time window settings, which coincides with the findings in Herd A. The

highest detection performance at pen level was obtained by the SPP model version when the 3/0

and 2/0 time windows were applied, and by the PPP model version when the 1/0 time window was

applied.

Both the SPP model version and the PPP model version define almost individual drinking patterns

in each pen of the herd (see Table 3.1), and these results may be influenced by the night activity in

the pens, which were discussed in Section 4.2.4. The performances are generally poor for all model

versions detecting events at pen level in Herd B, regardless of the length of the time window, as

shown for the HHH model version in Table 4.3. Pen level settings should therefore be tested on data

from another weaner herd in order to clarify whether the results are specific for Herd B, having only

15 pigs per pen, or if they apply to herds with more pigs per pen as well.

The finding of the HHH model version obtaining the highest detection performance in general in

Herd B, coincides with the findings for Herd A. The reasonings for the results coincide as well, and

will not be repeated here.

Based on detection performance and managerial value, only one combination of model settings

showed satisfying abilities for detecting unwanted events in Herd B. This combination is the HHH

model version generating section level alarms within the 2/0 time window (AUC = 0.8576). As seen

in Table 4.3, the performance of this combination is a little lower than for the same settings in Herd A

(AUC = 0.8708). They are, however fairly high, and both section level alarms and a 2/0 time window

constitute settings with high managerial value.
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As discussed in Section 4.1.5, performance is measured by comparisons of alarms to a gold stan-

dard, which seldom reflect the true state of the animals. In the presented study, water consumption

is monitored as an indirect indicator of health and welfare in growing pigs, and the results found in

Paper III clearly show that the water consumption contains a high degree of information on the mo-

nitored animals. The information is, however, more likely to reflect the general health and wellbeing

of the animals, rather than to detect a specific condition.

On that consideration, the interpretation of the area-specific alarms should be that the alarms point

out specific focus areas in the herd, not that they predict specific events. Area-specific alarms allow

the manager to include knowledge of the pigs in that area, including high risk periods as mentioned

in Section 1.2. Hereby a more detailed and thorough focus in the pointed area can be applied, both

regarding the pigs, and factors affecting the pigs.

4.3.4 Alarm handling strategies

The managerial value of an alarm from a livestock detection system will always be evaluated as

a trade-off between the added information on the animals and the extra time spend on attending

the alarm. An acceptance of lower detection performances, than the minimum demands defined

by Hogeveen et al. (2010), has been suggested in Section 4.1.4. Lower model performances will,

however, lead to more alarms being generated, and they may offer a varying degree of information

on the animals. In order to prioritize the information, or reduce the generated alarms, an alarm

handling strategy can be applied.

Alarms are generated by a two-sided tabular Cusum control chart in Paper III. The output of the

dynamic linear model is monitored by the Cusum chart, which generate alarms for any specific pen,

any specific section, or for the herd in general. This spatial monitoring allows for an alarm prioritizing

and an alarm reducing strategy, which are both founded in simultaneous monitoring of forecast errors

in pens and sections. The difference between a prioritization and a reduction of alarms is, that the

former ranks certain alarms as more important than other, whereas the latter merely reduces the

number of alarms communicated to the manager. In the following, both strategies will be presented.

Alarm prioritizing strategy

The alarm prioritizing strategy is based on the occurrence of alarms in a pen and the corresponding

section at the exact same time, t, as illustrated in Figure 4.1. Section level alarms are either caused

by a very large deviation in the drinking pattern of a single pen within the section, or by several

relatively smaller simultaneous alarms in more pens within the section. Very large deviations in

a single pen may be caused by a sudden malfunction in a drinking bowl or a drinking nipple, but

deviations may also be caused by a very abrupt changes in the drinking activity in the pen. A number

of relatively smaller simultaneous alarms, on the other hand, indicate that the health or wellbeing

of a larger number of pigs in a section has changed at the same time. A pen-specific alarm, which

has instant impact at section level, is likely to contain more information on the animals than a pen-
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Figure 4.1: Example of a Cusum from one pen (top) and the corresponding section (bottom) with simultaneous
alarms. The two red lines mark the upper and lower thresholds. If the threshold is reached or exceeded by the
Cusum, an alarm is generated. Alarms marked with an X occur at the exact same hour in the pen as in the
section (Figure from Paper III).

specific alarm, which only occur at pen level. Therefore the alarm prioritizing strategy implies that

alarms, which occur at the same time at pen level and section level, should be prioritized in the daily

management.

Alarm reducing strategy

The alarm reducing strategy is based on the merging of more simultaneous pen-specific alarms

into one alarm communicated for the section. Alarms occurring on the same day in multiple pens

within the same section, can be merged and communicated as one alarm for the section instead of

multiple individual pen-specific alarms. Fewer alarms pointing towards a section may constitute

a higher managerial value than a higher number of pen specific alarms. They may, however, also

devaluate pen-specific information for the sake of communicating fewer alarm. The preferences in

this trade-off will always depend on the animal health status, managerial resources and preferences

in the individual herd.
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The section alarms generated with this alarm reducing strategy differs from those generated by a

section-specific Cusum chart. The alarm reducing strategy merges alarms generated separately on

pen-specific vectors of forecast errors, whereas the section-specific Cusum generates alarms based

on added forecast error vectors from all pens within the section, as described in Section 3.4.5.

Section-specific alarms may provide sufficient information

In Paper IV, the same Cusum settings were applied to one week’s data from all pens within a

section in Herd A and in Herd B. Subsequently the number of alarms per pen were counted, and the

sum of pen-specific alarms was compared to the number of section-specific alarms for the associated

section. For Herd A, two pen-specific Cusum charts generated a total of 6 individual alarms for the

week and the section-specific Cusum yielded 4 section alarms. In Herd B, one pen was empty, and

therefore three pen-specific Cusum charts generated a total of 42 pen alarms as compared to 8 section

alarms generated by the section-specific Cusum chart (results in Paper IV).

Figure 4.2: Example of a Cusum for one week in a section of Herd A and a section of Herd B. The two
horizontal lines mark the thresholds for the upper CUSUM (grey line) or the lower CUSUM (black line). Four
events (marked by x on the threshold lines) are registered in Herd A and eight in Herd B. The tabular CUSUM
detects three events in Herd A, and eight in Herd B. TP = True Positive, FN = False Negative. The gap around
day 5 in the plot is caused by sensor outage (Figure from Paper IV).
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4.3 PA P E R S I I I A N D I V: A R E A - S P E C I F I C A L A R M S

Figure 4.2 shows section-specific events and section-specific Cusum charts for the tested week for

Herd A and for Herd B. The Cusum charts illustrate remarkably coinciding alarms and events in both

herds, which indicate, that section-specific alarms may contain sufficient information on the state of

the pigs they represent. This can imply, that the extra information contained in pen-specific alarms

is of less relevance than the information in section-specific alarms. The high number of pen-specific

alarms in Herd B may reflect the night activity cause alarms to be generated. Since the night activity

occurs at different times in each pen, the forecast errors from the pens may even out each other as the

pen-specific vectors of forecast errors are added into one vector of section-specific forecast errors.

Although the findings are made on data from the study, they only explore data from one week in

one section of each herd. Furthermore no time windows were applied in the example, which would

have reduced the number of pen-specific alarms for the comparison.

4.3.5 Conclusion Papers III and IV

In Paper III, each of the seven model versions for Herd A and for Herd B are evaluated for their

ability to detect outbreaks of either diarrhea or fouling (unwanted events) based on changes in pigs’

drinking patterns, at three spatial levels. The findings show that it is possible to generate such area-

specific alarms with high predictive accuracies and satisfyingly short time windows. Hereby the

findings confirm Hypothesis II.

The HHH model version was found to be the overall better performing model version, which may

be due to a higher rigidity in the model parameters, which allow it to register changes in the observed

pattern instead of adjusting to them. The 2/0 time window was found to be the better of three in both

herds, whereas the shorter, 1/0 time window resulted in performances equal to the 2/0 time window

in Herd A, but not in Herd B.

The generating of area-specific alarms offers multiple strategies for handling and communication

of alarms to the manager. An alarm prioritizing and an alarm reducing strategy were suggested,

though further research is needed to develop and evaluate the managerial value of the two.
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a b s t r a c t

The objective of this review is to present, evaluate and discuss methods for reducing false alarms in
sensor-based detection models developed for livestock production as described in the scientific literature.
Papers included in this review are all peer-reviewed and present sensor-based detection models devel-
oped for modern livestock production with the purpose of optimizing animal health or managerial rou-
tines. The papers must present a performance for the model, but no criteria were specified for animal
species or the condition sought to be detected. 34 papers published during the last 20 years (1995–
2015) are presented in three groups according to their level of prioritization: ‘‘Sheer detection models”
based on single-standing methods with or without inclusion of non-sensor-based information (19
papers), ‘‘Improved detection models” where the performance of the described models are sought to
be improved through the combination of different methods (12 papers) and ‘‘Prioritizing models” where
the models include a method of ranking or prioritizing alerts in order to reduce the number of false
alarms (3 papers). Of the three methods that rank or prioritize alerts; Fuzzy Logic, Naive Bayesian
Network (NBN) and Hidden phase-type Markov model, the NBN shows the greatest potential for future
reduction of alerts from sensor-based detection models in livestock production. The included detection
models are evaluated on three criteria; performance, time-window and similarity to determine whether
they are suitable for implementation in modern livestock production herds. No model fulfills all three cri-
teria and only three models meet the performance criterion. Reasons for this could be that both sensor
technology and methods for developing the detection models have evolved over time. However, model
performance is almost exclusively presented by the binary epidemiological terms Sensitivity (Se) and
Specificity (Sp). It is suggested that future research focus on alternative approaches for the output of
detection models, such as the prior probability or the risk of a condition occurring. Automatic monitoring
and early warning systems offer an opportunity to observe certain aspects of animal health, welfare, and
productivity more closely than traditionally accomplished through human observation, and the opportu-
nities for improving animal welfare should continue to be a driving force throughout the field of precision
livestock farming.
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1. Introduction

Livestock production has moved from extensive production to
intensive production over the last few decades (Sorensen et al.,
2010). Society’s demand for high-quality animal products is con-
tinuously increasing while the number of farmers producing the
products is decreasing (Kashiha et al., 2013; Berckmans, 2014).
The natural consequence of this situation is a centralization of
the production units with increasing numbers of animals at each
site (Sorensen et al., 2010; Kashiha et al., 2013).

This centralization, together with the 2008 financial crisis, has
changed the conditions of the whole managerial situation leaving
the farmer with fewer personnel and less time for each of the daily
management tasks creating an increasing market for technical
solutions. Technology in livestock production includes automatic
monitoring and management information systems (MIS), which
gathers available information, and decision support systems
(DSS), which analyses the available information, in order to detect
and control the health and welfare status of the animals at any
given time, by providing early warnings of potential problems
(Sorensen et al., 2010; Kashiha et al., 2013; Berckmans, 2014).

Giving the right alarm at the right time is a crucial property of
an early warning system, and too many false alarms represent a
recurring challenge throughout the field of building models for
early warning systems. The false alarms are time-consuming and
diminish the trust in the system which in livestock production
might lead to the consequences of farmer or personnel either
ignoring the alarms from time to time or making personal prioriti-
zation of the alarms based on experience, time expenditure, gut
feeling and work enthusiasm. In such cases, both animal welfare
and gross margin are at risk of being compromised and in order
to optimize the benefit of an early warning system for the farmer,
a prioritization of alarms must be made ensuring communication
of only the relevant alarms to the farmer.

Prioritization of alarms can be done at two levels; either by a
reduction in the number of false alarms produced by the early

warning system, or by a prioritization of alarms. A reduction in
the number of alarms can be done through a satisfying level of per-
formance of the early warning system, while a prioritization of
alarms seek to rank true positive (TP) and false positive (FP)
alarms. Ranking can be done according to severity of the condition
in focus, for example lameness, from those that need immediate
attention to those that can be attended within a given period of
time. The ranking can be made according to different overall moti-
vations such as animal welfare, costs or production efficiency.

The aim of this review is to evaluate methods for prioritizing
sensor-based alarms in livestock production in order to reduce
the number of false alarms. The evaluation will be done through
a presentation of the different methods described in the scientific
literature. Then the advantages and disadvantages of the methods,
for their realistic implementation in commercial livestock produc-
tion, are discussed.

The studies included in this review are of such a variety in terms
of study-designs, conditions in focus, and definitions of case (a con-
dition, which should be detected by the model) vs non-case (a con-
dition, which should not be detected by the model), that a true
comparison of methods and results are not possible. Therefore, this
review does not focus on one species, one condition, or on one type
of sensor. Instead, it strives to elucidate the general development
of sensor-based detection models with a focus on the prioritizing
methods. The challenging task of expressing biological variation
through statistical methods at an implementable level of accuracy
is hereby sought illustrated.

2. Conceptual framework

2.1. Sensor-based detection systems

The idea of a sensor-based detection system is to automatically
detect a condition based on observations from one or more sensors
installed in the pen or the barn. Examples of conditions include
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oestrus, parturition, diseases or impaired productivity. In most
cases, the outcome is binary in the sense that the condition is
either present or not present at a certain time. The following
description assumes a binary outcome, although detection systems
with categorical outcomes are also reported (e.g. Cornou and
Lundbye-Christensen, 2010; Viazzi et al., 2013).

The basic principles behind a detection system can be described
as follows: Assume that a sensor system observes the value of a
variable xt at time t ¼ 1; . . . ; T. The variable can either be univariate
(i.e. a scalar) or multivariate (i.e. a vector). We shall denote as Dt

the set of all observations until time t, i.e. Dt ¼ fx1; . . . ; xtg.
The detection system will typically provide some kind of

summary statistic st ¼ f ðDtÞ based on the available information
until now. The function f can be very simple, for example
f ðDtÞ ¼ xt (returning the most recent observation) or
f ðDtÞ ¼ ðxt�nþ1 þ � � � þ xtÞ=n (returning the average value of the n
most recent observations). However, the f function can also be
derived through more sophisticated advanced methods like Kal-
man filtering, neural networks or other computer intensive
methods.

The detection is (either literally or conceptually) based on the
comparison of the summary statistic st to a predefined threshold
s. An alert is given if the summary statistic st exceeds the thresh-
old. Thus, at time t, we will either have the event Aþ

t ðsÞ : st > s
‘‘Alert at time t” or the event A�

t ðsÞ : st 6 s ‘‘No alert at time t”.
As a very simple example of this framework, assume that we

wish to detect a certain disease in an animal. The disease is known
to cause fever, so a temperature sensor is attached to the animal.
The temperature is logged every hour and transmitted to a com-
puter. In this case x1; . . . ; xt are simply hourly temperature mea-
surements. A simple summary statistic would be the current
temperature implying that st ¼ f ðDtÞ ¼ xt , but also the average over
the last few hours might be relevant.

In order to finish the detection system we need to define a
threshold, s. Assuming that the normal temperature of the animal
in question is s0, it would be natural to choose a higher threshold
s ¼ s0 þ d where d > 0. It is not straight forward to choose the
threshold. It is obvious that if d is small, many alerts will be given.
It has the advantage, that most of the disease cases will be found
(true positives), but on the other hand, we will also have cases
where the temperature is above the threshold for other reasons
(oestrus, measurement errors or other conditions). In other words,
a low threshold will lead to many false positive cases. If, on the
other hand, a high threshold is chosen, the number of false positive
cases will decrease but on the cost of sometimes not detecting true
cases (for instance if they are less severe). Thus, we are at risk of
having many false negative cases.

This illustrates the general problem in detection methods,
namely that there is a built-in conflict between few false positive
and few false negative cases. Methods for measuring the perfor-
mance of detection systems are therefore needed. The traditional
approach has been to characterize a detection method by two con-
ditional probabilities known as the sensitivity and the specificity.
For given threshold, s, the sensitivity, ses, and the specificity, sps,
are defined as follows

ses ¼ PðAþ
t ðsÞjEþ

t Þ ð1Þ

sps ¼ PðA�
t ðsÞjE�

t Þ; ð2Þ

where Eþ
t and E�

t are the true presence and absence, respectively, of
the condition we try to detect.

It should be noticed that all performance indicators introduced
so far are specific for the chosen threshold. Since, in many cases,
the threshold can be chosen so that the sensitivity becomes 1
(or close to one) it will be at the cost of a lower specificity. It is,

therefore, necessary always to look at both primary performance
indicators simultaneously.

In order to estimate an over-all performance indicator (inde-
pendently of a threshold), the Receiver Operating Characteristic
Curve, roc, is often used. The curve is defined by the following
parametrization:

roc ¼ fðfprðsÞ; seðsÞÞ : s 2 Rg; ð3Þ
where fprðsÞ ¼ 1� spðsÞ. The over-all performance indicator is the
Area Under Curve, determined as

auc ¼
Z �1

1
seðsÞfpr0ðsÞds: ð4Þ

A perfect system will have an auc ¼ 1 so, in general, values close to
1 are preferred.

A study by Aparna et al. (2014) has chosen a completely differ-
ent approach, where the summary statistic is defined as the
expected time to next condition. Thus, if the random variable H
is the time to next condition, then

st ¼ f ðDtÞ ¼ EðHjDtÞ: ð5Þ
Hence, there is no comparison with a chosen threshold. This seems
to be a natural approach in cases where the condition will eventu-
ally happen (e.g. oestrus or parturition) or will happen with high
probability.

An overview of the symbols, concepts and definitions is given in
Table 1.

2.2. Estimating the performance of detection methods

Even though Eqs. (1) and (2) define the most common perfor-
mance indicators it is, in most cases, not possible to calculate them
analytically. Instead, they must be estimated from data. A neces-
sary condition is that a gold standard allowing us to know the true

Table 1
Conceptual framework and performance assessment of sensor based detection
systems.

Symbol Description Formula/Conditiona

xt Observation at time t ¼ 1; . . . ; T From sensors
Dt Set of all observations until now Dt ¼ fx1; . . . ; xtg
st Summary statistic at time t st ¼ f ðDtÞ
s Threshold at time t Decided

Eþt Condition (true) at time t Gold standard
E�t No condition at time t Gold standard
Aþ
t ðsÞ Alert at time t with threshold s st > s

A�
t ðsÞ No alert at time t with threshold s st 6 s

seðsÞ True sensitivity with threshold s seðsÞ ¼ PðAþ
t ðsÞjEþt Þ

spðsÞ True specificity with threshold s spðsÞ ¼ PðA�
t ðsÞjE�t Þ

erðsÞ True error rate with threshold s erðsÞ ¼ PðE�t jAþ
t ðsÞÞ

fprðsÞ False positive rate with threshold s fprðsÞ ¼ 1� spðsÞ
roc Receiver Operating Curve roc ¼ fðfprðsÞ; seðsÞÞ : s 2 Rg
auc Area Under Curve auc ¼ R�1

1 seðsÞfrp0ðsÞds
TPs Number of true positive cases TPs ¼ P

t IðAþ
t ðsÞ \ Eþt Þ

FPs Number of false positive cases FPs ¼ P
t IðAþ

t ðsÞ \ E�t Þ
TNs Number of true negative cases TNs ¼ P

t IðA�
t ðsÞ \ Eþt Þ

FPs Number of false negative cases FPs ¼ P
t IðA�

t ðsÞ \ E�t Þ
Ses Estimated sensitivity Ses ¼ TPs=ðTPs þ FNsÞ
Sps Estimated specificity Sps ¼ TNs=ðTNs þ FPsÞ
SRs Estimated success rate SRs ¼ TPs=ðTPs þ FPsÞ
ERs Estimated error rate ERs ¼ 1� SRs
FPRs Estimated false positive rate FPRs ¼ 1� Sps
FARs Estimated false alert rate FARs = FPs=T

ROC Receiver Operating Curveb ROC ¼ fðFPRs; SesÞ : s 2 Sg
AUC Area Under Curve Numerical integration

a IðÞ is the indicator function.
b S is a set of tested values of s.
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state of the system (whether the condition is present or absent) is
available. The gold standard is seen as a perfect test enabling us to
observe Eþ

t and E�
t directly. In practise, the gold standard often con-

sists of human observations which is problematic because of the
natural subjectivity in these observations, but often it is the only
option. In the following description this problem is ignored. It is
simply assumed that each time step can be classified as either Eþ

t

or E�
t .
Given a detection system as described in the previous section, a

time series of observations x1; . . . ; xT and a gold standard, the
detection system can be run with a given threshold, s, for
t ¼ 1; . . . ; T . This will result in a time series of events drawn from
the following four different combinations of detection result
(Aþ

t ðsÞ or A�
t ðsÞ) and true state (Eþ

t or E�
t ):

True positive: Aþ
t ðsÞ \ Eþ

t

False positive: Aþ
t ðsÞ \ E�

t

True negative: A�
t ðsÞ \ E�

t

False negative: A�
t ðsÞ \ Eþ

t .

The next step in measuring the performance is to count the
number of occurrences of each of the four event combinations.
Denoting the numbers as TPs, FPs, TNs and FNs, respectively, the
estimated sensitivity, Ses, and specificity, Sps, are calculated as

Ses ¼ TPs
TPs þ FNs

ð6Þ

Sps ¼
TNs

TNs þ FPs
: ð7Þ

Other similar performance indicators like success rate (SR), error rate
(ER), false positive rate (FPR) and false alert rate (FAR) are also occa-
sionally estimated (see Table 1 for an overview).

The estimated ROC curve is constructed by choosing a large set
S ¼ fs1; s2; . . . ; sNg of possible threshold values (where
s1 < s2 < � � � < sN). For each si 2 S, the sensitivity, SEsi , and false
positive rate FPRsi are estimated and plotted as (FPRsi , SEsi ) for
i 2 f1;2; . . . ;Ng. Finally, the AUC is determined by numerical
integration.

2.3. The curse of false positives

In traditional diagnostic tests, focus is often on the level of sen-
sitivity, because the test usually is carried out only once. With only
one test result available it is therefore very important that as many
true disease cases as possible are detected. In sensor based detec-
tion systems, on the contrary, tests are carried out continuously (or
at least regularly). Accordingly, there will be many opportunities to
detect a condition so the demands on the sensitivity can be
relaxed. Therefore, the true vulnerable point of sensor-based
detection systems is the specificity.

Monitoring sensor data from several different data sources has a
built-in risk of generating too many false alarms. This can also be
the case when only one time series is monitored. The number of
false positives may be a problem, even in systems where the speci-
ficity of the detection method is very high. This was for instance a
problem with an automatic heat detection method (Ostersen et al.,
2010) for sows returning to oestrus that had a specificity around
99%. Nevertheless, the error rate (as defined in Table 1 the ratio
of false positive out of all alarms) exceeded 95%. This is a natural
consequence of sows returning to oestrus being a relatively rare
condition.

The phenomenon is easily illustrated using the notation of
Table 1. Assume that the condition being detected occurs with
probability p at an arbitrary time t (i.e. the prevalence is p). Thus,

PðEþ
t Þ ¼ p. The error rate is the conditional probability

PðE�
t jAþ

t ðsÞÞ. According to Bayes’ Theorem, we have

erðsÞ ¼ PðE�
t jAþ

t ðsÞÞ

¼ PðAþ
t ðsÞjE�

t ÞPðE�
t Þ

PðAþ
t ðsÞjE�

t ÞPðE�
t Þ þ PðAþ

t ðsÞjEþ
t ÞPðEþ

t Þ
¼ ð1� spðsÞÞð1� pÞ

ð1� spðsÞÞð1� pÞ þ seðsÞp : ð8Þ

Fig. 1 illustrates the error rate as a function of prevalence for
three values of specificity and with a sensitivity of 0.8. As it is seen
in the figure, even a specificity of 0.99 and a prevalence of 0.01
leads to an error rate above 0.5. In other words, more than half
of the alarms will be false positive. If only a specificity of 0.9 is
assumed, the error rate will be more than 0.9 with a prevalence
of 0.01. When time series from different data sources are moni-
tored simultaneously there is an even higher risk of false alarms.

Only some of the raw alarms will, therefore, require interven-
tion, and it is therefore important to have methods for prioritizing
alarms in order to reduce the number of false alarms.

3. Criteria for implementation

According to Hogeveen et al. (2010) three criteria must be ful-
filled for a detection model to be implemented in commercial live-
stock production. These are (A) a high performance in terms of
sensitivity (Se) and specificity (Sp), (B) a time window correspond-
ing to the necessary response time for the specific condition, and
(C) a high degree of similarity between the study design and the
real everyday conditions in commercial farms. The level of value
created by the warning system, relative to the investments needed
by the farmer for sensors or equipment, could be added as fourth
criteria - but first and foremost models fulfilling the three basic cri-
teria must be developed. Throughout this review, the performance
criteria is generally given the highest influence when considering
the implementability of a model. If the performance is too poor,
neither time window nor similarity will be considered further.
Should the performance level fulfill the minimum demands (as
described in Sections 3.1 and 3.3), the lengths of time windows
and the criteria of similarity will be considered according to
relevance in the given article.

3.1. Performance considerations

The nature of the condition to be detected must be taken into
consideration when defining the level of satisfying performance.
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Fig. 1. Error rates as a function of prevalence for three levels of specificity. In all
cases the sensitivity is 0.8.
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So must the costs and consequences of false alarms in monetary,
welfare and production efficiency terms. The performance needed
for detecting conditions like oestrus or clinical mastitis (CM), which
both need immediate response, is fairly high (Rasmussen, 2002;
Ostersen et al., 2010)whereas the demands for detecting conditions
like lameness, or impaired daily gain, are considered to be lower,
hence reflecting a less urgent condition in some aspects (van
Hertem et al., 2013). It is discussed by Pastell and Kujala (2007) if
an early warning system, which detects lameness, is rather meant
to alert the farmer towards animals that need more focus, than
towards animals needing immediate treatment. It is hereby implied
that a few false positive alarms have smaller consequences in the
detection of lameness than in the detection of for instance CM.

As mentioned in Section 2.3, the prevalence of the given condi-
tion highly influences the requirements to the performance. A high
Se is desirable when identifying a condition with high prevalence,
while a high Sp is necessary when a condition with low prevalence
- like CM or oestrus - is sought to be detected (Rasmussen, 2002).

Although the epidemiological terms of Se and Sp are tradition-
ally used for expressing the performance of a detection model,
Friggens et al. (2007) state that Se and Sp are of limited value when
it comes to monitoring continuous conditions, time series, and pro-
gressive scales of conditions. These limitations and the risk-based
alternatives to Se and Sp will be discussed in Section 5.3.

Some authors (Firk et al., 2002; Sherlock et al., 2008; Claycomb
et al., 2009) have preferred to describe the performance of detec-
tion models by SR, ER (Firk et al., 2002), FAR (Sherlock et al.,
2008) or FPR (Viazzi et al., 2013). SR is defined as the proportion
of true alarms out of all alarms (cf. Table 1) and provides as such
an easily interpretable expression of how often the model is right
when giving an alarm. Likewise, the ER is the proportion of false
positive out of all given alarms. Thus, both SR and ER relate to
the number of given alarms, but do not give any information on
whether the detection model identifies all cases or has an accept-
able level of false negative observations.

FAR, on the other hand, is defined as the proportion of false pos-
itive out of the total number of observations. This indicator is used
by Hogeveen et al. (2010) and Viazzi et al. (2013). Sherlock et al.
(2008) suggest that FAR is expressed as the proportion of false pos-
itive out of a given, predefined number of observations - for
instance 1000 milkings when detecting CM. Communicating to
the end user of the alarm system, how many times out of 1000
milkings one must expect a false positive alarm, is easily done,
and this interpretation is used by Kamphuis et al. (2008b) and
Claycomb et al. (2009).

3.2. The missing gold standard

Throughout the literature, the definitions of case vs non-case
are individually set for each study dependent on the study design.
In defining a case of CM such different definitions as ‘‘presence of
clinical signs like clots in the milk or swollen quarters” (de Mol
et al., 1997; de Mol et al., 1999), ‘‘Somatic Cell Count (SCC) above

100,000 cells/ml or treatment performed” (Cavero et al., 2007)
and ‘‘one or more alerts given in a defined period around the
recorded date of an observed case” (de Mol and Ouweltjes, 2001)
illustrate that there is no reference to a generally accepted defini-
tion for automated detection of CM, since none currently exists.
Mein and Rasmussen (2008) suggest a less stringent definition of
a TP case (CM detection) than the one defined in the International
Standard (ISO 20966, 2007 in Mein and Rasmussen, 2008, Annex
C). This is done as an attempt to agree on a general definition that
both maintains the robustness of the gold standard, is practically
assessable, and is strengthening the statistics for calculation of
the performance of a detection model. The suggestion has not led
to a consensus on the matter.

Visual scoring the degree of lameness on a lameness score scale
(LS) is widely used as a detection tool. These scorings are often
considered the gold standard, although it is a highly subjective
method, where the reliability of the scoring result is positively cor-
related with the experience of the observer (Tello et al., 2011).
More than 20 different types of lameness score scales, both dis-
crete and continuous, exist (Tello et al., 2011). Often scorings on
a four- or five-point scale are reduced to a three-point trait
(Garcia et al., 2014) or even to a binary (Alsaaod et al., 2012), which
illustrates the difficulties of ranking lameness in detailed degrees
using this method.

Since the terms FP, FN, TP and TN are based on the ability of the
detection models to recognize a case or a non-case, it can be argued
that with no consensus in the case/non-case definitions, a direct
comparison of performance measures is like comparing apples to
oranges. This review, however, illustrates the difficulties in obtain-
ing implementable results regardless of the choices of species, con-
ditions and underlying definitions. In Tables 3–5, all inputs are
reported with the same terminology as is used in the respective
publication when listing methods, variables and performances.

3.3. Performance - minimum requirements

For detection of CM, two minimum requirements for sensitivity
are defined in the literature whereas there is only one defined min-
imum requirement for specificity. In the International Standard
(ISO 20966, 2007 in Mein and Rasmussen, 2008, Annex C) a target
value for sensitivity is suggested to be 70%, and the target speci-
ficity to be above 99%, before a cow is registered on a mastitis
attention list. Rasmussen (2002), on the other hand, defines the
minimum requirements for sensitivity as 80% and 99% for the
specificity, as it is done in Annex C. Since the main reason for build-
ing sensor-based detection models is to provide a foundation for
better decision support than what human experts can give
(Quimby et al., 2001; Kristensen et al., 2010), and since the highest
obtained accuracy by human observation is found to be 80%
(Rasmussen, 2005), the higher of the two minimum demands to
sensitivity is well supported. There is no consensus in the choice
of minimum requirement to a threshold though, and both the def-
initions by Rasmussen (2002) (Hogeveen et al., 2010; Kamphuis
et al., 2010b; Huybrechts et al., 2014) and those of Annex C
(Kramer et al., 2009; Steeneveld et al., 2010a; Miekley et al.,
2012) are used in publications on CM detection.

No standard requirements for performance in lameness detec-
tion - or detection of the onset of farrowing - are found in the lit-
erature. The performance requirements defined for CM detection
will therefore be generally applied when discussing these models.

Some studies define diseases in disease blocks defined as unin-
terrupted sequence of ‘‘days in disease” in association with a detec-
tion of the condition (Miekley et al., 2013a). The performance is
then expressed in block specificity and block sensitivity (Kramer
et al., 2009; Cavero et al., 2007; Miekley et al., 2012; Miekley
et al., 2013a). Disease blocks can be defined similar to time win-

Table 2
Distribution of conditions covered by presented detection models. Detection of CM
and lameness have had the highest focus overall but also detection of oestrus is well
covered. Other diseases, parturition, activity types and weight estimation are all
sparsely covered. Some papers cover multiple conditions.

Condition Animal category Number of papers

Clinical Mastitis (CM) Cow 17
Lameness Cow and sow 14
Oestrus Cow and sow 9
Other diseases Cow and sow 5
Parturition Sow 2
Activity types Sow 1
Weight estimation Weaned pigs 1
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A detection model must be validated externally to prove its
accuracy under conditions other than the ones it is created under.
A high degree of accuracy is reflected in high sensitivity, specificity
and reproducibility (Liu et al., 2009).

When evaluating models with promising performances, it is
highly relevant to include the validation method to get a more ful-
filling picture of the potential for implementation. Financial limita-
tions or different types of deadlines can be reasons for designing
the study validation in a way that does not meet the similarity cri-
teria - and it might be of greater importance to build a model first,
and then validate it under conditions less challenging than in herds
representative for the average production form in the given area of
interest.

The strongest validation is on data, which is completely inde-
pendent from the data set used for training and learning the model,
as for instance data coming from another herd. If it is not possible
to obtain suitable data from an independent herd, and if the data
set is large enough, validation can be done by dividing the original
data set into test data, learning data and validation data (Witten
and Frank, 2005). Often the data set is too small for such a division,
and other methods must be considered. A commonly accepted val-
idation method is a 10-fold cross validation as used by Viazzi et al.
(2013). With this method, the data set is randomly divided into ten
subgroups, one subgroup is then retained as validation data, and
the model is trained on the remaining nine subgroups. The valida-
tion is strongest with this method, when the process is repeated
ten times, each time with a new subgroup used for validation data,
although this is not always done (Witten and Frank, 2005).

Another validation method, which is used by Liu et al. (2009), is
‘‘leave-one-out” cross validation. This method is to some extend
similar to the 10-fold cross validation, only it is n-fold, where n
is the number of observations/animals in the data set. The valida-
tion is performed n times, with each observation left out in turn,
and the rest of the data set used as training data (Witten and
Frank, 2005). Both cross-validation methods mentioned above
are relatively narrow in an implementation aspect due to the high
degree of dependency between training and validation data.

Basing a model on data from a few animals (Cornou and
Lundbye-Christensen, 2010, 2011; Aparna et al., 2014), animals
from a single herd (Bressers et al., 1995; Ostersen et al., 2010;
Viazzi et al., 2013; van Hertem et al., 2013, 2014; Garcia et al.,
2014) or from herds where the managerial status differs from the
average commercial herd, as might be the case in a research herd
(de Mol et al., 1997, 2013; de Mol and Ouweltjes, 2001; Cavero
et al., 2006, 2007; Pastell and Kujala, 2007; Kamphuis et al.,
2008b; Kramer et al., 2009; Steeneveld et al., 2010a; Maertens

et al., 2011; Miekley et al., 2012, 2013a,b; Kashiha et al., 2014) can
have a high impact on the similarity between the study population
and commercial herds. This is either because the biological variety
of the whole herd is poorly represented in the small study popula-
tion, or because the routines are adjusted according to demands of
the study design. In the case of research herds, the available
resources might differ from what is possible in commercial herds.

The similarity of a model is also highly affected in studies where
data is collected in herds with extraordinary high/low prevalence
of the condition of interest compared to prevalence in average
commercial herds (Miekley et al., 2013a; van Hertem et al., 2013,
2014). And the same is true for studies where animals from the
same herd are divided into subgroups in order to define learning
data and test data (Kramer et al., 2009; Cornou and Lundbye-
Christensen, 2010) since this approach ignores any herd-specific
correlation, such as genetics or managemental factors.

An obvious reason for not validating the model under field con-
ditions, even though it strengthens the model, is that it can be very
time consuming (de Mol et al., 2001; Nielsen et al., 2005). This is
often the reason for cross validating on a subgroup of the study
population (van Hertem et al., 2014; Viazzi et al., 2013) or using
the same data for training and validating the model (Aparna
et al., 2014; de Mol and Woldt, 2001; Liu et al., 2009).

The definition of case/non-case can - as previously mentioned -
be very individual in some studies (de Mol et al., 1997, 1999;
Cavero et al., 2006; Miekley et al., 2012; Kamphuis et al., 2013;
Garcia et al., 2014) whereas other studies use definitions and rou-
tines that are already used by the personnel in the farm where the
data is collected (Maatje et al., 1997; de Mol and Ouweltjes, 2001;
Kamphuis et al., 2010a,b; Miekley et al., 2013b; van Hertem et al.,
2013, 2014; Huybrechts et al., 2014).

Since it is common in commercial production herds that data
are missing at a more or less influential level, a detection model
must be able to handle missing data as well. In some studies, data
sets with missing data are left out during the model developing
process for different reasons (Pastell and Kujala, 2007;
Steeneveld et al., 2010a; Maertens et al., 2011; de Mol et al.,
2013; van Hertem et al., 2013, 2014; Garcia et al., 2014) whereas
other models are based on incomplete - but more realistic - data
sets from commercial farms (Bressers et al., 1995; Liu et al.,
2009; Kamphuis et al., 2010a,b; Miekley et al., 2013b;
Huybrechts et al., 2014), hence showing a higher level of similarity.

4. Criteria for inclusion in this review

4.1. Primary criteria

Papers included in this review are all peer-reviewed and pre-
sent sensor-based detection models developed for modern live-
stock production with the purpose of optimizing animal health
or managerial routines. Papers on models that are based on param-
eters analyzed in laboratories (Barkema et al., 1998; Nielsen et al.,
2005; Chagunda et al., 2006; Friggens et al., 2007; Steeneveld et al.,
2008; Hojsgaard and Friggens, 2010), parameters assessed by
humans (Barkema et al., 1998; Steeneveld et al., 2010b), or where
the condition in focus is artificially applied to the animal as a part
of the study design (Milner et al., 1996; Abell et al., 2014) are
therefore not included.

Papers included must furthermore present results from a per-
formance analysis. Papers where methods for detecting, monitor-
ing or assessing parameters for early warning systems are
developed, tested or evaluated, but the results are presented as
the method having a future potential, are therefore not included.
This criterion leaves out several studies (Bressers et al., 1994;
Moshou et al., 2001; White et al., 2004; Madsen and Kristensen,

Fig. 2. A long time window (A) can cover more successive alerts hence affecting the
performance of the detection model in terms of Se and Sp as well as success rate
and error rate. Alerts occurring within the range of the time window are all
considered TP. A shorter time window (B) allows for a more detailed classification
of all alerts and calculation of model performance. t: time. TW: Time window. TP:
True positive. FP: False positive.
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2005; Madsen et al., 2005b; Oliviero et al., 2008; XiangYu et al.,
2008; Leroy et al., 2008; Ferrari et al., 2010; Kristensen and
Cornou, 2011; Tanida et al., 2011; Hoffmann et al., 2013; Kashiha
et al., 2013; Cornou and Kristensen, 2014b; Porto et al., 2014;
Abdanan Mehdizadeh et al., 2015; Dutta et al., 2015).

4.2. Conditions detected

A variety of conditions are sought to be detected in papers
included in this review. Some papers present models detecting
more than one condition (de Mol et al., 1997, 1999) or several
methods for detecting the same condition (Cavero et al., 2007;
van Hertem et al., 2014). Some papers combine two methods in
order to improve the overall performance (Kramer et al., 2009;
Kamphuis et al., 2010a; Cornou and Lundbye-Christensen, 2011;
Huybrechts et al., 2014), or to prioritize the outcome of the early
warning system (de Mol and Woldt, 2001; Steeneveld et al.,
2010a; Ostersen et al., 2010). Table 2 shows the distribution of con-
ditions covered. As it appears from the table, detection of CM and
of lameness have had the highest focus overall.

4.3. Sensor types

Multiple sensor types are included in this review representing
the technological evolution through the last two decades (from
1995 to 2015). Data from automatic milking systems (AMS) form
the basis for the vast majority of sensor-based detection models,
but a variety of other sensor types are included as well. Sensors
for monitoring movement include video cameras, different 2D
movement sensors (pedometers and neck transponders), and 3D
movement sensors (accelerometers and pressure sensitive sensors
like force plates and load cells). Other sensor types (flow meters,
feeding troughs with sensors, weight scales and climate comput-
ers) also provide valuable information in several studies.

4.4. Methods - presentation

The included papers are presented in three groups according to
their level of prioritization:

Group 1 (Table 3): Sheer detection models based on single-
standing univariate or multivariate methods with or without
the inclusion of non-sensor-based information.
Group 2 (Table 4): Improved detection models where the per-
formance of the described models are sought to be improved
through the combination of different methods.
Group 3 (Table 5): Prioritizing models where the model
includes a method of ranking or prioritizing alerts in order to
reduce the number of false alarms.

In many studies, performance indicators are reported several
times due to different thresholds or different subgroups of animals.
Therefore an approach has been taken in order to compare the
highest level of performance obtained by any method under any
circumstances given in the relevant study. In the tables, the nota-
tions HSe and HSp are used. HSe is the highest sensitivity achieved
in the study, and the specificity in brackets is the corresponding
specificity. Equivalently, HSp is the highest specificity achieved in
the study, and the corresponding sensitivity is shown in brackets.

The notations ‘‘HSe xm (Sp y)” and ‘‘HSp ym (Se x)” are mathe-
matically defined as

ðxm; yÞ ¼ ðSesx ; Spsx Þ; sx ¼ argmax
s

fSesjs 2 Sg ð9Þ

ðx; ymÞ ¼ ðSesy ; Spsy Þ; sy ¼ argmax
s

fSpsjs 2 Sg; ð10Þ

S is the set of thresholds tested in the study.

4.5. Literature search strategy

For the initial search the following keywords were used: auto-
matic monitoring, livestock production, sensors, ranking, prioritiz-
ing, alarms and detecting. These keywords were then combined
with words like mastitis, lameness, estrus, gain, cow, sow, and
broiler. From those basic searches, backward searches were done
through references and bibliographies of relevant authors. The
databases used for the searches were Ovid (CAB Abstracts, Web
of Science, Agricola) and Sciencedirect in the period from Novem-
ber 2014 to June 2015.

5. Method description

In this section, the methods used for building detection models
in the reviewed papers are described according to their level of pri-
oritization. In both groups 1 Sheer detection models (Table 3) and 2
Improved detection models (Table 4) some papers present a tech-
nique where the level of one or both performance parameters are
fixed (Kamphuis et al., 2010b; Kamphuis et al., 2013), or defined
with a minimum level (Cavero et al., 2006; Kramer et al., 2009;
Miekley et al., 2012, 2013a) when doing performance analyses.
With a fixed parameter, it is possible to calculate the correspond-
ing threshold for detecting a condition under given circumstances,
and hereby reduce the number of false alarms generated by the
detection model. However relevant, according to the alarm-
reducing characteristics, this technique is not a part of the con-
struction of the detection model and will not be described further.

5.1. Sheer detection models

An overview of the sheer detection models (Group 1) identified
for this review is shown in Table 3.

5.1.1. Sheer detection models based on AMS sensors
Statistical methods used in models based on data from AMS (or

AMS-like) sensors all fall into one of the following four categories:
Time series with Kalman filter (de Mol et al., 1997; de Mol et al.,
1999; de Mol and Ouweltjes, 2001), local regression, moving aver-
ages (Cavero et al., 2007), and fuzzy logic (Cavero et al., 2006;
Kamphuis et al., 2008b; Kramer et al., 2009). de Mol et al. (1997,
1999) present a multivariate cow-dependent approach and an
AutoRegressive Integrated Moving Average (ARIMA) for analyzing
time series with Kalman filter. Later de Mol and Ouweltjes
(2001) use an unspecified time series model, where milking inter-
vals and milking frequencies are included as variables. The speci-
ficity for CM detection in de Mol et al. (1997) is based on milk
sampled with a two month interval, and cows with no CM patho-
gens or elevated SCC counts in any samples during the study period
were defined as TN. This means that a TN cow with one or more
alarms was considered FP. This case definition ignores any CM
cases which begin and end between two samples, and creates opti-
mal - but unrealistic - conditions for the detection model. The mul-
tivariate methods presented by de Mol et al. (1997, 1999) is,
however, a novel approach through the incorporation of the animal
history and traits, and it is widely implemented in later publica-
tions (de Mol and Ouweltjes, 2001; Cavero et al., 2007; Claycomb
et al., 2009; Kramer et al., 2009; Kamphuis et al., 2010b;
Steeneveld et al., 2010a; Garcia et al., 2014; Huybrechts et al.,
2014). General practice at the time of several of these studies
was milking in milking parlors, and the use of AMS was in its mod-
est beginning (Kamphuis et al., 2008a; Rutten et al., 2013) which
made the inclusion of sensor-based variables limited compared
to later studies.
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Performances presented in early studies by de Mol et al. (1997,
1999, 2001) and de Mol and Ouweltjes (2001), are fairly high, with
either sensitivities or specificities fulfilling the minimum require-
ments by Rasmussen (2002). The requirements are not met at
the same time for both performance measures, though. Not even
extremely long time windows, a variety of case definitions, or dif-
ferent techniques for performance analysis in de Mol et al. (1997)
led to both parameters meeting the requirements at the same time.
Authors agree that the performance of the presented models is too
poor for practical implementation and suggest either improvement
of both sensors and alert rules (de Mol et al., 1997; de Mol et al.,
1999) or addition of temperature sensors that have proven infor-
mative in detecting CM (de Mol and Ouweltjes, 2001). Simple con-
trol charts and local regression were tested and showed to have
poor performance in Cavero et al. (2007), and these methods are
only used in combination with other methods in later research
(Cornou et al., 2008; Lukas et al., 2009; Cornou and Lundbye-
Christensen, 2011; Miekley et al., 2012, 2013a; Huybrechts et al.,
2014). Even though a model for milk yield based on time series
was suggested already by Deluyker et al. (1990), it was on a general
cow level, and de Mol et al. (1999) seem to be the first to model
cow-specific ‘‘normal” behavior through time series based on sen-
sor data.

A binary classification is bound to misclassify some ‘‘grey zone”
cows (Cavero et al., 2006). The use of a lower SCC threshold of
100,000 cells/ml in defining healthy/sick cows as used by
Miekley et al. (2012); Cavero et al. (2006) raises another concern
of employing an artificially high sensitivity (Claycomb et al.,
2009) due to too many healthy cows being classified as sick (false
positive). Even though the chosen threshold of 100,000 cells/ml is
following the definitions from ‘‘Deutsche Veterinärmedizinische
Gesellschaft e.V.” for mastitis, it appears to be too low since a num-
ber of papers have reported average bulk tank SCC’s from
151,000 cells/ml to >800,000 cells/ml (Maatje et al., 1997; Cavero
et al., 2006; Kamphuis et al., 2008b; Claycomb et al., 2009;
Kramer et al., 2009; Miekley et al., 2012). Mein and Rasmussen
(2008) even suggest that cows could be classified as ‘‘true nega-
tives” if the SCC is <200,000 cells/ml and all foremilk samples are
without clinical signs.

Fuzzy logic is a method where variables that can obtain multi-
ple lingual values are determined relative to the connection in
which they appear. The lingual variables can be ‘‘many, few, almost
all, several”, and they are given a numeric value (degree of mem-
bership) between 0 and 1 before they are included in for instance
statistical models (Klir and Folger, 1988). When this method is
used in models for CM detection (Cavero et al., 2006; Kamphuis
et al., 2008b; Kramer et al., 2009), it is applied through three steps
of a fuzzy logic system called fuzzification, fuzzy inference and
defuzzification:

Fuzzification transforms the sensor-measured input variable to
a fuzzy value that is a combination of linguistic interpretation
and grade of membership (Kramer et al., 2009).
Fuzzy inference applies a set of IF THEN rules generated on
expert knowledge for each trait described by fuzzy values and
combines them like IF (all X is Z) AND (no Y is X) THEN (no Y
is Z) (Klir and Folger, 1988).
Defuzzification transforms the fuzzy values into one numeric
value that is compared with a threshold to determine for
instance if a cow has got CM or is healthy (Kamphuis et al.,
2008b).

The Fuzzy Logic method was first applied by Cavero et al. (2006)
who used it on AMS sensor variables. The thresholds for case def-
initions were very low, which resulted in high performance (in
terms of Se and Sp) and large error rates. Fuzzy logic has been used

later for detecting CMwith both in-line and on-line SCC (Kamphuis
et al., 2008b), and for detecting both CM and lameness (Kramer
et al., 2009), but no results suitable for implementation in commer-
cial herds were achieved.

The method is good at representing the form of uncertainty that
is naturally imbedded in modeling traits with biological variation.
By using the so-called Fuzzy Expert System, crisp values can be
fuzzified (Klir and Folger, 1988) before applying rules and
defuzzification.

Cavero et al. (2006), Kamphuis et al. (2008b), and Kramer et al.
(2009) all use numeric sensor measurements as input variables,
and the numeric values are first fuzzyfied to lingual values then
defuzzified back to numeric values. This process does not seem
intuitively as the most obvious method, but it would be interesting
to see Fuzzy logic applied to categorization of lameness degrees in
cows since it is a trait with a high degree of biological variation.
The Fuzzy logic method is used for combining sensor-based alerts
with subjective human judging of CM in the study by de Mol and
Woldt (2001), and this will be discussed further in Section 5.3.

5.1.2. Sheer detection models based on behavior and movement
sensors

A variety of behavior and movement sensors are used in detect-
ing changes in the behavior or movement pattern of an animal. The
changes detected are either due to lameness, or the onset of a con-
dition associated with well known behavioral changes like oestrus
or farrowing. Numerous studies employ a variety of techniques for
assessing activities. These include pressure platforms measuring
weight distribution (Pastell and Kujala, 2007; Oliviero et al.,
2008; Pastell and Madsen, 2008; Pastell et al., 2008a,b; Pluym
et al., 2013; Mohling et al., 2014), pressure sensitive mats monitor-
ing irregularities in gait patterns (Maertens et al., 2011; Pluk et al.,
2012; Van Nuffel et al., 2013), and accelerometers measuring types
of activity in two or three dimensions (Cornou and Lundbye-
Christensen, 2010; Cornou et al., 2011; van Hertem et al., 2013;
Cornou and Kristensen, 2014b). Activity sensors fastened to the
animal (Alsaaod et al., 2012; Kamphuis et al., 2013; Miekley
et al., 2013b; Dutta et al., 2015) or infrared sensors fastened on
inventory (Freson et al., 1998; Aparna et al., 2014) are also used
in multiple studies. Although several types of statistical methods
have been used for building sheer detection models based on
behavior or movement sensors, the performance in general follows
the same trend as the sheer detection models based on AMS sen-
sors with either a high sensitivity or a high specificity, and with
consensus in the finding that multivariate models outperform uni-
variate (Maatje et al., 1997; Kamphuis et al., 2013; van Hertem
et al., 2013).

A study by Miekley et al. (2013b) found missing values are caus-
ing up to 30% information loss for some cows when using principal
component analysis (PCA), whereas (Pastell and Kujala, 2007)
found that other methods, like probabilistic neural network
(PNN), handle incomplete data sets better. The use of infrared sen-
sors in detecting onset of oestrus in sows is tested and found inad-
equate for implementation by Freson et al. (1998) since TN and FN
could not be distinguished.

Maertens et al. (2011) present an impressive highest accuracy
(HSe 90, HSp 100) in detecting lameness among dairy cows using
a spatiotemporal approach. This accuracy is however only on iden-
tification of severely lame cows whereas the overall performance
of the model is presented as a success rate above 80% without
specification of Se, Sp or FP. The spatiotemporal approach is new
in lameness detection of livestock animals though, and this is
investigated in further research (Pluk et al., 2012; Van Nuffel
et al., 2013; Meijer et al., 2014).

Some authors discuss improvements by inclusion of walking
speed (Meijer et al., 2014) or longer pressure mats to measure

K.N. Dominiak, A.R. Kristensen / Computers and Electronics in Agriculture 133 (2017) 46–67 59

62



more gait cycles within one measurement (Van Nuffel et al., 2013).
The use of sensor mats for lameness detection is still a relatively
new area in research, and Pluk et al. (2012) naturally focus more
on improving the techniques and choosing the most informative
variables and methods instead of on implementation in commer-
cial farms.

The study by Cornou and Lundbye-Christensen (2010) on clas-
sifying activity levels of sows prior to farrowing, does not reach
the performance defined in Rasmussen (2002), but still the results
are remarkable since the corresponding Se and Sp are both 96% as
contrary to most other studies that reach either high Se or high Sp.
The performance is on identifying a sow in activity (walking, feed-
ing, rooting merged) correctly as opposite to lying down either lat-
erally or sternally. A reliable detection of activity category is
valuable in predicting conditions that follow a change in activity
level - like oestrus or parturition.

For models built on data from video cameras, infrared cameras
or 3D cameras, methods like decision trees or different types of
regressions have been used in detecting different conditions. None
of the presented models detect with a performance high enough
for implementation in commercial farms, and the results by van
Hertem et al. (2014) detecting lameness in cows reach neither sen-
sitivities nor specificities matching the definitions in Rasmussen
(2002).

Although Viazzi et al. (2013) have simplified the lameness score
scale from a 5-point to a 3-point, the performance presented as
TruePositiveRate and FalsePositiveRate is too low for implementa-
tion. Bressers et al. (1995) only present the success rate and a
notice of presence of many false positive in detecting oestrus by
monitoring sows’ visits to a boar, hereby indicating a high sensitiv-
ity and a low specificity. A similar study was later conducted by
Ostersen et al. (2010) with more complex methods that will be
presented in Table 5.

5.2. Improved detection models

The models in Table 4 all have in common that methods are
combined to create an improvement in model performance. The
improvements added are different types of control charts
(Cornou et al., 2008; Cornou and Lundbye-Christensen, 2011;
Miekley et al., 2012; Miekley et al., 2013a; Huybrechts et al.,
2014), further development of decision trees (Kamphuis et al.,
2010a; Kamphuis et al., 2010b), or of various regression methods
(Liu et al., 2009; Kashiha et al., 2014). Combinations of DLM with
other methods (Ostersen et al., 2010; de Mol et al., 2013) and par-
tial least squares discriminant analysis fitted by linear regression
and improved by reducing the number of variables through back-
ward variable selection (Garcia et al., 2014) are also included.

Combining different types of control charts with wavelet filter-
ing, autoregressive methods, time series, or either univariate or
generalized DLMs does not result in a performance high enough
for implementation (Cornou et al., 2008; Cornou and Lundbye-
Christensen, 2011; Miekley et al., 2012, 2013a; Huybrechts et al.,
2014). Using CUSUM in detecting the onset of parturition does
however result in both a sensitivity and a specificity of 100% for
a subgroup of nine sows based on activity level, and a sensitivity
of 100% combined with a specificity of 95% when including all 19
sows in the study (Cornou and Lundbye-Christensen, 2011).

Although the performance obtained by Cornou and Lundbye-
Christensen (2011) is impressive, there is an overlap between the
individual parameters used in both methods (DGLM and CUSUM)
and animal specific reference days which may have increased the
performance. This is mentioned by the author as a subject for
future change if a large-scale study should be conducted. Few
alarms appear at time zero (that is at the actual onset of the far-
rowing) but the majority of the alarms based on the CUSUM

method occur between 12 and 24 h before onset of farrowing
(mean 4.7–14.8 h, SD 4.9–9.1 h), while the DGLMmethod produces
alarms in average 15 h before farrowing (SD 4.3–7.5 h). An alarm
this long before farrowing with a relatively large standard devia-
tion is suboptimal if the purpose is to be present during farrowing.
If the purpose, on the other hand, is to prepare the sow or the far-
rowing crate in order to reduce piglet mortality as in the later dis-
cussed study by Aparna et al. (2014), an alarm long time before
would in most cases be sufficient.

Different methods for improving DLMs are presented by
Ostersen et al. (2010), de Mol et al. (2013). de Mol et al. (2013)
use quadratic trend models fitted with DLM to detect lameness
in cows. The presented performance of the model is not suitable
for implementation, but the authors mention that both discount
factors and threshold for the Bayes factor in the DLM can be
adjusted. Adjustments can prioritize a higher or lower Se according
to the needs of the end user, which means that the threshold for
alarms can be adjusted - or prioritized - according to individual
needs.

Ostersen et al. (2010) detect oestrus via both duration of a sow’s
visit to a boar, the frequency of the visit, and a combination of the
two parameters. Ostersen et al. (2010) combine a multiprocess
DLM with Markov probabilities of the DLM components in the
duration model and develop a DGLM for the frequency model.
The detection model combining both duration and frequency is
based on Bayes Theorem and calculates a combined probability
of the sow being in oestrus.

The multivariate model surprisingly enough performs worse
than the univariate duration model. An explanation for this finding
could be that the duration model includes the time distance
between the visits which is closely related to the frequency. The
results reported in the paper are remarkable due to the extremely
high Sp of 99.4%, but remakably enough the corresponding ER is as
high as 93%. This illustrates the almost impossible task of achieving
an overall satisfying performance of a detection model when using
solely sensor-based data for detection of conditions with very low
prevalence.

Kamphuis et al. (2010a,b) present decision trees with different
data mining techniques or cost matrices added as improvements
for detecting CM. Even though the inclusion of cost matrices in a
model designed for decision support is highly relevant, it does
not improve the performance enough for implementation.

5.3. Prioritizing methods

As seen in the descriptions of sheer and improved detection
models, there is a general problem with fulfilling the described cri-
teria for implementation. Scientific literature describes three over-
all alternative approaches to this problem; a higher extent of added
knowledge, in the form of non-sensor information, to the original
detection model (Fig. 3A), an acceptance of the original perfor-
mance level plus a postprocessing step of prioritization or ranking
of the alarms into TP or FP (Fig. 3B), or a presentation of the model
output as a time gradient or a risk of case vs. non-case (Fig. 3C) dis-
regarding the source of model input variables. To some extent, a
customization of thresholds according to the risk attitude of the
farmer can be regarded as a prioritizing measure, but this approach
implies that the model is adjusted to the specific herd at time of
implementation - and possibly multiple times hereafter as the
health or managerial status is dynamic and will change.

Fuzzy logic is used by de Mol and Woldt (2001) to combine
sensor-based output from earlier developed detection models with
additional information about the cow (Fig. 3A) in order to formal-
ize the manager’s reasoning when manually judging alert lists for
CM and oestrus. Hereby, they reduce the number of FP on the
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CM alert list from 1265 to 64 and the number of oestrus alarms by
32%.

The CM model combines the AMS alerts from de Mol and
Ouweltjes (2001) with average and variance of sensor measure-
ments, while the oestrus model combines alerts from de Mol
et al. (1997) with both qualitative and quantitative non-sensor-
based cow information. By combining qualitative and quantitative
parameters, de Mol and Woldt (2001) are fulfilling the basic
demands of the Fuzzy logic method, but as remarkable as their
results are, they must be interpreted with some care, since the Se
and Sp respectively are calculated on different divisions of the data.

Naive Bayesian Networks (NBN) as a tool for discriminating
between TP and FP alerts from AMS (Fig. 3B) is demonstrated in
a study by Steeneveld et al. (2010a) where the number of FP alerts
are reduced by 35%. Unfortunately, the model misses 10% of the TP
alerts meaning that the specificity is too low for implementation. A
satisfying performance level cannot be expected in this study
though since the initial performance of the AMS providing the alert
list has an Se of 70% and an Sp of 97.8%. The results do show a
potential for NBN as a prioritizing method and more research
should be done using this method.

A completely different approach for detecting or predicting a
condition is used by Aparna et al. (2014). The paper focuses on pre-
dicting the exact onset of farrowing, in order to reduce piglet mor-
tality caused by hypothermia. The underlying model is based on
Hidden Phase-type Markov methodology, where the time spent
in each defined phase of a given condition is modeled. For this
study the well-defined behavioral phases preceding a farrowing
is used.

The study is based on sows already inserted into farrowing sec-
tion which makes the probability of the sow actually farrowing
very high - almost definitely known to happen - unlike any other
condition included in this review. Well-defined behavioral phases
are known for a few conditions like parturition and to some extent
oestrus in both sows and cows.

This phase-based method is, however, difficult to apply on con-
ditions like CM or tail biting, where the chronological succession of
phases is unknown, and different phase-patterns can lead to the
same condition. Also a crucial difference between predicting the

onset of farrowing and predicting events of CM and tail biting, is
not knowing beforehand, whether the condition will occur at all
or not.

Interestingly enough, Aparna et al. (2014) do not operate with
the traditional performance parameters (sensitivity, specificity
and error rate) but produce estimates of time to occurrence of far-
rowing (Fig. 3C) hereby providing decision support to the farmer in
choosing which sow to attend to first. By combining water and
activity sensors, the model produced 97% true warnings with a
mean of 11.5 h and an SD of 4.6 h. These results fulfill the aim of
the paper to provide sufficient warning time for preparing the crate
and sow for farrowing, but the SD is too long to provide accurate
alarms for the exact onset of the farrowing with the purpose of
providing timely aid to complications.

6. Method discussion

The previous description of sheer, improved and prioritizing
detection models illustrates a trend in the development of detec-
tion models over the last two decades (1995–2015). This trend is
not depicting a straight forward evolution of detection-methods
but rather a correlated evolution in both model complexity and
general evolution of sensor technology.

6.1. Evolutionary trends of methods and sensors

The evolution of sensor-based detection models is facilitated
both by the technological evolution causing lower market prices
and smaller, more precise devices in general, and by the joint sci-
entific experiences made through peer-reviewed studies and
research. In that sense, the evolution of sensor-based detection
models has generally moved from univariate models on general
species level (Deluyker et al., 1990) or comparing data with a sim-
ple threshold (Bressers et al., 1995) through improving detection
accuracy by including non-sensor-based animal-specific informa-
tion like ‘‘day of treatment”(Cavero et al., 2007), ‘‘calving dates”,
or ‘‘days in lactation” (de Mol et al., 2001). Parallel to including
non-sensor-based information, more multivariate models were
developed (Cavero et al., 2006; Kamphuis et al., 2008b; Kramer
et al., 2009).

With performance still not reaching a satisfying level, research-
ers have continued to develop models focusing on prioritizing the
generated alarms through the use of Fuzzy logic (de Mol and
Woldt, 2001), Naive Bayesian Network (Steeneveld et al., 2010a)
or variations of DLM (Cornou et al., 2008; Ostersen et al., 2010;
de Mol et al., 2013). During the same period in time (1995–
2015), the technical evolution of sensors has made it possible for
the precision in CM detection to move from udder level to quarter
level. Also data is available much faster, going from on-line
monthly or weekly pooled reference data like SCC, to in-line sen-
sors (Kamphuis et al., 2008b) providing the possibility of detecting
a CM case during the actual milking.

A similar evolution of both sensor types and method complexity
is also found in models detecting conditions like lameness in cows
and oestrus in both sows and cows, but since the history of auto-
matic detection is shorter for these conditions compared to CM,
the evolutionary changes are not as profound.

Rajkondawar et al. (2002) developed a fully automatic detection
model using limb-specific kinetic measures, and later several stud-
ies were based on partly automatic measures, using manual gait
score as gold standard (Pastell and Kujala, 2007; Maertens et al.,
2011). It has, however, been the development of force load cells
(Liu et al., 2009) and pressure sensitive mats (Maertens et al.,
2011), which has made a huge difference in lameness detection
for cows. The former of the two sensor types, has even been used

Fig. 3. Flow charts illustrating three prioritizing strategies for reducing the number
of false alarms. Flow chart A illustrates a reduction in the number of generated
alarms by using both sensor and non-sensor information as model input compared
to using only sensor information as model input. Flow chart B illustrates a
postprocess of the TP alarms generated by the detection model by adding, e.g. non-
sensor information and hereby sorting the alarms into TP and FP. Flow chart C
illustrates the cases of model output presented as a risk, a gradient up to or a
probability of a condition happening.
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in a commercially implemented product for lameness detection,
which Liu et al. (2009) sought to make more accurate in their
study.

6.2. The perfect performance - does it exist?

Despite the technological evolution and the increased complex-
ity of methods in sensor-based detection models, the accuracies of
these models are generally at a level that does not fulfill the criteria
of implementation (Hogeveen et al., 2010). A great variation in
model performance throughout the different studies is revealed
when the performance is visualized. The performance of HSp and
the corresponding Se is shown in Fig. 4 for the papers that present
both Se and Sp. Nine studies reach a Se above 80% and ten reach a
HSp above 99% but only three papers (Liu et al., 2009; Maertens
et al., 2011; Cornou and Lundbye-Christensen, 2011) present mod-
els that fulfill both performance criteria when including subgroups
of the data sets.

Liu et al. (2009) detect lameness in cows and use logistic regres-
sion in combination with B-spline transformation to obtain Se of
100 % and Sp of 100% when detecting lameness on forelimbs, and
Se of 99.5% and Sp of 100% when detecting lameness at cow-
level. The authors convert a five-point lameness score to a binary
(sound-lame) and furthermore validate the model by the leave-
one-out cross validation method on a data set consisting of 261
cows. It is reasonable to assume that leaving out the information
provided by only one cow for validation, using the remaining 260
cows to train the model a total of 261 times, is close to learning
and testing the model on the same data which will result in a high
level of performance. Therefore, the study does not fulfill the sim-
ilarity criteria. Maertens et al. (2011) obtain Se of 90% and Sp of
100% when detecting severe lame cows (gait score 3 on a three-
point lameness score) using linear regression on kinematic vari-
ables from pressure sensitive mats, but the aim of lameness detec-
tion is primarily to point the farmer towards the cow that needs
extra focus rather than those who need acute treatment (Pastell
and Kujala, 2007), and with this model not fulfilling the
performance-criteria for sound or mild-lame cows, it seems to be
of little use in the production. Cornou and Lundbye-Christensen
(2011) use CUSUM to detect the onset of farrowing based on the

sow’s activity pattern and obtain Se of 100% and Sp of 100% for a
subgroup of 9 sows with the sow’s individual variance. The level
of performance when including all sows (n = 19) using individual
variance is Se of 100% and Sp of 95% whereas the performance
for all sows using group variance is Se of 95% and Sp of 89% thus
not fulfilling the performance criteria. In the discussion, the
authors mention that using individual variance might be over opti-
mizing the model since the reference days of each sowwere known
beforehand. They recommend the study to be repeated in a large
scale experiment where this bias is avoided and suggest inclusion
of more animals and different setup of time windows.

The potential of sheer and improved sensor-based detection
models is well exploited and they generally do not detect at an
implementable level of accuracy. This calls for alternative
approaches with a higher degree of customization and adaptability
to individual needs at herd-, farmer-, or animal-levels.

6.3. Customization and prioritizing strategies

Throughout the literature, three strategies of prioritizing meth-
ods and few concrete suggestions for customizing models are
described. Fig. 3A–C illustrate three different strategies for improv-
ing the performance of a model or for ranking or prioritizing the
output of the detection models.

6.3.1. Customization
Customization of detection models based on DLM is suggested

by Cornou et al. (2008), Ostersen et al. (2010), and de Mol et al.
(2013) who all present different variations of DLM in their detec-
tion models and discuss further adaptation for implementation.

The DLM is not a prioritizing method as the previously dis-
cussed fuzzy logic and NBN in the manner of ranking alerts accord-
ing to a given preference or classifying alerts as true or false. The
DLM as a statistical method can predict - or produce a forecast
for - the state of the condition of interest one step forward and
compare the prediction with the following observation. Neverthe-
less, the method as presented in these three papers is capable of
adjusting to individual circumstances through described strategies
for changes in the discount factor of the DLM which alter the
adaptability of the model.

80 85 90 95 100
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Fig. 4. Performance (Highest Specificity (HSp), corresponding specificity (Se)) for the 26 papers that present model performance with sensitivity and corresponding
specificity. Lines indicate performance criteria (sensitivity 80% and specificity 99%).
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The herd-specific adjustments could be on the prevalence of the
condition in focus (Hogeveen et al., 2010), the level of management
(Huijps et al., 2010) and the farmer’s risk attitude. The latter might
differ in terms of both economic consequences (Rutten et al., 2014)
and workload associated with accepting a lower, or a higher, level
of false alarms (Mollenhorst et al., 2012). In addition to this strat-
egy de Mol et al. (2013) describe how changing the threshold for
the Bayes factor of the DLM influences the Se and Sp of the model
so it can be adjusted to the risk attitude or level of management at
the individual herd.

6.3.2. Prioritizing strategies
Prioritizing strategy (A) combines sensor data with additional

non-sensor information at animal-, section- or herd-specific level
in a detection model in order to increase the level of performance.
This strategy is followed to some extent by Maatje et al. (1997);
Ostersen et al. (2010) whomention the potential of combining sen-
sor and non-sensor data and by Garcia et al. (2014) where the par-
ity of the cow is used as classification parameter when defining
groups in the data set. Different methods can be used for combin-
ing sensor data and non-sensor data, and NBN has been used with
interesting results in studies by Steeneveld et al. (2009, 2010b)
who use cow-specific information to provide probability distribu-
tions for pathogens and for prioritizing alerts from AMS alert lists.

NBN is also used by Jensen et al. (2016) for combining sensor
data and cow-specific information in a CM detection model. Using
NBN for combining data from different sources is not common in
livestock production but has been done previously by Steeneveld
et al. (2009, 2010b) and also recently in the world of computer
security where Benferhat et al. (2013); Bouzar-Benlabiod et al.
(2015) combine sensor alerts and expert knowledge to improve
performance of computer security models.

Even though animal-specific information has great impact on
the performance of a detection model, the use of cow-specific
information alone is not always enough as proven by Steeneveld
et al. (2008, 2010a). Animal-specific biological markers, as used
by Chagunda et al. (2006) in a dynamic deterministic biological
model, can however show that detailed cow-specific information
in combination with laboratory analysis of the enzyme L-lactate
dehydrogenase (LDH) can present an impressive performance level
with Se 82% and Sp 99% - including no other AMS information. This
type of model is yet not implementable due to technological
demands.

Prioritizing strategy (B) describes a different approach where
the sub-optimal performance obtained by a detection model,
whether based either solely on sensors or on combined informa-
tion types, is initially accepted and the generated alarms are prior-
itized or ranged by combining them with additional non-sensor
data in a following postprocessing step as it has been done by de
Mol and Woldt (2001); Steeneveld et al. (2010a) (see Fig. Flow
chart B 1,2). Two different methods using strategy (B) are
described in the literature; fuzzy logic and NBN.

By using fuzzy logic de Mol and Woldt (2001) reduce the num-
ber of false positive alerts from earlier developed statistical models
detecting CM and/or oestrus (de Mol et al., 1997, CM and oestrus);
(de Mol and Ouweltjes, 2001, CM). Two separate fuzzy logic mod-
els are created - one for each condition. In the CM model de Mol
and Woldt (2001) reduce the number of false positive alarms from
1265 to 64 by combining the output of the statistical model with
fuzzified additional information. The information is added on stan-
dardized deviation in electric conductivity of each quarter as well
as measured conductivity at quarter level. This use of fuzzy logic
raises the same issue as seen in Cavero et al. (2006), Kamphuis
et al. (2008b), Kramer et al. (2009) where numerical values are first
fuzzified to lingual values, and then defuzzified to numerical again.
Since fuzzy logic is a method meant for quantifying linguistic - or

fuzzy - values, it seems more obvious to use the method on qual-
itative factors like reproductive status, level of activity or a descrip-
tion of lameness degree parallel to lameness scores in lameness
detection.

Furthermore, the input to this fuzzy logic model is the output of
a statistical model where the performance is obtained through long
time windows and a high degree of selectivity in the choice of
included data (de Mol and Ouweltjes, 2001). As opposed to the
CM model, the oestrus model include qualitative parameters like
reproductive status and information on activity level. The number
of false positive alerts were reduced by 32%, and the false alarms
were sought to be further reduced through manual and computa-
tional optimization of the model but without noteworthy improve-
ments. In their discussion the authors discuss that the model might
have been improved further by including the use of ‘‘expert knowl-
edge” from the herdsman or personnel. Even though de Mol and
Woldt (2001) reduce the number of false positive alarms, and pre-
sent a method of prioritization, it is our opinion that fuzzy logic
should be used with care on data sets consisting of large amount
of quantitative information like sensor-based data as the method
is not well suited for this.

Steeneveld et al. (2010a) also follow strategy (B) and use Naive
Bayesian Network (NBN) to classify which of the alerted cows on
an AMS alert list need further investigation for CM. This is done
by calculating the probability of an alert being TP or TN based on
information from either one variable or combinations of variables.
The variables originate either solely from AMS, solely from addi-
tional cow-specific information, or from combining this informa-
tion. The AUC clearly shows that combining the two sources of
information perform the best. NBN is well suited for expressing
uncertainties, which will inevitable be a part of describing large
individual variation. Even though NBN is the simplest version of
Bayesian Classification models, assuming no correlation between
the included variables, more advanced Bayesian Networks have
been tested on the same data sets without improving the results
(Steeneveld et al., 2010a).

Interestingly enough when analyzing the impact of single vari-
ables, Steeneveld et al. (2010a) find that from the non-AMS cow
information (parity, days in milk, season of year, SCC history, CM
alert history) only days in milk were significantly different
between FP and TP alerts. On the opposite, high levels of SCC found
in the SCC history of the cow were evenly distributed among the
cows generating FP and TP alerts. Because the level of SCC is con-
sidered a very important indicator of CM (Steeneveld et al.,
2008), and the SCC level measured by Steeneveld et al. (2010a)
was significantly different between TP and TN milkings, these find-
ings indicate that the alert list is based solely on SCC. This indica-
tion makes the ranking of alarms based on multiple cow-specific
parameters - not only on SCC - highly relevant. High levels of
SCC provide valuable information, but just generate too many FP,
perhaps even detecting both CM and subclinical CM when used
as single variable (Rasmussen and Bjerring, 2005; Steeneveld
et al., 2010a).

Steeneveld et al. (2010a) do not reach a satisfying accuracy
when discriminating between TP and FP alerts, but the number
of FP is reduced by 33%, and the use of NBN as a simple prioritizing
tool in livestock production herds warrants further consideration.
The capability of NBN to combine information through adding
prior probabilities for any relevant information, sensor-based or
not, enables the incorporation of managerial factors. These factors
could be changes in feed composition, treatments, and herd-
specific routines. Information on the herd-specific health status is
also relevant for evaluating if the conditions of interest is of higher
or lower prevalence than in average herds.

An important aspect in customizing an early warning system to
a specific herd or risk-attitude of a farmer is the farmer’s prefer-
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ences to the detection system. Mollenhorst et al. (2012) have asked
farmers what preferences they have to a CM detection system, and
the result is that a low number of false alerts and alerts given in
good time with emphasis on the more severe cases is the most
important feature. The adaptability to individual circumstances is
also important for the farmers according to the questionnaire by
Mollenhorst et al. (2012). The probabilities for any relevant infor-
mation can be combined with herd-specific thresholds according
to the priorities and risk attitude of the farmer (Steeneveld et al.,
2010a). A method like NBN shows this high degree of adaptation,
hence meeting the demands for customization, characteristic for
modern farmers with ambitions (Mollenhorst et al., 2012).

Prioritizing strategy (C) represents an alternative to perfor-
mance presented by the epidemiological terms of Se and Sp. This
alternative is to present the output of the detection model as a gra-
dient or a risk of a condition occurring. Se and Sp are designed for
binary outputs, which essentially does not conditions like CM, tail
biting, or lameness, which are gradually evolving, and in nature
more complex than binary (Friggens et al., 2007, 2010). Detection
models in livestock production are, however, traditionally based
on discrete measurements in time (Sherlock et al., 2008) which
simplify the picture of a complex condition. Presenting the alarms
in the form of a risk indicator (Nielsen et al., 2005; Friggens et al.,
2007; Hojsgaard and Friggens, 2010) or as a time gradient leading
up to the occurrence of a condition known to happen (Aparna et al.,
2014) has been seen. In addition to these output types, the poste-
rior probabilities for a condition to occur as calculated by NBN
could be a future approach worth focusing on. Strategy (C) is well
suited as a decision support tool because it provides detailed infor-
mation on the individual animal and at the same time allows the
farmer to evaluate the alarms personally and use both experience
and knowledge of the herd in combination with well substantiated
information from the detection model.

6.4. What is more important - priorities are dynamic

In this review, the overall perspective for evaluating the priori-
tizing detection models has been to reduce the number of false
alarms communicated to the farmer. Traditionally the models have
generated alarms indicating what animal to attend to, but other
motivations for prioritizing can be mentioned. Decision support
for which intervention to choose if multiple are possible, or which
alarms to attend to first if more monitoring systems are installed at
the same farm generating alarms at the same time are both rele-
vant. The optimal prioritization is not a static solution. It might
change on a weekly or even daily basis according to multiple fac-
tors, and different interests could generate different optimal prior-
itization outputs. Market prices or costs associated with an
intervention (man-hours, equipment, etc.) could be used as added
information parameters in a prioritizing model. Such a cost mini-
mizing approach would most likely generate a different output
than using animal health parameters or welfare parameters. From
the farmers perspective, it might be of high priority to optimize his
or hers life quality by generating more free time to spend with the
family or by increasing the social acceptance in society.

6.5. Research perspectives for early warning systems

The field of automatic monitoring and modeling is still rela-
tively young, and concurrently with the technological evolution,
future perspectives for developing decision-supporting tools for
ambitious livestock producers continue to be an extremely inter-
esting field of research and development. This review only includes
papers that present a concrete performance, but many studies are
exploring a range of topics, including lameness detection
(Rajkondawar et al., 2002, 2006; Pastell et al., 2008a,b; Pastell

and Madsen, 2008; XiangYu et al., 2008; Chapinal et al., 2009;
Nielsen et al., 2010; Tanida et al., 2011; Pluk et al., 2012;
Hoffmann et al., 2013; Van Nuffel et al., 2013; Pluym et al., 2013;
Abell et al., 2014; Hothersall et al., 2014; Mohling et al., 2014;
Wood et al., 2015), vision-based monitoring (White et al., 2004;
Porto et al., 2014; Leroy et al., 2008; Cangar et al., 2008; XiangYu
et al., 2008; Abdanan Mehdizadeh et al., 2015; Kristensen and
Cornou, 2011; Kashiha et al., 2013), methods for reducing animal
mortality (Beltrán-Alcrudo et al., 2009; Bono et al., 2012, 2013,
2014), modeling of behavioral traits as welfare indicators
(Bressers et al., 1994; Turner et al., 2000; Moshou et al., 2001;
Madsen et al., 2005a; Madsen and Kristensen, 2005; Oliviero
et al., 2008; Ferrari et al., 2010; Junge et al., 2012; Cornou and
Kristensen, 2014a; Dutta et al., 2015), as well as the continuing
focus on detecting CM in dairy cows (Kamphuis et al., 2008a;
Claycomb et al., 2009; Lukas et al., 2009).

Sceptics might argue that further research in the development
of early warning systems is of little use since the criteria for imple-
mentation are so difficult to fulfill. But looking at the broader per-
spectives, automatic monitoring and early warning systems offer
an opportunity to observe the animals 24 h a day 7 days week
365 days a year, which is far more than what is human possible
in traditional livestock production. Early warning systems will
always be a decision support tool for the farmer, and not a
bullet-proof management manual. The farmer accepting a certain
amount of false alarms, or relating to a given risk indicator for a
condition occurring, is a realistic scenario after the implementation
of a sensor-based early warning system. The perspectives for
improving animal welfare through precision livestock farming
are distinct, although more research is needed before warning sys-
tems with sufficient accuracy are ready for implementation.

7. Conclusion

Three methods have been used for prioritizing sensor-based
alarms in livestock production. Two of these methods, Fuzzy logic
and Naive Bayesian Network, combine sensor data with non-
sensor data whereas the third method, Hidden phase-type Markov
model, generates a time gradient to the onset of farrowing - a con-
dition known to happen. The use of Fuzzy logic reduces the num-
ber of alarms considerably but the method is not well suited for
data consisting of large amounts of numerical values like sensor-
based data.

Naive Bayesian Network reduces the number of alarms by 57%,
and this method shows potential for further research in prioritizing
true and false alarms. Hidden phase-type Markov model generates
a continuous output which is an interesting alternative to the bin-
ary Se and Sp although the Hidden phase-type Markov model
might not be the right choice for modeling conditions with no -
or diffusely defined - phases or with varying probabilities of
occurrence.

For 20 years, no sensor-based detection model has fulfilled the
performance demands needed to generate a satisfyingly low level
of false positive alarms, and these demands seem close to unreach-
able with the few models actually obtaining high performances
being associated with high error rates. Instead of focusing on ful-
filling unreachable demands based on binary performance param-
eters for more complex conditions, future research could seek
alternative approaches for the output of detection models as for
instance the prior probability - or the risk of a condition occurring
or not. Alarms from detection models can be prioritized in order to
optimize production efficiency, production costs, work load and
animal health, and a future with automatic monitoring in livestock
production looks promising considering both the life quality of the
farmer and the welfare of the animals.
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6.1 I N T RO D U C T I O N

S PAT I A L M O D E L I N G O F P I G S ’ D R I N K I N G PAT T E R N S A S A N

A L A R M R E D U C I N G M E T H O D

I . D E V E L O P I N G A M U LT I VA R I AT E DY N A M I C L I N E A R M O D E L

K. N. Dominiak, L.J. Pedersen and A. R. Kristensen

Abstract: The overall objective of both the present and a following paper is to investigate spatial

modeling of pigs’ water consumption as an alarm reducing strategy for a future detection system

in commercial pig production. In the present paper, the initial step is taken, and a spatial model

is developed. For that purpose, the water consumption from multiple pens in multiple sections are

monitored simultaneously by flow meters in both a commercial herd of finisher pigs (30-110 kg) and

a research facility herd of weaner pigs (7-30 kg). The diurnal drinking patterns are modeled by a

multivariate dynamic linear model (DLM), which is superpositioned by four sub-models describing

three harmonic waves and a growth trend. Seven model versions reflect a variety of correlation

structures between the monitored drinking patterns. The model versions were trained on learning

data of the two herds, and run on separate test data sets from the herds. Their ability to fit the

test data is measured as mean square error (MSE). Results for the finisher herd indicate correlation

in data from pens within the same section (MSE = 13.850). For the weaner herd, results indicate

an inverse relation between the degree of correlation and the model fit. Thus, the best fit (MSE =

1.446) is found for the model version expressing least correlation in data from pens across the herd.

However, the estimated variance components indicate overfitting of the learning data, and the model

fit may therefore not express the actual correlation. The present paper is the first part of two in

the development of a spatial detection system. The application of the model to test data, and the

evaluation of detection performance, is described in a subsequent article.

6.1 I N T RO D U C T I O N

The everyday focus in livestock production is to ensure a profitable production without compro-

mising animal welfare. Over the years, livestock production has been subjected to an increasing

industrialization, which has lead to larger, centralized production units with less time available for

attending the individual animal (Berckmans, 2014; Sorensen et al., 2010).

Sensor-based monitoring and early warning systems can aid the daily manager to identify indivi-

dual animals, or groups of animals, which need primary attention. Ideally the system can generate a

warning timely enough for the manager to decide for the right intervention and either prevent any wel-

fare reducing condition from occurring, or at least reduce its consequences (Kristensen et al., 2010).

Such early warning systems, or detection models, for livestock production have been developed for

the past twenty years (Dominiak and Kristensen, 2017), and they often aim to detect very specific

conditions in individual animals, as for instance Clinical Mastitis (CM) in cows (Cavero et al., 2006,
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2007; Huybrechts et al., 2014; Kamphuis et al., 2010; Mol et al., 1997, 1999), lameness (Garcia

et al., 2014; Hertem et al., 2013, 2014; Kamphuis et al., 2013; Kramer et al., 2009; Maertens et al.,

2011; Pastell and Kujala, 2007; Viazzi et al., 2013) and oestrus (Bressers et al., 1995; Cornou and

Lundbye-Christensen, 2008; Freson et al., 1998; Maatje et al., 1997; Mol and Ouweltjes, 2001; Mol

et al., 1997; Ostersen et al., 2010). However, the prevalence of animals with such specific conditions

is usually low relative to the amount of animals not having them, and the consequence of this is that

the warning systems generate too many false alarms (Dominiak and Kristensen, 2017; Hogeveen

et al., 2010; Rasmussen, 2002).

For bio-security reasons, modern Danish pig production units for growing pigs are run very dis-

ciplined and systematically with a clear spatial separation between pigs of different age groups in

closed sections (Cameron, 2000; Danish Agriculture and Food Council, 2010). This separation re-

strain most diseases from spreading between sections in a herd and, to a certain extent, between pens

in a section (Cameron, 2000; Pedersen, 2012; Vils, 2013).

From a modeling perspective, such a construction of the production unit makes it well suited for

the development of a spatial model. Hence, the herd can be modeled as a system consisting of

one large unit (the whole herd), which consists of a number of identical subunits (sections), with

each subunit consisting of a number of identical sub-subunits (pens). Such a spatial detection model

aims to identify specific high-risk areas within the herd, rather than target individual animals. Area-

specific alarms enables the manager to include any specific knowledge of the animals in the targeted

areas, and hereby choose the best suited intervention under the given circumstances.

The parameter used in the model must contain relevant information on all animals across the herd

in order to reflect the entire modeled system. Madsen et al. (2005) modeled the drinking pattern

of a whole section of weaner pigs, and found that changes in the pattern contained information on

the general wellbeing of the pigs as well as predictive value for detecting outbreaks of diarrhea.

Later Andersen et al. (2016) showed that changes in drinking patterns could indicate stress caused

by a variety of factors like stocking density and amount of rooting material supplied. These studies

indicate a high level of information in water data, and this is supported in a recent study, where

Jensen et al. (2017) found unexpected changes in the pigs’ water consumption to be the one single

parameter containing most information in the prediction of outbreaks of either diarrhea or fouling in

a pen with finisher pigs.

Previous modeling of water data from growing pigs has been done on individual pens (Andersen

et al., 2016; Jensen et al., 2017; Kashiha et al., 2013) or on the total water consumption in a section

(Madsen et al., 2005). By modeling pens or sections separately, each modeled unit is considered

isolated from other parts of the herd, whereas an incorporation of a herd-specific correlation between

pens in the same section and sections in the same herd, could reflect interaction across the herd.

The objective of this paper is to present a spatial approach for modeling the drinking pattern of

growing pigs throughout the entire growing period using a multivariate dynamic linear model. It is

our hypothesis that pens and sections in a herd of growing pigs are correlated, and that this correlation

can be modeled using model parameters defined at different spatial levels.
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Figure 6.1: Production cycle for Herd A (A) and Herd B (B).

6.2 H E R D S , S E N S O R S A N D DATA

6.2.1 Herd description

For this study, water consumption data was obtained from two different herds. Herd A is a Danish

commercial finisher herd, and Herd B is an experimental weaner herd, “Grønhøj”, owned by the

Danish Pig Research centre.

The general routines in Danish weaner and finisher production are structured so that the time of

insertions of pigs in the farm, and the length of the growth period run in a cycle (Figure 6.1). Such a

production cycle is a part of a larger production plan coordinated with the suppliers of the incoming

pigs and the abattoir, when regarding finishers, or buyers, when regarding weaners. All pigs in one

section are inserted at the same day, and they are all of same age relative to weaning date. When a

section is emptied, it is cleaned and dried out for bio-security reasons before a new batch of pigs are

inserted. For Herd A one growth period (30-110 kg) is approximately 14 weeks including one week

of cleaning (Figure 6.1 (A)), and for Herd B one growth period (7-30 kg) is 8 weeks including four

days of cleaning (Figure 6.1 (B)).

Herd A produces 10.000 cross-bred finisher pigs per year, and the herd has five identical sections,

of which four are included in this study (Figure 6.2 (A)). Each section consists of 28 pens, and two

neighbouring pens share the same water pipe, which supplies one drinking nipple in each of the pens

(Figure 6.3). Approximately 486 pigs are inserted in a section with 18 pigs in each pen, and they are

fed with liquid feed three times a day (Krogsdahl, 2014b). From 60 kg bodyweight the pigs are fed
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Figure 6.2: Structure of Herd A and Herd B. Grey double pens in Herd A and grey pens in Herd B were
equipped with sensors and included in the study

restrictively as it is common practice with finisher pigs in order to increase the lean meat percentage

(Vils, 2012).

Herd B consists of four sections, each with 12 pens for weaner pigs (Figure 6.2 (B)). One water

pipe supplies one drinking bowl per pen (Figure 6.3). 15 pigs are inserted in each pen, and the

pigs are fed ad libitum with dry feed three times a day during the whole growth period (Krogsdahl,

2014a).

The main characteristics of the two herds are summarized in Table 6.1.

6.2.2 Data

Water data was obtained by photo-electric flow sensors (RS V8189 15mm Diameter Pipe) mea-

suring water flow per millisecond as pulses proportional to the velocity of the water (Anonymous,

2000). The sensors were calibrated between batches, and the number of pulses entered a central data

base once every 24 hours. For this study the number of pulses were converted to litres and aggregated

per hour, yielding water use in litres per hour.
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Figure 6.3: One water pipe supplying two neighbouring pens in Herd A (left) and a single pen in Herd B
(right)

Table 6.1: Characteristics for the two herds in the study (14 for section K11)

Characteristic Herd A Herd B

Production type Commercial Research Farm

Animal group Finishers (30-110 kg) Weaners (7-30 kg)

Sections 4 4

Sensors total/ per section 8/2 16/4

Pigs per pen/ per sensor 18/36 15/15

Growth period (batch) 14 weeks 8 weeks

Batches per sensor 7 13 1

Learning data (hours) 9540 14657

Test data (hours) 4441 3025

1 14 for section 4.
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In Herd A a total of eight sensors were installed with two sensors placed in each of four identical

sections (Figure 6.2 (A)). All sensors were placed on water pipes supplying two neighbouring pens,

and therefore each sensor monitored the joint water use of pigs in two pens. Both sections and pens

were randomly chosen, and seven batches were monitored per section from May 2014 to March 2016.

In this study a batch of pigs is defined as all pigs inserted in the same section at the same day.

The full data set for Herd A consists of eight time series, one per sensor, of length from the first

observation in the herd to the last observation in the herd. In total 16309 hours. Every observation

from each sensor is paired with the insertion date of the relevant batch of pigs at any given time. The

data set for Herd A was divided into a learning data set, which consists of the first four batches (9540

hours, 68%) and a test data set, which consists of the two last batches (4441 hours, 32%) (Table 6.1).

A total period of 2328 hours (one batch per pen) was left out between the two subsets to exclude the

possibility of observations from the same pigs occurring in both data subsets.

In Herd B a total of sixteen sensors were installed with four sensors in each of four identical

sections (Figure 6.2 (B)). Each sensor monitored the water use of one individual pen. The sections

included in this study were assigned by the research centre, whereas the pens within each section

were randomly chosen. 13 batches (Sections 1, 2, and 3) and 14 batches (Section 4) were included,

and data was collected from October 2014 to December 2016.

The full data set for Herd B consists of sixteen time series, one per sensor. The monitoring period

begins with the first global observation and ends with the final global observation. In total 18755

hours. As in the data set for Herd A, every observation is paired with the insertion date of the

relevant batch. The data set for Herd B was divided into a learning data set of the first ten batches

(14657 hours, 83%) and a test data set of the two last batches (3025 hours, 17 %) (Table 6.1). A

period of 1073 hours (one batch) was left out between the two data subsets to ensure no observations

from the same pigs would occur in both subsets.

During cleaning periods between batches, no sensor observations were made. Such periods were

considered planned periods of missing data as opposite to any occasional missing observations or

sensor outages during the growth periods.

As only actual water flow is measured, it is not possible to distinguish periods with no water

consumption from (short) sensor outages. Since water consumption is typically very low during

the night, it was decided to interpret missing observations of a duration of less than 5 hours between

10:00 PM and 4:00 AM as zero observations. All other missing observations are considered as sensor

outages.

6.3 M O D E L D E S C R I P T I O N

In this section the structure of the developed model is described. The model is developed as a

general tool, which in theory can be applied to any herd with either weaner pigs or finisher pigs.
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6.3.1 General Dynamic Linear Model

The water consumption over time is modeled simultaneously for all sensors in the herd. The

observation vector Yt = (Y1t, . . . , Ynt) ′ is the water consumed within the last hour at time t for

each of the n sensors. It is modeled by the matrix quadruple Ft, Gt, Vt, and Wt, where, following

the description by West and Harrison (1999):

• Ft is a known (n× r) design matrix;

• Gt is a known (n× n) system matrix;

• Vt is a known (r× r) observation variance-covariance matrix;

• Wt is a known (n× n) system variance-covariance matrix.

The four matrices, Ft, Gt, Vt, and Wt, define the way Yt relates to an underlying parameter

vector θt at time t, and how the system evolves over time in the two equations:

O B S E RVAT I O N E Q UAT I O N

Yt = F ′
tθt + νt, νt ∼ N(0, Vt), (10)

and

S Y S T E M E Q UAT I O N

θt = G ′
tθt−1 +ωt, ωt ∼ N(0, Wt). (11)

The aim of the DLM is to estimate the parameter vectors θ1, . . . , θt from the observations Y1, . . . , Yt
by sequential use of the Kalman filter. Let D0 denote the initial information before any observati-

ons are made so that (θ0|D0) ∼ N(m0,C0). Furthermore, let Dt−1 = D0 ∪ {Y1, . . . , Yt−1} de-

note all available information before time t so that (θt−1|Dt−1) ∼ N(mt−1,Ct−1). When a new

observation Yt becomes available, the Kalman filter will update the conditional distribution from

N(mt−1,Cn−1) to N(mt,Cn) as described by West and Harrison (ibid.).

6.3.2 Model construction

When looking at Figures (6.4) and (6.5) it can be seen that the water consumption of growing pigs

has a clear diurnal pattern. Furthermore, Figure (6.6) illustrates how the underlying level of water

consumed per day increases over time, implying that the underlying level of daily water consumption

increases as the pigs grow.

Madsen et al. (2005) found that the drinking pattern of a whole section of 405 weaner pigs could

be described in a DLM composed of four smaller DLMs, describing three harmonic waves of lengths
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Figure 6.4: Diurnal drinking pattern, finishers Herd A.
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Figure 6.5: Diurnal drinking pattern, weaners Herd B.
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Figure 6.6: Drinking pattern of one week (black line) where the underlying level increases over time (purple
line).

24h, 12h, and 8h, and a growth trend. The same four sub models describe the diurnal drinking pattern

of a pen of weaners or finishers very good as well, as illustrated in Figure (6.7), and the development

of the full multivariate model will be described in the following subsections.

Cyclic models

The diurnal drinking pattern is modeled by three cyclic models, each describing a harmonic wave.

Harmonic waves can be expressed in a DLM using trigonometric functions in the Fourier form repre-

sentation of seasonality (Madsen et al., 2005; West and Harrison, 1999), where each wave takes up

two parameters, representing the phase and amplitude of the cosine waveform. According to West

and Harrison (1999), the harmonic waves can be described with the design matrix Fht and system

matrix Ght defined as:

Fht =

(
1

0

)
and Ght =

(
cos(ω) sin(ω)

− sin(ω) cos(ω)

)
. (12)

with ω = 2π/24 yielding a wave with a period of 24 (MH1), ω = 2π/12 a wave with a period of

12 (MH2), andω = 2π/8 a wave with a period of 8 (MH3).

Linear growth model

The underlying level of water consumption can be described by a linear function, and the increase

over time is included by combining the linear function with a growing trend in a linear growth model,

modeling the increase from time t− 1 to t.

The general description of a dynamic linear growth model, as based on West and Harrison (ibid.),

is characterized by the following design and system matrices:

Flt =

(
1

0

)
and Glt =

(
1 1

0 1

)
. (13)

The parameter vector θt consists of a level parameter θ1t and a growth parameter θ2t. Thus, the

expected level at time, θ1t, will be the sum of the level at time t− 1 and the growth parameter.
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Figure 6.7: The diurnal drinking pattern (black line) is shown together with the three harmonic waves; 24 h
(H1), 12 h (H2), and 8 h (H3). The sum of the three harmonic waves and the underlying level (which is not
depicted) is shown in (SUM).
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6.3.3 Full model - univariate

For a single sensor, the univariate model consisting of four sub models; one linear growth model

MLG and the three cyclic modelsMH1,MH2 andMH3, is characterized by the design matrix

Fut =
(
1 0 1 0 1 0 1 0

) ′
(14)

and the system matrix

Gut =



1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 cos(ω) sin(ω) 0 0 0 0

0 0 − sin(ω) cos(ω) 0 0 0 0

0 0 0 0 cos(2ω) sin(2ω) 0 0

0 0 0 0 − sin(2ω) cos(2ω) 0 0

0 0 0 0 0 0 cos(3ω) sin(3ω)

0 0 0 0 0 0 − sin(3ω) cos(3ω)


(15)

whereω = 2π/24.

The observation variance-covariance matrix reduces in the univariate case to a scalar, Vut , whereas

the size of the system variance-covariance matrix, Wu
t , is of size 8× 8. The parameter vector θt has

eight elements; one for level, one for growth, and two for each of the three harmonics.

Full model - multivariate

The simplest possible multivariate model for n sensors would be to define a system matrix Gt of

size 8n× 8n as a block diagonal matrix where each of the n blocks along the diagonal is identical to

Gut from Eq. (15). Similarly, the observation variance-covariance matrix would be a diagonal matrix

having all diagonal elements equal to Vut . The system variance-covariance matrix would be a block

diagonal matrix where each block along the diagonal would be equal to Wu
t . Finally, the design

matrix Ft would be a 8n× n matrix with n blocks each equal to Fut . The underlying assumption

behind such a model would be that the observations from the n sensors were completely independent.

A multivariate model as described would, however, not add anything to a scenario with n univa-

riate models running separately in parallel. Therefore, the model has to be modified to allow for

interactions between sensors. This can, basically, be achieved by direct modeling of the interactions

in the design and system matrices and/or by estimating full variance-covariance matrices Vt and Wt

allowing for correlations between sensors (as opposed to block diagonal matrices).

In this study both approaches will be used. The interactions between the elements of the parameter

vector will be directly modeled in the design and system matrices, and the interactions between the

observation errors will be modeled by a full variance-covariance matrix.
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Modeling interactions in the design and system matrices

When modeling the spatial structure of the two herds included in this study, three spatial levels,

Pen, Section and Herd, are defined as follows:

• Pen Level describes individual sensors, each monitoring either the joined water consumption

of pigs in two neighbouring pens (Herd A), or in a single pen (Herd B).

• Section Level describes each of the physical sections of a herd as one individual unit including

all sensors within the section.

• Herd Level describes the physical building in which the sections are placed, and includes all

sensors in all pens and sections.

In order to describe any herd-specific interactions, the four sub models can be defined individually

at either of the three spatial levels with the following properties:

• Defined at Pen Level the sub model evolves differently in each pen over time. One block is

formed per pen in Gt.

• Defined at Section Level the sub model evolves identically in all pens within the section over

time, expressing interactions between pens in the same section. One block is formed per

section in Gt.

• Defined at Herd Level the sub model evolves identically in all pens in the herd over time,

expressing interactions between all pens in the herd. One block including the whole herd is

formed in Gt.

Let MiLv denote a sub model, i, where i ∈ {LG,H1,H2,H3} indicates either the linear growth

(LG), or one of the three cyclic models (H1,H2,H3). Furthermore, let a sub model be defined at

level Lv, where Lv ∈ {h, s,p} for either herd (h), section (s), or pen (p). Finally, ns and np denote

the number of sections in the herd and the number of pens in the herd, respectively.

As an example of the direct modeling of interactions in the design and system matrices; take a

herd with two sections (ns = 2) each with two sensors (so that np = 2ns = 4), and the following

definitions of interactions for each sub model:

• MLGs is defined at Section Level

• MH1h is defined at Herd Level

• MH2s is defined at Section Level

• MH3p is defined at Pen Level
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The design matrix Fext will then have dimensions 18× 4 with the following structure:

Fext =


1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0


′

(16)

And the corresponding system matrix Gext will have the dimensions 18× 18, consisting of nine

blocks in the following block diagonal structure:

Gext =



Gs1LGs 0 0 0 0 0 0 0 0

0 Gs2LGs 0 0 0 0 0 0 0

0 0 GhH1h 0 0 0 0 0 0

0 0 0 Gs1H2s 0 0 0 0 0

0 0 0 0 Gs2H2s 0 0 0 0

0 0 0 0 0 G
s1p1
H3p 0 0 0

0 0 0 0 0 0 G
s1p2
H3p 0 0

0 0 0 0 0 0 0 G
s2p1
H3p 0

0 0 0 0 0 0 0 0 G
s2p2
H3p



(17)

where 0 denotes a 2× 2 sub matrix only consisting of zeros.

Modeling interactions in the Observation variance-covariance matrix, Vt

The observational variances, Vt, express the natural completely random variation of water con-

sumption as well as any uncertainty in the measurements, or observations, of the water data. The full

variance-covariance matrix for the observation error νt will be defined from three separate variance

components corresponding to herd level, section level and pen level, respectively. This corresponds

to an error structure as follows for the jth sensor (placed in Pen Pj, located in Section Sj of HerdHj):

νjt = νHjt + νSjt + νPjt, (18)

where

• νHjt ∼ N(0,σ2H) is an error term which is common for the entire herd;

• νSjt ∼ N(0,σ2S) is an error term which is common for all pens in a section;

• νSjt ∼ N(0,σ2P) is an error term which is specific for a pen.
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As an example, consider again a herd with two sections, each holding two pens with a sensor in
each of them. The distribution of the observation error then becomes

νexjt ∼ N



0

0

0

0

 ,


σ2H + σ2S + σ

2
P σ2H + σ2S σ2H σ2H

σ2H + σ2S σ2H + σ2S + σ
2
P σ2H σ2H

σ2H σ2H σ2H + σ2S + σ
2
P σ2H + σ2S

σ2H σ2H σ2H + σ2S σ2H + σ2P + σ2S


 (19)

All three variance components of Vt are assumed constant over time for all batches, but different

between herds. Leaking drinking bowls or drinking nipples often occur for a shorter period of time

in one or a few pens, and this is likely to affect the pen level variance, which is also assumed for

any inaccuracies of the flow meters. Both mixing of liquid feed (in Herd A) and washing of sections

between batches occur with the same frequency for all batches, affecting all pigs in the herd, and

therefore assumably the herd level variance. Also a possible influence of weather conditions is

assumed to be expressed at herd level.

Modeling interactions in the System variance-covariance matrix, Wt

The system variance, Wt, expresses any uncertainty about the changes of the state vector from

time t− 1 to t, and hereby determines the stability of the system over time. As described by West

and Harrison (1999) the system variance Wt can be expressed as a fixed proportion of the estimated

variance Ct of θt given all observations until (and including) time t by a discount factor, δ, which

by definition, satisfies the condition 0 < δ 6 1 (ibid.). Given δ and C0 the whole series Wt can be

identified as follows for each time step t:

Wt =
1− δ

δ
Pt, (20)

where

Pt = GtCt−1G ′
t = V[Gtθt−1|Dt−1], (21)

However, one single discount factor is not recommended for a super positioned model (ibid.).

Instead each sub model should be allowed to express different rates of change in stability over time

through individual discount factors. In a diurnal pattern the harmonic characteristics are often more

durable than the growth trend, which further emphasizes the need for a discount factor for each sub

model (ibid.). We will therefore need several discount factors to express the system variance in the

present model.

Based on West and Harrison (ibid.) the system variance of a super positioned DLM, can be defined

using several discount groups as follows: Let Mi denote a sub model (i.e. a certain range of para-

meters of the parameter vector θi). Let γ > 1 denote the number of sub models and let ni denote

the number of parameters of Mi, so that
∑γ
i=1 ni = n is the dimension of the full super positioned

DLM.
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A block diagonal approach is then applied where, for instance, Git denotes the ith block diagonal

element of Gt. Thus, for sub modelMi, we have

Pit = GitCi,t−1G ′
it = V[Gitθi,t−1|Dt−1], i = 1, . . . ,γ (22)

and

Wit =
1− δi
δi

Pit, i = 1, . . . ,γ, (23)

where δ1,...,δγ are any set of discount factors, (0 < δi 6 1; i = 1, . . . ,γ), with δi being the discount

factor associated with the sub model in question.

As described in Section 6.3.3, the spatial level of a sub model determines the number of blocks in

the system matrix Gt, and hereby the number of blocks in the system variance matrix Wt if there

is no correlation between the sensors and the levels. The system variances for all blocks from the

same sub model belong to the same discount group, meaning, they are expressed through the same

discount factor. Since, however, some sensors are placed within the same section, and all sensors

are placed within the same herd, some interactions between the changes of the corresponding state

variables in the state vector are assumed:

• Pens are assumed dependent within the same section.

• Sections are assumed dependent within the herd.

• Pens are assumed independent between sections except for the correlation expressed through

the sections.

• The linear growth model and the cyclic models are assumed independent of each other.

As a consequence of the defined correlation structure, the block structure for the example of

Section 6.3.3 with two sections each with two sensors will result in γ = 5 blocks where

G1t =

(
Gs1LGs 0

0 Gs2LGs

)
, G2t = G

h
H1h, G3t =

(
Gs1H2s 0

0 Gs2H2s

)
,

G4t =

(
G
s1p1
H3p 0

0 G
s1p2
H3p

)
and G5t =

(
G
s2p1
H3p 0

0 G
s2p2
H3p

)
.

Thus, G2t is a 2× 2 matrix, whereas G1t,G3t,G4t and G5t are all 4× 4 matrices. The system

variance matrix will have the same block structure with 5 diagonal blocks of the same dimensions

(but without the zeros).

With the structure defined above it would be possible to use 5 different discount factors, but in

general, the same discount factors are used for all harmonic models with thew same wave length.

Thus, Blocks 4 and 5 will in the example have the same discount factor reducing the number of

different discount factors to 4.
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6.4 A P P LY I N G T H E D L M

6.4.1 Defining a herd

Throughout the development of the multivariate spatial DLM just described, it has been the aim

to build a very general model in a way so it can be applied to a variety of herds, not regarding the

number of pens and sections, levels of sub models, lengths of batches, sizes of pigs etc. In this

section we will describe how the model is applied to the data, but also illustrate the flexibility of the

general model by applying it to the data sets from both a finisher herd with eight sensors, Herd A,

and a weaner herd with sixteen sensors, Herd B.

In the model, a herd is defined by the number of sensors monitoring water consumption. Input to

the model is the number of sections with sensors, the number of sensors within the section, and a list

of which pen and section each sensor is placed in. In order to distinguish batches from each other,

the insertion date of all batches related to each sensor is also given as input to the model.

6.4.2 Handling missing observations

Both data sets are characterized by periods of missing observations, which can involve everything

from one to all sensors in the herd, and last from one hour to a whole batch. Any period of missing

observations is registered as NA observations in the data set, and is handled individually for each

sensor by the model. Some NA observations are related to the cleaning period between two batches,

where no observations are registered from any sensor in the empty section. These periods are re-

garded as planned periods of missing observations, and at the insertion of a new batch the model is

reset as will be described in Section 6.4.3. Some NA observations are, however, unplanned missing

observations. A period of unplanned NA observations can be caused by the pigs not drinking any

water, or by sensor outages for a shorter or longer period. During a sequence of NA observations, the

system keeps evolving and Ct increases.

6.4.3 Resetting between batches

All data from all batches monitored by one sensor represent one long time series. However, each

new batch is likely to evolve differently over time. Therefore each time series must be divided into

subseries with the length of the specific batch. If a new batch is inserted at time tn the learned values

for conditional mean,mt, and variance-covariance matrix, Ct, from the previous batch are discarded,

and the values are reset tomtn = m0 and Ctn = C0.
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6.4.4 Estimating variance components

As described in Sections 6.3.3 and 6.3.3, the observation variances are modeled through full

variance-covariance matrices, whereas the system variances are modeled as a fixed proportion of

the posterior variances, Ct, using discount factors.

Any difference between the predicted multivariate observation and the actual observation is con-

tained in a vector of forecast errors et. If the pigs follow their normal drinking pattern and drink as

much water as expected, the prediction of the next observation is close to perfect, and any forecast

error, et, will be small. If, on the other hand, something is causing the pigs to drink more or less than

expected, the forecast error will be larger. The mean square error, MSE defined as 1T
∑T
t=1 e

′
tet,

will be used to measure the predictive performance of each model for comparison of the different

versions.

All observation variances and discount factors are estimated on learning data by numerical opti-

mization using the Nelder-Mead algorithm implemented in the optim function in R (R Core Team,

2014). The criterion of optimality is minimization of MSE. Thus, the observation variances and dis-

count factors, which minimize the MSE for the learning data, are the results of the estimation. After

insertion of a batch and after a sequence of NA observation lasting more than five hours, the model

parameters need to adjust to the observations before reliable forecasts can be produced. Therefore,

forecast errors for the first 24 hours after insertion and after such an NA sequence are ignored in the

evaluation of the MSE.

6.4.5 Model scenarios

Now the general structure of the spatial DLM is described, and seven different versions of the full

DLM will be applied to each of the two data sets in order to identify, which versions describe any

spatial correlation in the drinking pattern of finishers and of weaners the best. Each model differs

with regard to the defined levels of the cyclic models (see Table 6.2), and the two data sets are divided

into learning sets and test sets, as described in Section 6.2.2. The observation variances, Vt, and the

discount factors, δ, of each model will be estimated on learning data, and the estimated values will

be entered as input to the model, when run on test data.

As previously described, Danish pig producing units for growing pigs are generally run with a

sectionized structure. Therefore pigs of different ages and sizes are located in different, and separate,

sections of a herd. In order to reflect that, the linear growth sub model will be defined at section level

for all seven versions in each herd, but the cyclic sub models of the DLM will be defined at different

level combinations, which can be seen in Table 6.2

For both herds, and all model versions, the same four discount groups were defined; namely one

for each of the four sub models.
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Table 6.2: Level definitions for the seven models applied to data sets from Herd A and Herd B. The Linear
Growth sub model is defined at Section level in all models, whereas different combinations of level definitions
are made for the cyclic sub models. Notations: LG = Linear Growth model, H1 = Cyclic model of length 24,
H2 = Cyclic model of length 12, H3 = Cyclic model of length 8. H = Herd level, S = Section level, P = Pen
level

LG H1 H2 H3 Interpretation

S HHH The full harmonic pattern evolves identically for all pens in the herd

S HSS H1 evolves identically for all pens,

H2 and H3 evolve identically within each section but differently between sections

S HSP H1 evolves identically for all pens,

H2 evolves identically within sections but differently between sections,

H3 evolves differently in each pen

S SSS The full harmonic pattern evolves identically within each section

but differently between sections

S SSP H1 and H2 evolve identically within sections but differently between sections,

H3 evolves differently in each pen

S SPP H1 evolves identically within sections but differently between sections,

H2 and H3 evolve differently in each pen

S PPP The full harmonic pattern evolves differently in each pen
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Table 6.3: Estimated observation variances and discount factors for seven model structures for Herd A. Lear-
ning data: 9540 hours (68 %). Test data: 4441 hours (32%). Notations: LG = Linear Growth model, H1 =
Cyclic model of length 24, H2 = Cyclic model of length 12, H3 = Cyclic model of length 8. H = Herd level, S
= Section level, P = Pen level

Model Structure Observation variances 1 Discount factors 2

LG H1 H2 H3 σ2H σ2S σ2P δ1 δ2 δ3 δ4

S HHH 5.84 146.72 13.34 0.993 0.989 0.994 0.990

S HSS 9.29 176.09 0.12 0.993 0.989 0.993 0.992

S HSP 0.60 90.39 172.45 0.993 0.989 0.994 0.994

S SSS 0.10 104.41 0.10 0.992 0.994 0.992 0.9999

S SSP 3.59 37.37 121.72 0.994 0.990 0.994 0.994

S SPP 1.28 12.87 152.15 0.994 0.990 0.995 0.994

S PPP 0.13 3.56*E-6 78.09 0.994 0.991 0.995 0.994

1 σ2H: Observation variance, herd effect, σ2S: Observation variance, section effect, σ2H: Observation variance, pen effect
2 δ1: LG, δ2: H1, δ3: H2, δ4: H3

6.5 R E S U LT S A N D D I S C U S S I O N

The estimated variance components and the predictive performance (evaluated as MSE) for each

of the seven model versions is presented for both herds.

6.5.1 Estimated variance components

Tables 6.3 and 6.4 show the estimated variance components for each of the seven models applied

to data from Herd A and Herd B. In the majority of the models, the observational variances, σ2H, σ2S
and σ2P, are very high, especially σ2P for Herd B, but also σ2S and σ2P for Herd A. In general, high

observational variances in a DLM can indicate that all variation in the data is expressed through the

observation variances, assumably because of a very rigid and non-flexible system.

However, a rigid system would favour very high discount factors (i.e. δ very close to 1), leaving

little room for any instability in the system variances (West and Harrison, 1999). This is not the

case for the discount factors of this model, as it can be seen in Tables 6.3 and 6.4. Especially for

Herd B, the estimated discount factors are fairly low, which results in a highly flexible model on all

parameters, capable of adjusting very well to the learning data set (Witten and Frank, 2005).

The high flexibility, which characterize the models for both herds, can also be caused by too high

a complexity of the models, that is an excess of parameters used to describe the data, hereby leading

to an overfitting of data (Elith et al., 2008; Hawkins, 2004; Torgo, 2017; Witten and Frank, 2005).

Overfitting often occurs in models with highly correlated parameters (Hawkins, 2004; Witten and

Frank, 2005). The high observational variances we see in the DLM presented here, can be the result

of a so-called bias-variance tradeoff, which is associated with overfitting (Torgo, 2017). The bias-
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Table 6.4: Estimated observation variances and discount factors for seven model structures for Herd B. Lear-
ning data: 14657 hours (83 %). Test data: 3025 hours (17%). Notations: LG = Linear Growth model, H1 =
Cyclic model of length 24, H2 = Cyclic model of length 12, H3 = Cyclic model of length 8. H = Herd level, S
= Section level, P = Pen level

Model Structure Observation variances 1 Discount factors 2

LG H1 H2 H3 σ2H σ2S σ2P δ1 δ2 δ3 δ4

S HHH 1.02 0.66 1486.23 0.973 0.972 0.990 0.981

S HSS 7.69 28.13 6474.01 0.970 0.972 0.990 0.986

S HSP 3.08 43.42 1415.14 0.971 0.972 0.990 0.990

S SSS 0.07 10.88 1.48 0.971 0.974 0.989 0.983

S SSP 0.76 39.50 235.35 0.971 0.973 0.989 0.991

S SPP 0.02 1.74 133.67 0.972 0.973 0.993 0.990

S PPP 0.06 0.54 51.58 0.972 0.980 0.993 0.989

1 σ2H: Observation variance, herd effect, σ2S: Observation variance, section effect, σ2H: Observation variance, pen effect
2 δ1: LG, δ2: H1, δ3: H2, δ4: H3

variance tradeoff describes how a model either adjusts too well to the training data, hereby reducing

the bias (MSE) and increasing the variance, or decreases the variance by a reduced sensitivity to

the learning data, which results in a higher bias (Torgo, 2017; Witten and Frank, 2005). Since the

estimation of variance components in the presented DLM were aiming for the lowest MSE, and the

variables in the model are highly correlated, it is very likely, that the model is overfitting the learning

data.

Although overfitting in general is sought avoided and does not add to an increased performance

(Hawkins, 2004), it does not necessarily impede the predictive performance either (Elith et al., 2008;

Lieberman and Morris, 2014). Overfitting is a well known challenge when handling correlated varia-

bles or variables analyzed using regression techniques (Hawkins, 2004). But Elith et al. (2008) found

that the predictive performance of an overfitted model was unaffected when using Boosted Regres-

sion Trees and evaluating using cross-validation. Likewise Lieberman and Morris (2014) concluded

that multi-collinearity in cross-validated models, was irrelevant if prediction performance was the

goal of the model.

6.5.2 Predictive performance

In Tables 6.5 and 6.6 the MSE of both learning data and test data from each herd is presented. The

predictive performance of a model should not be evaluated on learning data (Elith et al., 2008), but

we still choose to present the models’ MSE on learning data in order to show how the MSE is lower

on learning data due to possible overfitting, as described above.

When comparing the MSE of the learning data to the MSE of the test data for Herd A, it can

be seen, that the MSE of the test data is 3.5 times the MSE of the learning data on average (see
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Table 6.5: MSE for learning data and for test data for seven model structures for Herd A. Notations: LG =
Linear Growth model, H1 = Cyclic model of length 24, H2 = Cyclic model of length 12, H3 = Cyclic model
of length 8. H = Herd level, S = Section level, P = Pen level

Model Structure MSE

LG H1 H2 H3 Learning data 1 Test data 2

S HHH 4.003 15.687

S HSS 3.923 14.535

S HSP 3.921 14.612

S SSS 3.954 13.850

S SSP 3.850 13.976

S SPP 3.836 13.946

S PPP 3.800 13.924

1 9540 hours (68 %)
2 4441 hours (32%)

Table 6.5), whereas the MSE on learning data is only 1.3 times higher than for test data for Herd B

on average (see Table 6.6). A larger difference between MSE on learning data and test data could

be expected for Herd B because of the very large observational variances and low discount factors

previously discussed. However, the ratio between the two MSE values is not relevant when choosing

the model version with the better predictive performance. In the following comparison of model

versions, we will only refer to the MSE of the test data.

6.5.3 Model versions - Herd A

When comparing the MSE of the different model versions from Herd A (see Table 6.5), it shows

that all model versions which include cyclic sub models defined at herd level have the highest MSE.

This indicates that differences between pens in the herd are too large to be described by the same

cyclic sub model.

This is well illustrated in Figure 6.8, which shows the drinking pattern of a week in four pens

in four sections in Herd A. The diurnal drinking pattern in pen 1.6 is disturbed, which results in

the water consumption peaking every eight hour instead of once per 24 hours as in the undisturbed

diurnal patterns of pens 2.5 and 3.5. This abnormal pattern in pen 1.6, in combination with a longer

sensor outage in pen 5.7, decreases any correlation between sections, and situations like this are

likely to cause the herd level model versions to under perform.

The planned periods of missing data during cleaning periods between batches are likely to affect

the model versions with parameters defined at herd level as well. Our initial assumption was that

a distinct diurnal pattern would characterise pigs’ drinking pattern throughout the growth period.

However, the pigs in pen 1.6 were inserted 10 weeks before the depicted week, and showed no such

diurnal drinking pattern at this time.
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Table 6.6: MSE (mean squared error) for learning data and for test data for seven model structures for Herd B.
Notations: LG = Linear Growth model, H1 = Cyclic model of length 24, H2 = Cyclic model of length 12, H3
= Cyclic model of length 8. H = Herd level, S = Section level, P = Pen level

Model Structure MSE

LG H1 H2 H3 Learning data 1 Test data 2

S HHH 1.350 1.750

S HSS 1.327 1.727

S HSP 1.325 1.712

S SSS 1.235 1.621

S SSP 1.234 1.559

S SPP 1.229 1.556

S PPP 1.194 1.466

1 14657 hours (83 %)
2 3025 hours (17%)

Such a disturbed diurnal pattern indicates that some pigs have to drink during the night time in

order to get their need for water satisfied. Drinking activity in finisher pigs during the night was also

found by Andersen et al. (2016), and installing an extra drinking nipple might be necessary to restore

the diurnal pattern, and supply sufficient amounts of water to the pigs. This is especially profound for

finisher pigs that are fed liquid feed, since the restrictively feeding from 60 kg reduces the amount of

water assigned through the feed and increases the demand for water from the drinking nipples.

The results in Table 6.5 also show that the model version with all four sub models defined at

section level outperforms any model version including cyclic sub models defined at pen level. This

supports the initial hypothesis of a correlation between pens and sections in a herd, which can be

modeled in a spatial model.

6.5.4 Model versions - Herd B

In Table 6.6 we see that the best performing model version is the one with all cyclic sub models

defined at pen level. This result indicates that any correlation between pens and sections in a herd

may be described solely through the correlation structure of the system variance-covariance matrix,

Wt, as described in Section 6.3.3 and through the observation variance-covariance matrix described

in Section 6.3.3.

In general, model versions which included cyclic sub models at section level, performed better

than any model version including herd level sub models. The herd level versions may fail in Herd

B for the same reasons as in Herd A, although the cleaning periods between batches were shorter in

Herd B.

The the poorer performance of models with higher degrees of spatial correlation is surprising

considering the very disciplined sectionized management on the research farm and the uniformity
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M T T W F S S 

Figure 6.8: The water consumption from four pens in four different sections of Herd A in the same week. The
pigs in each of the four pens are of different ages with the oldest in pen 1.6. The diurnal pattern is disturbed in
pen 1.6, but intact in pens 2.5 and 3.5. In pen 5.7 there is no data due to sensor outage.
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of the pigs both within sections and within the herd relative to a finisher herd. The main reason for

the result may be the overfitting of the model as previously discussed. Since overfitting models tend

to model the random noise of a system, as described by Witten and Frank (2005), they are more

flexible and quickly adjust to smaller changes (Torgo, 2017). This is in compliance with the results

of the estimation of variance components. An adjustment to smaller changes can cause the model

to emphasize the importance of random noise within the single pen, hence failing to recognize any

correlation between pens.

6.5.5 Estimation procedure

Since the end goal of the project is to use the developed DLMs for early warning about undesired

events it could be argued that the discount factors and observation variances should have been estima-

ted on a learning data set where such events did not occur at all. Such an approach was, for instance,

used by Jensen et al. (2017) and the obvious advantage would be that if parameters are estimated

under “normal” conditions, deviations from the normal pattern in case of undesired events are more

easily detected.

In this study, the learning data set was simply the first batches of the study period and the test

data set was the last two batches. The reason for this choice was that we present a framework for

simultaneous monitoring of the entire herd. Thus, it is not possible to find batches without any

undesired events in any pen of the herd as it was for Jensen et al. (ibid.) who basically modeled a

single pen. Thus, the advantage of fitting the model to “normal” conditions is lost which, potentially,

will make it more difficult to detect deviating data patterns caused by undesired events.

An indirect estimation technique through discount factors was used for assessing the system

variance-covariance matrices of the models. Several initial attempts were done to estimate all va-

riance components more directly by the EM algorithm (see for instance Dethlefsen, 2001) as pre-

viously done in multivariate DLMs by Bono et al. (2012) and Jensen et al. (2017) but the iterative

algorithm failed to converge and some of the variances drifted out of scope over the iterations. The-

refore, the indirect approach with discount factors was used instead.

The full univariate model (i.e. for one sensor) as presented in Section 6.3.3 is directly inspired

by the work of Madsen et al. (2005) who concluded that a super positioned model consisting of a

linear growth component and three harmonics described the diurnal pattern well. It is interesting that

Madsen (2001, Chapter 8) reported that the EM algorithm also failed for the univariate model despite

several attempts. Thus, it seems to be a pattern that the EM algorithm is not well suited for estimation

in models with harmonics based on Fourier form representation of seasonality. The observation is

supported by unpublished work by the authors in relation to similar models with diurnal patterns.

Madsen (ibid.) mentioned that the system variance-covariance matrix must be expected to change

over time as the pigs grow. Therefore, it was argued that an “online” estimation technique based

on discount factors should actually be preferred to estimation by the EM algorithm. It is not clear
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whether the system variance-covariance actually do change over time, but if Madsen (ibid.) is right,

the discount factor approach will also be a good choice for the present study.

It was also argued that the direct link to the variability of data as expressed by Eqs. (22) and (23)

makes the approach less herd specific, because no new estimation is needed for each herd (as long

as the estimated discount factors are valid across herds). The results from this study (cf. Tables

6.3 and 6.4) do not confirm that discount factors are identical for different herds (at least not for a

multivariate spatial model) so it is expected that an estimation step is needed for each herd before the

system is ready for use.

When looking at the observation variances of Tables 6.3 and 6.4 it is quite obvious that the values

are not estimates for the true observation variances. They are far too big and they should just be

seen as the values optimizing the fit in combination with the resulting discount factors. The very

big values seen for many of the models have as a consequence that the models become less adaptive

which may actually be an advantage given that the ultimate use of the models is to produce early

warnings of deviating patterns caused by undesired events.

A similar behavior could have been achieved with discount factors closer to 1, but the best fit

was apparently achieved by very high “observational” variance and smaller discount factors. It is,

however a question whether a generalized (to the multivariate case) version of the Kalman filter with

unknown observational variance should have been developed for this study. Madsen et al. (2005)

used that approach for the univariate case so a suggestion for future research is to see whether the

method can be extended to the multivariate case.

Even though the observational error structure described in Eqs. (18) and (19) intuitively seems

natural, it can be discussed whether it actually over-parameterizes the observation errors. Particularly,

it is a question whether the herd level variance (σ2H) should have been taken out. For Herd A, this

term only contributed with up to 5% of the total observation variance and for Herd B it never even

reached 1% of the variance (percentages calculated from Tables 6.3 and 6.4. Thus, in future studies,

it is recommended not to include the herd level variance.

6.6 C O N C L U S I O N

We can conclude, that it is possible to develop a spatial DLM for the modeling of drinking patterns

across a herd of growing pigs. In Herd A, the model version expressing the strongest correlation in

the drinking patterns between pens within a section (the SSS model) obtains the highest fit. Model

versions which include parameters at pen level (SSP, SPP, and PPP) fit almost as well, whereas model

versions with parameters expressed at herd level (HHH, HSS, and HSP) fit the worse. Based on model

fit, correlation between pens do occur in Herd A, but primarily between pens within the same section.

In Herd B, a distinctive inverse relation between model fit and degree of correlation in the drinking

patterns are found. This results in the model version with the least correlation between the pens (the

PPP model) obtaining the highest fit, and the model version with the highest degree of correlation
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(the HHH model) obtaining the poorest fit. Thus, based on model fit, little or no correlation between

pens occur in Herd B. For both herds, overfitting of test data may influence the results.

6.7 P E R S P E C T I V E S

The overall motivation for the development of the presented model is to investigate spatial mo-

deling of water consumption as a strategy for a future detection system in commercial pig production.

However, the ability of the model to identify unwanted events in the herd must be evaluated before

taking any further steps. Such an evaluation of the detection performance will be conducted in a

following paper. Thus, the forecast errors generated by the seven model versions will be monitored

in a control chart, and the ability of the detection system to predict outbreaks of either diarrhea or

fouling is described in (Dominiak et al., 2017).
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7.1 I N T RO D U C T I O N

S PAT I A L M O D E L I N G O F P I G S ’ D R I N K I N G PAT T E R N S A S A N

A L A R M R E D U C I N G M E T H O D

I I . A P P L I C AT I O N O F A M U LT I VA R I AT E DY N A M I C L I N E A R

M O D E L

K. N. Dominiak, J. Hindsborg, L.J. Pedersen, and A. R. Kristensen

Abstract: The objectives of this paper are to evaluate the detection performance of a previously

developed multivariate spatial dynamic linear model (DLM), and to discuss potential post processing

strategies for reducing alarms. Performance evaluation is conducted by applying a standardized

tabular two-sided Cusum to the forecast errors generated by the spatial model. For two herd, the

forecast errors are generated at pen level, section level, and herd level. Seven model versions express

different degrees of correlations in the drinking patterns between pens and sections in a herd, and

the performances of the three spatial levels are evaluated for each of the model versions. The alarms

generated by the Cusum are categorized as true positive (TP), false positive (FP), true negative (TN),

or false negative (FN) based on time windows of three different lengths. In total, 126 combinations of

herds, spatial levels, model versions, and time windows are evaluated, and the performance of each

combination is reported as the area under the ROC curve (AUC). The highest performances were

obtained when detecting events at herd level (AUC = 0.98 (weaners) and 0.94 (finishers)) using the

longest time window and expressing the highest degree of correlation. However, the settings most

suitable for implementation in commercial herds, were obtained when detecting events at section

level (AUC = 0.86 (weaners) and 0.87 (finishers)) using the medium-length time window and highest

degree of correlation. The combination of a spatial DLM and a two-sided Cusum has high potential

for prioritizing high-risk alarms as well as for merging alarms from multiple pens within the same

section into a reduced number of alarms communicated to the caretaker. Thus, the spatial detection

system described in this paper and in a previous paper constitute a new and promising approach to

sensor based monitoring tools in livestock production.

7.1 I N T RO D U C T I O N

For more than 20 years the development of sensor-based detection models within the field of

livestock science has been subject to an increasing scientific focus. However, a general challenge

for detection models is that they generate too many false alarms (Dominiak and Kristensen, 2017;

Hogeveen et al., 2010). False alarms reduce the reliability of a detection model as a decision-support

tool, and represent a major reason for models being unsuited for implementation in modern livestock

production herds (Hogeveen et al., 2010; Mein and Rasmussen, 2008).

Livestock science detection models are generally designed to detect individual animals having

specific conditions, like oestrus or clinical mastitis (CM), which are relatively rare when compared
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to animals not having the condition (Huybrechts et al., 2014; Kamphuis et al., 2010; Ostersen et

al., 2010). Correct identification of rare conditions increases the demands for a high specificity if

too many false alarms should be avoided (Dominiak and Kristensen, 2017; Hogeveen et al., 2010;

Rasmussen, 2002).

The amount of false positive (FP) alarms can be reduced through improved performance of the

detection models or through a post processed prioritization, or sorting, of the generated alarms into

true or false. Sufficient performance is the first of three success criteria for implementation of CM

detection models in commercial farms, described by Hogeveen et al. (2010). The three criteria are a)

a sensitivity (Se) of minimum 80% and a specificity (Sp) of minimum 99%, b) a detection window

of maximum 48 hours, and c) the circumstances of the study must be as similar to practical farm

circumstances as possible. Following these criteria, no sensor-based detection models in livestock

production (1995-2015) are suitable for implementation (Dominiak and Kristensen, 2017). Although

the criteria may not fully apply to other conditions than CM, they can still serve as a guideline for

evaluating a model’s ability to be implemented in commercial herds.

In scientific literature, only three alarm prioritizing methods are described (ibid.), of which Naïve

Bayesian Network (NBN) seems the most suitable for postprocessing output from different types of

modeling methods. An alternative approach to detecting conditions at individual animal level, is a

spatial approach, which aims to identify a specific area of the production unit, which needs manage-

rial attention. Danish pig producing units for growing pigs (weaners 7-30 kg and finishers 30-110

kg) are very well suited for spatial modeling. In order to maintain a high level of bio-security, these

units are run with a clear spatial separation between pigs of different age groups (Danish Agriculture

and Food Council, 2010).

Such a construction of the herd enables a spatial modeling of a production site as one whole

production unit (the herd) consisting of a number of identical subunits (sections) each consisting

of a number of identical sub-subunits (pens). A warning system based on a spatial modeling of

the production unit, can communicate area-specific warnings, which will provide the manager with

valuable information when choosing an intervention to prevent or reduce the consequences of the

condition.

In this paper we will present the second, and final, part of the full description of a spatial approach

to the challenge of reducing alarms. The description is initiated in Dominiak et al. (2017a) where

the development of a multivariate dynamic linear model (DLM) for modeling water consumption of

growing pigs in Denmark is described. The structure of the DLM will be described in short terms

in Section 7.2. The objectives of this paper are to evaluate model performances on test data from

two different herds, using Area Under Curve (AUC), and to discuss post processing strategies for

reducing the number of alarms that are generated.

106



7.2 H E R D S , DATA A N D M O D E L S

 

Figure 7.1: Structure of Herd A and Herd B. Grey double pens in Herd A and grey pens in Herd B were
equipped with sensors and included in the study. From Dominiak et al. (2017a).

7.2 H E R D S , DATA A N D M O D E L S

In this section a short background is given to the spatial DLM whose predictive accuracy is evalu-

ated in the present paper. It is based on Dominiak et al. (ibid.), where a detailed description of the

model development can be found.

7.2.1 Herd description

Water consumption data for this study was obtained from two different herds. Herd A is a Danish

commercial finisher herd, and Herd B is an experimental weaner herd, “Grønhøj”, which is owned

by the Danish Pig Research Centre.

Herd A produces 10.000 cross-bred finisher pigs per year, and the herd has five identical sections,

of which four are included in this study (Figure 7.1 (A)). Each section consists of 28 pens, where

18 pigs are inserted per pen. Two neighbouring pens share the same water pipe, which supplies one

drinking nipple in each of the two pens (36 pigs).

107



PA P E R I I I

Table 7.1: Characteristics for the two herds in the study (14 for section K11). From Dominiak et al. (2017a).

Characteristic Herd A Herd B

Production type Commercial Research Farm

Animal group Finishers (30-110 kg) Weaners (7-30 kg)

Sections 4 4

Sensors total/ per section 8/2 16/4

Pigs per pen/ per sensor 18/36 15/15

Growth period (batch) 14 weeks 8 weeks

Batches per sensor 7 13 1

Learning data (hours) 9540 14657

Test data (hours) 4441 3025

1 14 for section 4.

Herd B consists of four sections, each with 12 pens for weaner pigs, where 15 pigs are inserted per

pen (Figure 7.1 (B)). Each pen is supplied by individual water pipes, hence one water pipe supplies

one drinking bowl per pen (15 pigs).

7.2.2 Sensor data

Water consumption data was obtained by a flow meter (RS V8189 15mm Diameter Pipe) (Ano-

nymous, 2000), which was placed on the water pipe supplying either drinking nipples (Herd A) or

bowls (Herd B) in the pens. The data was converted to litres before it was aggregated per hour,

yielding water use in litres per hour as input from each sensor to the DLM.

A total of eight sensors were installed in Herd A with two sensors in each of four sections, and

each sensor monitoring the water consumption of two neighbouring pens (36 pigs). Data from one

sensor creates an individual time series, hence the full data set from Herd A consists of eight time

series, or variables, which are monitored simultaneously.

Sixteen sensors in total were installed in Herd B with four sensors in each of four sections. Each

sensor monitored the water consumption of one single pen (15 pigs) in individual time series. The

full data set from Herd B therefore consists of sixteen time series, or variables, which are monitored

simultaneously.

The main characteristics of the two herds are summarized in Table 7.1.
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Figure 7.2: Diurnal drinking pattern of finishers (Herd A) and weaners (Herd B). From Dominiak et al.
(2017a).

7.2.3 Modeling drinking patterns

The drinking patterns of both weaners and finishers follow a clear diurnal pattern (Figure 7.2), and

the underlying level of water consumed increases over time, indicating that pigs drink more as they

grow (Madsen et al., 2005).

The diurnal drinking patterns can be described by the sum of four dynamic linear models; three

for harmonic waves (H1, H2, H3) and one for the underlying linear growth (LG), which are superpo-

sitioned into the final full DLM (ibid.).

The amount of water consumed within the last hour at time t for each of the n sensors is expres-

sed in the observation vector Yt = (Y1t, . . . , Ynt) ′. The aim of the DLM is to predict the next

observation by estimating the parameter vectors θ1, . . . , θt from the observations.

The accuracy of the predictions is expressed through forecast errors et, which contain any diffe-

rence between the predicted observation and the actual observation. As long as the drinking pattern

reflects a normal situation and evolves as expected, the prediction of the next observation is close

to perfect, and any forecast error will be small. Should the pigs, for some reason, drink more or

less than expected, the predictions and the observations will diverge, and the errors will be larger. A

systematic change in the normal drinking pattern will generate a sequence of forecast errors, which

will lead to an alarm when plotted in a control chart, as described in Section 7.3.

7.2.4 Model versions

Each of the four sub-models can be defined at herd, section or pen level to allow for the diurnal

pattern to evolve differently between pens or sections in the herd. Seven different model versions

were defined (Table 7.2) with the LG model defined at section level in all versions due to the equality

in size and age of pigs within a section.
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Table 7.2: Model versions applied to data sets from Herd A and Herd B. The Linear Growth sub model is
defined at Section level in all models, whereas different combinations of level definitions are made for the
cyclic sub models. Notations: LG = Linear Growth model, H1 = Cyclic model of length 24, H2 = Cyclic
model of length 12, H3 = Cyclic model of length 8. H = Herd level, S = Section level, P = Pen level. From
Dominiak et al. (2017a).

LG H1 H2 H3 Interpretation

S HHH The full harmonic pattern evolves identically for all pens in the herd

S HSP H1 evolves identically for all pens,

H2 evolves identically within sections but differently between sections,

H3 evolves differently in each pen

S HSS H1 evolves identically for all pens,

H2 and H3 evolve identically within each section but differently

between sections

S SSS The full harmonic pattern evolves identically within each section

but differently between sections

S SSP H1 and H2 evolve identically within sections but differently

between sections,

H3 evolves differently in each pen

S SPP H1 evolves identically within sections but differently between sections,

H2 and H3 evolve differently in each pen

S PPP The full harmonic pattern evolves differently in each pen
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7.2.5 Model output

From each of the seven model versions a series of forecast error vectors (et) and a series of forecast

variance-covariance matrices (Qt) are generated. The forecast errors and variances are entered as

input variables to a standardized two-sided Cusum control chart, as described by Montgomery (2013).

Systematic changes in the water consumption will then generate alarms that are evaluated as an

expression of the predictive performance of the model versions.

7.3 E VA L UAT I N G M O D E L P E R F O R M A N C E

7.3.1 Events of interest

The events of interest in this study are diarrhea and fouling amongst growing pigs. Both diarrhea

and fouling, which is a change in behaviour where the pigs start to lie on the slatted area of the pen

and excrete in the lying area, reduce animal welfare (Aarnink et al., 2006; Pedersen, 2012). Every

morning, the caretakers at each farm register if either of the two events occur in a pen or not. The

routines for assessment of either event is described in a project protocol (Lyderik et al., 2016), and

are calibrated by an experienced technician regularly throughout the study period.

If considered necessary by the caretaker, pigs with diarrhea are treated with antibiotics, and pens

where fouling has occurred are cleaned. Event registration and treatments are conducted once a day,

but because the actual outbreak of the event can happen at any hour between two registrations, an

event is defined to last 24 hours from midnight to midnight in the present study.

The objective of this paper is, however, to evaluate model performances at different spatial levels

rather than the ability to distinguish between specific conditions. Therefore registrations of both

diarrhea and fouling are joined under the common term “event”. This more general definition of

events is supported by Madsen et al. (2005) and Andersen et al. (2016), stating that changes in

drinking patterns can reflect changes to the general wellbeing of pigs. Changes may therefore not be

uniquely related to a specific type of event.

Despite regular calibration of registration routines, significant herd-specific differences in the fre-

quency of event registrations occur, and two different event definitions are used: In Herd A the

daily caretaker was replaced with unexperienced personnel a number of times during the period of

data collection. As a consequence of that, the commitment to register daily events was inconsistent

and resulted in periods with no registrations. For performance evaluation on Herd A data, all event

registrations available for the herd constitute the gold standard.

In Herd B the threshold for identification of diarrhea was low. This lead to multiple periods with

registrations of diarrhea every day for 14-21 days, although only few or no interventions were made

during those periods. For performance evaluation on Herd B data, the initiation of an intervention

(medical treatment of diarrhea or cleaning of pens with fouling), rather than daily event registrations,

constitute the gold standard.
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7.3.2 Time Window

By comparing alarms and events occurring at the same moment, the alarms can be categorized true

or false, and the performance of the model can be calculated (Hogeveen et al., 2010). But alarms

seldom occur at the exact same moment as the events, and if they did, they were of little predictive

value. Therefore time windows are often used (Hogeveen et al., 2010; Jensen et al., 2017; Ostersen

et al., 2010). A time window is a defined period of time associated with a registered event, and any

number of alarms occurring within that window is treated as one single alarm, and categorized as

detecting the event correctly (Figure 7.3).

Time windows can be of varying lengths, and can extend from before an event to after an event

(Jensen et al., 2017; Mol et al., 1997). As Figure 7.3 illustrates, the length of a time window has

great influence on the categorization of true or false alarms, and therefore on the performance of

a model (Hogeveen et al., 2010). Longer windows improve model performance, whereas windows

extending beyond an event can result in alarms being communicated after the event has occurred.

The categorization of alarms as true or false are counted as follows:

• Alarms within a time window are counted as one true positive (TP)

• Alarms occurring outside of a time window are counted as false positive (FP)

• If no alarms occur within a time window, it is counted as false negative (FN)

• Days without alarms and with no time window are counted as true negative (TN)

The detection accuracy can then be expressed by sensitivity (Se) and specificity (Sp), which are

calculated as:

Se =
TP

(TP+ FN)
(24)

and

Sp =
TN

(TN+ FP)
(25)

where TP denotes the total number of TP cases and accordingly for the other variables.

Three lengths of time windows are applied for the performance evaluation in this paper (see Figure

7.3). The longest window includes three days before an event plus the day of the event, but zero days

after. The two other window lengths includes two days and one day before an event respectively plus

the day of the event, but none after. The three windows are denoted (3/0), (2/0), and (1/0) respectively,

following the terminology of Jensen et al. (2017).
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TPTP FN

TNFPTN

= Observed event

= Alarm

= One day, midnight to midnight

= Time window related to one event

= Full time window comprised of single or
overlapping time windows

TPTP FN

TNFPTN TN FP TN

TP FN

TNFPTN TN FP TN

FN FN

FP FP TN

3/0

2/0

1/0

Figure 7.3: Example of definitions of true positives (TP), false positives (FP), true negatives (TN), and false
negative (FN). All observed events are associated with a time window, and overlapping time windows are
merged into longer windows. Three lengths of time windows are illustrated; 3/0 = three days before an event
and zero days after, 2/0 = two days before an event and zero days after, 1/0 = one day before an event and
zero days after. All alarms occurring within a time window are counted as one TP alarm. If no alarms occur
within a time window, it is counted as one FP. Days outside of time windows but with alarms, are counted as
FP, whereas days outside of time windows with no alarms are counted as TN. Based on illustration by Jensen
et al. (2017)
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7.3.3 Standardized Two-sided CUSUM

In a Cusum, the deviations from the mean, µ0, are accumulated over time, and when the sum of

accumulated deviations exceeds a defined threshold, the process is considered out of control and an

alarm is generated (Montgomery, 2013).

The inputs to the Cusum in this study are series of forecast errors, et generated by the DLM. For

a pen it is simply the series of forecast errors from the sensor in the corresponding pen (8 in Herd

A, 16 in Herd B), whereas the series of forecast errors for a section (4 in Herd A and in Herd B) is

generated by adding the forecast errors of all sensors at time t within the specific section together.

The series of forecast errors for the herd (1 in Herd A and in Herd B) is likewise generated by

adding the forecast errors of all sensors in the herd at time t together. In case of missing data at time

t, the value of the corresponding forecast error is set equal to zero. Thus, if et denotes the full vector

of forecast errors at time t, the scalar forecast error eut for the unit u (a specific pen, a specific section

or the entire herd) is found as

eut = Iuet, (26)

where Iu is a row vector only consisting of zeros and ones. If u is a specific pen, it means that Iu is

a row vector with the element 1 at the position of u in et. Accordingly, if u is a section, Iu will have

ones at the positions corresponding to pens in the section in question and zeros elsewhere.

The series of forecast variances,Qut , for a given unit are calculated according to standard rules as

Qut = IuQtI
′
u. (27)

In case of missing data at time t, the value of the corresponding forecast variance is sat equal to 1.

The cumulated sum of the Cusum is reset when an alarm has been generated, and since the test data

for both herds covers the length of two batches, the cumulated sum is also reset at the beginning of

the second batch.

In the two-sided Cusum, the forecast errors above the mean (zero) are summed separately as upper

Cusum, and the forecast errors below the mean are summed separately as lower Cusum (see Figure

7.4).

The two-sided Cusum allows for different interpretations of alarms caused by water consumption

higher than expected and lower than expected. Since the underlying level of water consumption

increases as the pigs grow, the numerical values of the forecast errors increase as well (Madsen

et al., 2005). In order to distinguish between the growth-related increase and increases caused by

the process being out of control, the forecast errors are standardized, and a Standardized two-sided

Cusum control chart is applied, as described by Montgomery (2013).

Since the expected value of eut is 0, the standardized value yut simply becomes

yut =
eut

qut
, (28)
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Figure 7.4: Illustration of a two-sided Cusum control chart. The cumulative sum of deviations above the
target, µ0 = 0, is plotted as ’upper CUSUM’, and the cumulative sum of deviations below the target is plotted
as ’lower CUSUM’. The upper and lower thresholds are defined with equal distance to the target, and the
process is out of control when either of the upper or lower Cusum exceeds the threshold.
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where qut =
√
Qut .

Then, the Upper Cusum for the unit is the series

Cu+t = max[0,yut − k+Cu+t−1] (29)

and the Lower Cusum is the series

Cu−t = max[0,−k− yut +Cu−t−1]. (30)

where k is the reference value. The reference value allows for a constant level of slack or allowance

to be accepted as an integrated part of the system and it is subtracted from yt before the summation.

The value of k is traditionally chosen relative to the size of the shift to be detected (Montgomery,

2013).

In addition to the reference value, a decision interval, or a threshold, h, must be chosen as well.

If either Cu+t or Cu−t exceeds the threshold, the process is considered to be out of control, and an

alarm is generated. Montgomery (ibid.) recommends h to be defined at fixed values of 4 or 5 for a

standardized Cusum. However, when evaluating performances at spatial levels, multiple processes

are evaluated, and another approach to defining optimal Cusum parameters is necessary.

Choosing the right settings of the threshold value, h, and the reference value, k, of the Cusum are

essential to the number of alarms generated. This is illustrated in Figures 7.5 and 7.6, which show

that lower values of either of the Cusum parameters lead to more alarms generated than higher values.

Higher values, however, lead to loss of information and failed recognition of the process being out of

control. Therefore the optimal combination of h and k for each vector of forecast errors is chosen by

iterations over sequences of h and k values. Threshold values were iterated from 0 to 5 and reference

values were iterated from 0 to 2.

Evaluating spatial levels

Evaluation of model performance is done for each of the seven model versions (Table 7.2) sepa-

rately on data from Herd A and Herd B. All model versions are evaluated for their ability to predict

the occurrence of events of interest at either of the three spatial levels; pen level (in a specific pen),

section level (in a specific section within the herd), or herd level (in any pen within the herd) using

three different lengths of time windows.

A pen is defined as the area comprising the number of pigs whose water consumption is monitored

by a single sensor (see Table 7.1). A section is defined as all pens with sensors within the same

section in the herd. A herd is defined as all pens with sensors within the farm building.

Days with events at pen level are the days when events are registered in the pen by the caretakers.

Days with events occurring at section level are all the days with minimum one event registered in

any pen within the section. If events are registered in two or more pens within the same section at

the same day, they count as one day with a section event. Days with events occurring at herd level
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Figure 7.5: Illustration of a two-sided Cusum control chart with different settings of the threshold, h. In the
upper plot, h = 1, and the Upper Cusum exceeds the threshold one time. In the lower plot, h = 0.5, and the
Upper Cusum exceeds the threshold five times. The reference value, k, is unaltered in the two plots.
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Figure 7.6: Illustration of a two-sided Cusum control chart with different settings of the reference value, k. In
the upper plot, k = 0.5, and in the lower plot, k = 0.05. The reference value is subtracted from each forecast
error before they are summed, and more information is lost with the higher k value than with the lower. The
threshold, h, is unaltered in the two plots.
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are all the days where minimum one event is registered in the herd. If events are registered in two or

more pens in the herd at the same day, they count as one day with a herd event.

When evaluating spatial level performance, a total of 2× 7× 3× 3 = 126 model combinations

based on:

• Herd (Herd A, Herd B)

• Model version (HHH, HSP, HSS, SSS, SSP, SPP, PPP)

• Spatial level (Pen, Section, Herd)

• Time Window (3/0, 2/0, 1/0).

A Cusum is run on each series of standardized forecast errors within the level for all of the 126

model combinations per h× k combination, and the performance is calculated on the pooled outputs

of these Cusums per setting. As an example, let n be the number of units (pens or sections) at the

spatial level in question and let the setting, s = (h,k), be a unique combination of threshold and

reference value. Each Cusum with a unique setting, s, is run in turns on standardized forecast errors

from all units at the level. In order to obtain the overall performance of the Cusum setting, the four

classification categories (TP, FP, TN, FN) are counted across units as follows:

• TPs = TPs1 + TPs2 + . . .+ TPsn

• FPs = FPs1 + FPs2 + . . .+ FPsn

• TNs = TNs1 + TNs2 + . . .+ TNsn

• FNs = FNs1 + FNs2 + . . .+ FNsn,

where e.g. TPs1 is the number of true positives for unit 1 under setting s.

Then the conditional prediction accuracy is calculated for each s in terms of sensitivity (Ses) and

specificity (Sps) as follows:

Ses =
TPs

(TPs + FNs)
(31)

and

Sps =
TNs

(TNs + FPs)
(32)

For each spatial level of each model version, the performance parameters Ses and the false positive

rate FPRs = 1− Sps are plotted against each other so that each setting produces an observation in

the diagram as shown in Figure 7.7. For a given value of FPRs, the best possible Ses is desired

implying that the Receiver Operation Characteristic curve (ROC curve) is identified by connecting

observations that, for each value of FPRs, maximize Ses. Thus, the ROC curve is a nondecreasing

function of FPRs.
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Figure 7.7: Illustration of a ROC curve from a section in Herd B with time window 3/0. The prediction
accuracy is plotted for each h× k combination.

As the final measure of the predictive performance the Area Under Curve (AUC) is calculated. An

AUC = 1 indicates perfect predictive performance, so values close to 1 are preferred. The AUC is

calculated in R (R Core Team, 2014) using the function “trapz” from the library “pracma”.

7.4 R E S U LT S A N D D I S C U S S I O N

The AUC of the 126 different model combinations can be seen in Tables 7.3, 7.4, and 7.5. The

predictive performance is in general higher at herd level and decreases as the level gets more detailed,

which is illustrated in Figure 7.8 for model version HHH and time window 3/0. The results also show

that the AUC in general is higher when the longer time window (3/0) is used, and decreases as the

time window gets shorter.

The overall best predictive performances is reached for Herd B, model version HHH at herd level

for time windows 3/0 (AUC = 0.9842). For Herd A, the highest predictive performance is reached

by model version HHH with time window 3/0 at herd level (AUC = 0.9358).

7.4.1 Herd level

Several of the herd level performances (AUC > 0.92) in Table 7.3 indicate prediction accuracy

close to perfect. It is, however, worth remembering that any event at any day within the herd is

included when evaluating performances at herd level, and that overlapping time windows are merged

into one window lasting from the first day of the first window to the final day of the last window.

This means that for Herd B, a total of 5 time windows (longest = 47 days) cover 106 of 126 days in

the test data when window length 3/0 is used.

For Herd A, a total of 10 time windows (longest = 20 days) cover 79 days out of 172 days in the

test data when using window length 3/0. The combination of few time windows and few days outside
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AUC 0.89

AUC 0.89

AUC 0.94 AUC 0.98

AUC 0.87

AUC 0.77

Figure 7.8: ROC curves and corresponding AUC from Herd A (left) and Herd B (right), HHH model version
and 3/0 time window. Upper curves: Pen level. Middle curves: Section level. Bottom curves: Herd level.
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Table 7.3: AUC (area under curve) for prediction of events at herd level (in any pen in the herd) in Herd A and
in Herd B with three different lengths of time windows applied. 3/0 time window covers tree days before the
event and zero days after the event, 2/0 time window covers two days before the event and zero days after the
event, 1/0 time window covers one day before the event and zero days after the event. AUC for seven model
versions is presented for both Herd A (commercial finishers) and Herd B (research centre weaners). Sensors
were evenly distributed between four sections in each of the herds with two sensors per section in Herd A and
four sensors per section in Herd B. Notations: LG = Linear Growth model, H1 = Cyclic model of length 24,
H2 = Cyclic model of length 12, H3 = Cyclic model of length 8. H = Herd level, S = Section level, P = Pen
level

Model Structure Herd A Herd B

LG H1 H2 H3 3/0 2/0 1/0 3/0 2/0 1/0

S HHH 0.9358 0.9194 0.8013 0.9842 0.9734 0.8878

S HSS 0.9014 0.8694 0.8287 0.5789 0.6087 0.5369

S HSP 0.8600 0.8796 0.8307 0.7737 0.7280 0.6761

S SSS 0.8972 0.8836 0.8083 0.8105 0.8720 0.8438

S SSP 0.8736 0.8604 0.8052 0.9368 0.9614 0.8473

S SPP 0.9274 0.9194 0.8036 0.8316 0.8316 0.8253

S PPP 0.9283 0.9148 0.8090 0.8316 0.8816 0.8395

any time windows affects the outcome of the Ses and Sps leaving only few separate points in the

ROC curve. Although the impressive predictive performances are correct, the settings they represent,

are of little value considering implementation because an alarm is associated with any event in any

pen in the herd within the given time window.

7.4.2 Section and pen level

The predictive performances at section and pen level for Herd A are almost identical with respect

to model versions and time windows (see Tables 7.4 and 7.5). This indicates a high correlation

between pens within the same section regarding both changes in drinking patterns and days with

event registration. Event registration data confirm that events in pens within the same section are

registered on the same day in Herd A in general. And with the joined water consumption of 36

finisher pigs being monitored per sensor, the drinking pattern is only little affected by changes for

one or few pigs.

Fewer and smaller pigs are monitored in Herd B (15 weaners). An irregular drinking pattern from

just a single pig in a single pen therefore has larger effect on the water consumption in the pen.

Differences between pens are thereby easier generated, and this will be reflected in different AUC’s

at pen and section level.
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Table 7.4: AUC (area under curve) for prediction of events in specific sections in Herd A and in Herd B with
three different lengths of time windows applied. 3/0 time window covers tree days before the event and zero
days after the event, 2/0 time window covers two days before the event and zero days after the event, 1/0
time window covers one day before the event and zero days after the event. AUC for seven model versions is
presented for both Herd A (commercial finishers) and Herd B (research centre weaners). Sensors were evenly
distributed between four sections in each of the herds with two sensors per section in Herd A and four sensors
per section in Herd B. Notations: LG = Linear Growth model, H1 = Cyclic model of length 24, H2 = Cyclic
model of length 12, H3 = Cyclic model of length 8. H = Herd level, S = Section level, P = Pen level

Model Structure Herd A Herd B

LG H1 H2 H3 3/0 2/0 1/0 3/0 2/0 1/0

S HHH 0.8882 0.8708 0.8144 0.8715 0.8576 0.7705

S HSS 0.8592 0.8339 0.8135 0.7193 0.6789 0.6444

S HSP 0.8616 0.8345 0.8105 0.7711 0.7280 0.6850

S SSS 0.8647 0.8405 0.8084 0.8205 0.8008 0.7641

S SSP 0.8611 0.8324 0.8098 0.8635 0.8563 0.8020

S SPP 0.8757 0.8524 0.7959 0.8375 0.8085 0.7643

S PPP 0.8631 0.8382 0.7825 0.8311 0.8085 0.7667

Table 7.5: AUC (area under curve) for prediction of events in specific pens in Herd A and in Herd B with
three different lengths of time windows applied. 3/0 time window covers tree days before the event and zero
days after the event, 2/0 time window covers two days before the event and zero days after the event, 1/0
time window covers one day before the event and zero days after the event. AUC for seven model versions is
presented for both Herd A (commercial finishers) and Herd B (research centre weaners). Sensors were evenly
distributed between four sections in each of the herds with two sensors per section in Herd A and four sensors
per section in Herd B. Notations: LG = Linear Growth model, H1 = Cyclic model of length 24, H2 = Cyclic
model of length 12, H3 = Cyclic model of length 8. H = Herd level, S = Section level, P = Pen level

Model Structure Herd A Herd B

LG H1 H2 H3 3/0 2/0 1/0 3/0 2/0 1/0

S HHH 0.8878 0.8701 0.8164 0.7671 0.7348 0.6871

S HSS 0.8599 0.8424 0.8137 0.6468 0.6320 0.6109

S HSP 0.8598 0.8422 0.8154 0.6747 0.6459 0.6234

S SSS 0.8583 0.8350 0.8102 0.7535 0.7309 0.7035

S SSP 0.8585 0.8408 0.8129 0.7682 0.7401 0.6969

S SPP 0.8782 0.8634 0.8087 0.7750 0.7555 0.7208

S PPP 0.8644 0.8500 0.7975 0.7671 0.7490 0.7454
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In addition, numerous longer periods of missing data throughout the test data set of Herd A may

have reduced any differences in drinking patterns between pens, hence promoting similarity between

pens and sections. Running the model on data from another herd, or redefining learning and test data

in the present data set, is needed to confirm this.

7.4.3 Time windows

Longer time windows yield a higher performances for both herds and all model versions. Although

an alarm three days before an event (3/0 window) may be too long for the precise timing of mana-

gerial interventions, an alarm two days ahead (2/0 window) might be sufficient in many situations -

especially if the predictive accuracy is higher than when shorter windows are applied.

When evaluating the 1/0 window performances for Herd A, the HHH model version is able to

predict an event in a specific pen with a fairly high predictive accuracy (AUC = 0.8164). Even though

the HSP model version predicts events with a higher accuracy (AUC = 0.8307), this is obtained at

herd level. As discussed above, the herd level is a very general spatial level at which an alarm

constitutes little value in daily management. For Herd B, the highest AUC, given the 1/0 time window,

is reached by the HHH model version at all spatial levels. Thus, herd level reaches the highest

accuracy (AUC = 0.8878), and then the accuracy is reduced for both section level (AUC = 0.8020),

and pen level (AUC = 0.7208).

7.4.4 Model versions

The HHH model version provides the highest AUC for predicting events at all spatial levels in

Herd A. This indicates that finisher pigs across Herd A show peaks in their drinking pattern at the

same time of day (see Table 7.2) throughout the entire growing period. The HHH model version is

presenting the poorest fit of the seven versions on Herd A data when developing the model, whereas

the SSS model version in general has poor performance in terms of AUC, but obtained the best fit to

data (Dominiak et al., 2017a).

No single model version provides the highest AUC across levels in Herd B. For predictions of

events at herd level, the HHH model version has the highest accuracy at all time windows, but for

predictions at section level and pen level, the model versions with harmonic waves defined at section

and pen level provide high accuracies as well.

There is a remarkably clear connection between the level of the harmonic waves in the model

versions and the level where events are predicted with the highest accuracy for time window 1/0 in

the way that the HHH model version predicts best at herd level (AUC = 0.8878), the SSP model

version predicts best at section level (AUC = 0.8020), and the PPP model version predicts best at pen

level (AUC = 0.7454).

124



7.4 R E S U LT S A N D D I S C U S S I O N

As for Herd A, it is the HHH model version which has the poorest fit in the DLM and the best

prediction accuracy when evaluated on test data and events. The SSP version fit the test data better,

but it is the PPP version, which fit the best in Dominiak et al. (ibid.).

An explanation of this inverse relation between fit and prediction accuracy may be that the models

with better fit end up overfitting the training data. Over-fitting models tend to model random noise as

well, causing the model versions with higher complexity to make worse predictions, when trying to

include random noise in the modeled pattern (Fortmann-Roe, 2012).

It may also be, that models with better fit at the same time have a higher adaptability to changes

and irregularities. Instead of generating alarms, a well fitting model will adjust to the changes and

accept them as a part of the pattern.

7.4.5 Ensemble classifying methods

An ensemble classifier combines the output of different models and often increase predictive per-

formance over a single model (Witten and Frank, 2005). Alarms communicated from an ensemble

are often considered more valid than alarms from an individual model version.

In order to improve predictive performance, the two ensemble classifying methods, bagging and

boosting are tested on the seven model versions from each herd separately. Both methods are machine

learning methods, and they combine the decisions of different models by amalgamating the outputs

into a single prediction (ibid.). Kamphuis et al. (2010) applied both bagging and boosting to decision

trees in a CM detection model. They found bagging to give the better results.

The bagging method lets all model versions vote whether an alarm should be generated or not, on a

daily basis. A defined threshold states how many models should agree, and if the threshold is reached

or exceeded, the ensemble generates an alarm. The boosting method works on the same principles,

only the votes are weighted according to, for example, the performance of each model version. In

this test, the specificity of each model was used as weighting factor in the voting under the boosting

method.

In our study, neither bagging nor boosting improved the AUC when compared to the AUC of the

best of the individual model versions. Thus, the improvement seen in the study by Kamphuis et al.

(ibid.) is not seen here. An obvious reason could be that all seven models are based on exactly the

same data and, furthermore, have many structural similarities. Thus the seven tests can in no way be

seen as independent.

7.4.6 Alarm prioritizing method

Some alarms occur at the same time t in pens and in the corresponding section as illustrated in

Figure 7.9. If the apparent connection between changes in drinking patterns and general wellbeing

(Andersen et al., 2016; Madsen et al., 2005) is accepted, then such alarms should be considered true,

independently of event registrations. Such an alarm is either caused by a very large deviation in a
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Figure 7.9: Example of a Cusum from a pen (top) and the corresponding section (bottom) with simultaneous
alarms. Alarms marked with an X occur at the exact same hour in the pen as in the section.

single pen, or by relatively smaller unidirectional errors in more pens, but they should always be

attended.

7.4.7 Alarm reducing method

Alarms from multiple pens within the same section on the same day can be merged and commu-

nicated as one alarm for the section rather than multiple individual pen level alarms. This method

reduces the number of alarms communicated to the manager. Although the method to some extent

devaluates pen-specific information, there is a managerial value in section-specific alarms due to the

sectionalized structure in the pig producing units as a whole.
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7.4.8 Alternative post processing methods

DLMs have been used in several previous studies with the purpose of detecting undesired events.

The general procedure has been to fit a (univariate or multivariate) DLM to data and, afterwards,

to produce series of forecast errors which, in a second step, are post processed in order to produce

warnings.

Several different post processing methods have been used previously. Jensen et al. (2017) used a

threshold for the Mahalanobis distance (found by Cholesky decomposition of the forecast variance-

covariance matrix) between the multivariate forecast error and the zero vector. In another multivariate

study, Jensen et al. (2016) used a Naïve Bayesian Classifier and in Jensen and Kristensen (2016),

artificial neural networks were used for post processing.

In univariate studies (Cornou et al., 2008; Madsen and Kristensen, 2005) and studies where a

multivariate observation has been transformed to a univariate response (Bono et al., 2012, 2013,

2014) a Cusum in combination with a V-mask (Montgomery, 2013) has been a popular tool for

detection of gradual changes in the observed pattern of data. For sudden changes a simple Shewhart

control chart (ibid.) applied to the forecast errors has often been used (Bono et al., 2012, 2013, 2014;

Cornou et al., 2014).

The post processing method used in this study has been the tabular Cusum with various settings

but as illustrated by the overview above, many other options exist. It could be argued that using a

multivariate approach, and then later only use univariate Cusums for detection of events, considera-

bly reduces the spatial information available in the model. Thus, it would be interesting for future

research to study alternative post processing methods.

A first step could be to distinguish alarms generated by the upper Cusum from those generated

by the lower Cusum. In case of diarrhea, for instance, an increased water consumption is assumed

(Madsen and Kristensen, 2005) and, accordingly, the upper Cusum might generate an alarm. Other

disturbances leading to decreased water consumption might produce an alarm generated by the lower

Cusum. A more sophisticated approach would be to use a structured Bayesian network for post

processing of the forecast error vectors and classify them according to presence or absence of events.

That is, however, outside the scope of this article.

7.4.9 Implementation considerations

The criterion of sufficient performance, as defined by Hogeveen et al. (2010), is not fulfilled by

the present spatial model and evaluation method. The implementation criteria do not consider a

spatial approach nor the level of information in drinking patterns on the general wellbeing of pigs

(Andersen et al., 2016; Jensen et al., 2017; Madsen et al., 2005). When changes in the general

wellbeing is reflected in the forecast errors, alarms are likely to be generated for other causes than

the events constituting the gold standard.
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Performance evaluation is based on comparing registered events with generated alarms, which may

be why no predictive accuracy, or other performance measures, have yet to reach the level defined

in the criterion when considering sensor-based detection models (Dominiak and Kristensen, 2017).

The spatial approach, described in the present paper and in Dominiak et al. (2017a) aim to generate

alarms which are less dependent on a specific event. By focusing on communicating irregularities in a

specific spatial area of the herd, the model allows for the manager to combine alarms with knowledge

of the animals in the pointed area.

The criterium of similarity between the herds in the study and commercial herds are fulfilled for

Herd A since it is a full producing commercial herd. The criterium is fulfilled to some degree for

Herd B since 13 full batches from each of 16 pens are monitored, hereby including more animals

than is sometimes the case (Dominiak and Kristensen, 2017). In commercial farms, though, around

30 pigs are inserted in a pen of weaners instead of 15 as in Herd B. Had there been twice as many

pigs per sensor, less random noise might have been expected.

Based on the length of the time windows none of the model versions with time window 3/0 are

very well suited for implementation, when following the implementation criteria. Since overlapping

of single time windows often occur when using these longer time windows, extremely long merged

time windows can be generated, which are of little value when considering managerial routines.

The 2/0 time window does not fulfill the time window criterium either. But in these authors’

opinion, the model’s ability to identify a specific pen or section provides significant managerial value

using a time window of three days including the day of the event.

Although the 1/0 time window do fulfill the criterium of a 48 hours time window, the prediction

accuracy is low. The higher performance and area-specific accuracy associated with the 2/0 time

window as compared to the 1/0 time window, makes the 2/0 time window the most implementable of

the two.

7.5 C O N C L U S I O N

The spatial approach makes it possible to predict events at separate spatial levels in herds of gro-

wing pigs. The model version expressing highest correlation between pens and sections in a herd

(HHH) tend to predict better, which may be due to over-fitting of training data in model versions

involving lower correlation. Thus, the model providing the best fit to data is not the most well suited

for detection of events.

Longer time windows and prediction at herd level yield very high predictive accuracies, but alarms

communicated at herd level are of little or no value in a commercial production herd due to very long

overlapping time windows and non-specific spatial identification of events.

The predictive accuracies for identifying events in a specific section are high, and combined with

a 2/0 time window the multivariate spatial DLM constitute a new and promising approach to sensor

based monitoring tools in livestock production.
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Abstract 

 

Spatial modelling of water consumption in growing pigs can be a useful tool for 
identifying high risk pens or sections in early detection of diseases and various 
behavioural problems. 

In this study a multivariate dynamic linear model (DLM) is developed based on data 
from simultaneous monitoring of water consumption across multiple pens in two 
separate herds. The two herds consist of a commercial finisher herd (Herd A) and a 
research farm with weaners (Herd B). 

Parameters in the model can be defined individually at herd, section or pen level. This 
spatial distinction allows early warnings to be generated at pen level or merged at 
section or herd level to reduce the number of alarms. Information on which specific 
pens or sections are of higher risk of stress or diseases is communicated to the farmer 
and target work effort to pens at risk.  

For Herd A, all model parameters defined at section level resulted in the best fit (MSE = 
13.85 litres2/hour). For Herd B, parameters defined at both pen and section level 
resulted in the best fit (MSE = 1.47 litres2/hour).  

For both Herd A and Herd B, preliminary results support the spatial approach by 
generating a reduced number of alarms when comparing section levels to pen levels.  

This study is a part of an on-going project aiming to improve welfare and productivity 
in growing pigs using advanced ICT methods. 

 

Keywords: dynamic linear model, multivariate, spatial, alarm-reducing, drinking 
pattern, monitoring  

 

 

 

133



Introduction 

 

A variety of sensor based detection models have been designed to monitor production 
animals and detect specific diseases or conditions (Kamphuis et al., 2010; Garcia et al., 
2014; Ostersen et al., 2010). Often the amount of false alarms is too high for the model 
to be implemented (Hogeveen et al., 2010; Dominiak & Kristensen, 2017), and it has 
proven to be a difficult yet very important task to reduce the number of alarms 
communicated to the farmer.  

Previous research shows that water withholds important information in prediction of 
diseases in finisher pigs (Jensen et al., 2017). However, changes in pigs’ drinking 
pattern can also indicate general stress and information on the pigs’ wellbeing (Madsen, 
et al., 2005; Andersen et al., 2016).  

For bio-security reasons, Danish pig production units for growing pigs are run with a 
clear spatial separation between pigs of different age groups. Such a construction of the 
production site enables a spatial approach where the site is modelled as one production 
unit (the whole herd) consisting of a number of identical subunits (sections) and each 
subunit consisting of a number of identical sub-subunits (pens).  

The objective of this paper is to present a model which detects unexpected changes in 
the water consumption of growing pigs across a whole production unit, and produces 
pen, section- or herd- specific alarms. Simultaneous alarms from pens in the same 
section, or sections in the herd, are merged which reduces the number of alarms 
communicated to the farmer.  

 

Material and methods 

 

Data 

Data of water consumption (litres/hour) were collected from two herds. Herd A is a 
Danish commercial finisher herd, and water data from seven batches of pigs were 
obtained in the period from May 2014 to March 2016 (16309 hours). Herd B consist of 
the weaner sections of a Danish research facility herd, and water data from 13 batches 
of pigs were obtained in the period from October 2014 to December 2016 (18755 
hours). The sensors were photo-electric flow sensors (RS V8189 15mm Dia. Pipe), and 
they were placed on the water pipe supplying two neighbouring pens (36 pigs, Herd A) 
or a single pen (15 pigs, Herd B). In Herd A, eight sensors were placed in two identical 
pens in each of four identical sections. In Herd B, sixteen sensors were placed in four 
identical pens in each of four identical sections. In total, eight double-pens from Herd A 
and 16 single pens from Herd B were monitored during the experimental period.  

Every morning, the caretakers at each farm registered events of diarrhoea and fouling, 
which is a behavioural change where the pigs start to lie on the slatted area of the pen 
and excrete in the lying area (Aarnink et al., 2006). These event registrations constitute 
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Figure 1: Diurnal drinking pattern of finishers (Herd A) and weaners (Herd B) 

the golden standard together with logbook registrations of unexpected managerial 
situations affecting the pigs. 

 

General model 

The water consumption over time is modelled simultaneously for all sensors in the herd 
using a multivariate dynamic linear model (DLM) as described by West & Harrison 
(1999). The observation vector, �� = ����, … , ���)′ , is the amount of water consumed 
per hour at time t for each of the n sensors. The relation between �� and the underlying 
parameter vector �� at time t, as well as the evolution of the system over time, is 
described through an observation equation and a system equation (Equations (1) and 
(2), respectively): 

 

�� = �′��� + �� ,						��~���, ��),    (1) 

�� = �′����� + ��,						��~���,��),    (2) 

The aim of the DLM is to predict the next observation. That is to estimate the parameter 
vectors, ��, …, ��, from the observations, Y1,…,Yt. Through every hourly observation 
of water consumed, the model learns more of the general drinking pattern, and it is 
constantly updating the amount of information adding the newest observation. Any 
difference between the predicted observation and the actual observation is withheld in 
the two error terms, ��  and ��. If the pigs follow their normal drinking pattern and drink 
as much water as expected, the prediction of the next observation is close to perfect, and 
any prediction error will be small. If, on the other hand, something is causing the pigs to 
drink more or less than expected, the prediction error will be larger. A systematic 
change in the normal drinking pattern will generate a sequence of larger prediction 
errors, and this will lead to an alarm, which will be described later. 

 

Modelling diurnal patterns 

The drinking patterns of both finishers and weaners have clear diurnal characteristics 
(see Figure 1). Furthermore the underlying level of water consumed increases over time 
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indicating that pigs drink more as they grow. A diurnal drinking pattern can be 
described by the sum of three harmonic waves and an underlying level and trend 
(Madsen et al., 2005), and the DLM presented here, therefore, consists of four sub-
models. The first sub-model, a linear growth model (Equation (3)), describes the 
underlying level and trend, 

 

��� = �10�  and       ��� = �1 1
0 1�    (3) 

whereas the following three sub-models each describes a harmonic wave using the 
Fourier form representation of seasonality (West and Harrison, 1999; Madsen et al., 
2005). The Fourier form, as seen in Equation (4), describes a harmonic wave for any 
frequency, � ∈ �0,  ), with � =  /24 yielding a wave with a period of 24, � = 2 /24 
yielding a wave with a period of 12, and � = 3 /24 yielding a wave with a period of 8.  

 

��% = �10�  and       ��% = & cos	��) sin	�ω)
−sin	��) cos	��).   (4) 

 

Modelling spatial structure 

Each of the four sub-models can be defined at herd, section or pen level. A sub-model 
defined at pen level can evolve differently in each pen over time with no interaction 
between pens. Defined at section level, a sub-model evolves identically in all pens 
within the same section but differently between sections. Finally, a sub-model defined 
at herd level evolves identically in all pens in the herd.  

The variances components are estimated by the Nelder-Mead algorithm in the statistical 
software R (R Core Team, 2017). The observation variances, Vt, at herd, section and 
pen level are estimated directly, whereas a system variances, Wt, for each of the four 
sub-models are estimated through discount factors as described by Madsen et al. (2005).  

 

Evaluation 

The models are trained on learning data (Herd A: 68 %, Herd B: 83 %) and tested on 
test data (Herd A: 32 %, Herd B: 17 %) with no pigs delivering data to both data subsets 
within the herds. Detection of alarms and irregular drinking patterns is done using 
Tabular CUSUM as described by Montgomery (2013). The standardised cumulated sum 
(CUSUM) of the positive prediction errors and the negative prediction errors is plotted 
over time, and if the sum exceeds a defined threshold, an alarm is generated. An event is 
registered once per 24 hours, but the alarms can be generated at an hourly basis. A  
‘-3/+1’ prediction window is defined according to Jensen et al. (2017). Hereby all 
alarms from three days before an event observation to one day after an event 
observation are merged and considered true positive (TP). If no alarms are generated 
within the time window, it is considered false negative (FN), whereas single days with 
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Figure 2: Illustration of the -3/+1 window as described by Jensen et al. (2017) with 
TP,TN, FP and FN alarms defined as described in the text. 

alarms but no events are false positive (FP) and single days without alarms but with 
events are false negative (FN) (see Figure 2). 

 

 

Results and Discussion 

 

Model fit 

A model with all four sub-models defined at section level, fitted the drinking patterns of 
pigs in Herd A with MSE = 13.85 litres2/hour. For Herd B it was a model with the linear 
growth sub-model defined at section level, and all three cyclic waves defined at pen 
level, which yielded the lowest MSE (1.47 litres2/hour). A total of seven models with 
different level combinations were tested for each herd. In Herd A, each sensor supplies 
36 finisher pigs (30-110 kg) which leads to a large variance and hereby a larger MSE. In 
Herd B, each sensor supplies 15 weaners (7-30 kg), leading to a smaller variance and a 
smaller numerical MSE.  

 

Detecting events 

Based on preliminary results, the spatial DLM is able to detect registered events of 
either diarrhoea or fouling in both herds. Figure 3 shows how four events were 
registered in one week in Herd A, and eight in Herd B. Three of the events in Herd A 
are associated with TP alarms, and all of those would be placed within the same time 
window, had it been shown. Of the eight events in Herd B, all are associated with TP 
alarms. No false positive alarms were raised during the week in either herd. The 
CUSUMS based on prediction errors for a section as compared to prediction errors from 
individual pens; result in a reduced number of alarms (Table 1). Although the figures 
presented in this paper are preliminary, there is reason to expect the alarm reducing 
feature to show in the finished version as well, given the section based production 
strategy of Danish herds with growing pigs. Because alarms can be generated for the 
whole herd, a section or a pen, the farmer will be informed of which areas of pigs need 
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Figure 3: Tabular CUSUM for one week in one section of Herd A and one of Herd B. 
The two horizontal lines mark the thresholds for the upper CUSUM (grey line) or the 
lower CUSUM (black line). Four events (marked by x on the threshold lines) are 
registered in Herd A and eight in Herd B. The tabular CUSUM detects three events in 
Herd A, and eight in Herd B. TP = True Positive, FN = False Negative. The gap around 
day 5 in the plot is caused by sensor outage. 

extra focus. This can be combined with managerial knowledge of age and health status 
of pigs in the high risk area. Hereby the right intervention for the given age group of 
pigs can be chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Herd A 

Herd B 
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Table 1: Amount of registered events and CUSUM alarms for one week in pens and 
the corresponding sections in Herd A and Herd B. With pen level CUSUMS the sum 
of generated alarms from pens in a section were higher (6 Herd A, 42 Herd B) than 
with CUSUM at section level (4 Herd A, 8 Herd B). No alarms were merged in time 
windows; therefore more alarms could be associated to the same event. One pen in 
Herd B was empty. 

  

 

 

 

 

 

 

 

Conclusion 

 

The preliminary results indicate that a spatial modelling of a pig production herd can 
reduce the number of alarms communicated to the farmer. Changes in water 
consumption can be used to identify high risk areas so the farmer can choose the 
optimal intervention for the pigs in the area triggering the alarm. 
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9
G E N E R A L D I S C U S S I O N A N D P E R S P E C T I V E S

In this Chapter, the overall findings of the thesis are described, and perspectives for future research

to improve the presented model, are suggested. Furthermore the challenges of obtaining high model

performance in sensor-based detection models will be discussed.

9.0.1 Findings and perspectives, thesis

The spatial model, presented in this thesis, does not necessarily reduce the time spent on the daily

checking of the animals in a herd. It does, however, point out specific areas in the herd, where the

time is better spent at preventive interventions or treatments of the pigs, rather than event-specific

alarms for an unspecified area in the herd.

An experienced manager knows of everyday situations, which may affect the animals, and when

a high-risk period occurs for each section in the herd. This knowledge can be used to narrow in

the plausible causes of an area-specific alarm. However, if the manager is less experienced, or if

too many areas are pointed out for various causes, the managerial value of the detection system is

weakened.

The risk of event-specific alarms is that the search for clinical signs of the specific event becomes

the sole focus of the manager, when attending the alarm. Whereas the strength of area-specific

alarms is that a pointed focus-area, allows the manager to concentrate on identifying any signs of

impaired health amongst the animals, or signs of suboptimal management regarding for instance

feed or climate control.

Although the AUCs of the better performing model versions presented in this thesis, are high (>

0.80), too many false alarms will still be generated. In order to improve the presented detection

system, future focus may be targeted at a) reducing the number of false alarms by improving model

performance, b) developing methods for prioritizing or ranking the alarms, and c) developing met-

hods for distinction between different events, causing the alarms. More concrete perspectives within

these three areas of future focus are suggested in the following.
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G E N E R A L D I S C U S S I O N A N D P E R S P E C T I V E S

9.0.2 Improving model performance

As discussed in Section 4.2.4, model performance may be improved by a reduction in the com-

plexity of the detection model. However, further actions for improving model performance should

not be conducted on the basis of the results obtained in the described studies. Both model fit and

detection performance on Herd B data indicated that 15 pigs per pen were too few for the potential

of the model to be investigated rightfully. Therefore it would be very interesting to validate the de-

tection system externally on data from one or more independent herds before altering or reducing any

parameters in the model. An external validation would test the adaptability of the model and indicate

the implemental potential. In addition, external validation would allow the model performance to

be evaluated on the basis a gold standard, where events were registered throughout the study period.

Both the inconsistent daily registrations in Herd A, and the very low threshold for identifying an

event in Herd B, are likely to have affected the model performances in the evaluation of the model.

9.0.3 Prioritizing alarms

Different postprocessing methods could be applied in order to differentiate between less urgent

alarms and high priority alarms. A prioritizing strategy was described in Paper III and in Section

4.3.4, but methods which combine different sources of data or information would also be interesting

to apply. In the work by Steeneveld et al. (2010), sensor based alarms and non-sensor information

were combined in order to prioritize the alarms using Bayesian Networks. For the presented model,

it would be relevant to investigate the effect of combining area-specific alarms and information on

section-specific high-risk periods (See Section 1.2). Such a combination would likely enable the

detection system to prioritize alarms associated with high-risk periods higher than other alarms and

hereby communicate more precise alarms.

9.0.4 Distinguishing between events

When modeling water consumption, a major challenge in distinguishing different causes of alarms

is, that water consumption is an indirect indicator of the events of interest. Sensors, which can

monitor conditions like diarrhea and fouling directly, do not exist, to this author’s knowledge. Instead,

the water consumption is monitored, and a working hypothesis states that changes in the drinking

patterns of pigs, indicate outbreaks of these specific conditions.

Indirect indicators of unwanted events may, however, be affected by other types of unwanted

events than those of interest in the study. Had tail-biting, for instance, occurred in the data, it is

likely to have had an impact on the water consumption, as would different causes of lameness or

ulcers presumably. However, indirect indicators of events may also be affected by other conditions

amongst the pigs, which are not defined as unwanted events. This is assumed to be the case with

reduced wellbeing in the presented studies.
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G E N E R A L D I S C U S S I O N A N D P E R S P E C T I V E S

The two-sided tabular Cusum may be able to distinguish between events, though, and it is already

applied as the postprocessing method for the output of the spatial model. The two-sided tabular

Cusum enables a distinction between alarms generated by the upper Cusum and the lower Cusum.

Hence, alarms generated by the upper Cusum indicate an increased water consumption, and alarms

generated by the lower Cusum indicate a decreased water consumption. Although the findings by

Madsen et al. (2005) indicated an increase in the water consumption prior to outbreaks of diarrhea,

it is unclear whether a distinction between upper and lower alarms can be used to identify different

conditions. The potential of this method to distinguish between different conditions should, however,

be investigated.

In addition, further research is needed in order to gain more knowledge on whether reduced well-

being of the pigs is reflected as changes in drinking patterns, as indicated by Andersen et al. (2016)

and Madsen et al. (2005), and to what extent the drinking patterns are affected. If such an unspecific

health impairment, which may or may not progress into a disease, cause a high number of alarms, it

is likely that the caretaker will overlook the signs of reduced wellbeing, and misinterpret the alarms

as false. This will lead to a devaluation of the information from the detection system.

9.0.5 Perspectives, performance evaluation

The research presented in this thesis indicated that the challenge of obtaining high performances

from automatic detection models in livestock production may not be possible to fulfill. The literature

review, conducted in Paper I, presented an evaluation of sensor-based detection models developed

over a twenty-years period. The conclusion was that none of the models were suitable for imple-

mentation in commercial herds; the majority due to insufficient detection performances. The spatial

detection model, developed in Paper II, did not obtain sufficient levels of performance either, when

evaluated in Paper III.

Based on the findings in this thesis, it falls natural to ask the following generic questions:

• Are the minimum performance requirements for the detection of specific events in livestock

production realistic to obtain?

• Is the use of performance measurements valid for evaluation of the implemental value of a

detection model?

Fully discussing and answering these questions are beyond the scope of this thesis. However, based

on the findings and discussions presented in this thesis, three fundamental factors can be identified.

These factors point out some challenges, which are likely to impede the performances of detection

models in livestock production modeling in general.

The gold standard constitutes the first factor. As discussed throughout the thesis, the imperfect

nature of the gold standard constitutes a fundamental challenge for obtaining high model performan-

ces. The subjectivity in manual registrations, and the use of a fixed threshold for case vs. non-case

definitions of progressive conditions, naturally impede high model performances.
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The use of indirect indicators for the event of interest constitutes the second factor. As described

above, indirect indicators for unwanted events, may be affected by both other unwanted events and

by other conditions, which are not defined as unwanted events. Other indirect indicators, like activity

measurements as indicators for oestrus in sows (Cornou et al., 2008; Ostersen et al., 2010), or feeding

activity as an indicator for clinical mastitis and lameness (Kramer et al., 2009), are widely used

in the models evaluated in Paper I, and they too constitute a risk factor for impeding high model

performances.

Biological variation constitutes the third factor, which may impede high model performances.

Since the modeling of livestock production imply the modeling of biological variation, some obser-

vations will always be extremely high or extremely low given the relevant spectrum. Such extreme

observations are random, unpredictable, and unavoidable. Their unpredictability will affect the pre-

diction accuracy to a certain degree, and hereby reduce the performance of the model.

In conclusion, it does not seem realistic to obtain high performances for the detection of specific

events based on indirect indicators. Therefore, future research should accept the imperfect conditions

of livestock production systems, and focus more on postprocessing and prioritizing methods. The use

of sensitivity and specificity as performance measurements for evaluation of the implemental value

of a detection model, does not seem valid either. Values of these measurements are always reported

given a defined threshold, or warning criterion, and they will therefore always be arbitrary to some

extent. Thus, it could be argued that the performance of future detection models should be reported

as the unconditional measurement, AUC, instead of specific values of sensitivity and specificity.
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10
C O N C L U S I O N

The overall aim of this PhD project was to investigate whether drinking patterns between pens

within a section, and sections within a herd of growing pigs were correlated and could be modeled in

a spatial model in order to detect unwanted events in specific areas of a herd.

In Paper I, the literature review presented general difficulties in obtaining high performances for

sensor-based detection models in livestock production. None of the detection models were suited for

implementation in commercial herds, and the primary reason was found to be insufficient detection

performances. The results show that further research is needed on new approaches for reducing

alarms from sensor-based detection models in livestock production.

In Paper II, a spatial detection model was developed in order to investigate, whether drinking patterns

in different areas of a herd of growing pigs were correlated. The results showed that there was a

degree of correlation between the drinking patterns in both the modeled herds, and that the correlation

could be modeled. However, the results for Herd B indicated that there were too few pigs in each

pen to evaluate the model rightfully, and an external validation of the model would be a first step in

identifying how future work on the model should be conducted.

In Paper III, it was found that area-specific alarms could be generated for unwanted events within

a short detection window. However, too many false alarms were generated, and it is suggested that

future focus on improving the detection system is targeted at a) improving model performances, b)
methods for prioritizing or ranking the alarms, and c) methods for distinguishing between different

causes of alarms.

In conclusion, the research presented in this PhD thesis, emphasizes the general challenges in obtai-

ning high detection performances for the detection of specific events in livestock production. Espe-

cially the use of indirect indicators for the events of interest impedes high performances, as it was

also indicated in the presented studies. Based on this PhD project, it is therefore doubtful whether

sufficiently high detection performances can be obtained through the modeling of indirect indicators

of events of interest alone. A new approach for communicating area-specific alarms as an alternative

to event-specific alarms is presented, but further research is still needed in order to investigate the

full potential of this method.
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L I S T O F A B B R E VAT I O N S

A I AO All-In-All-Out

AU C Area Under the Curve

D G L M Dynamic Generalized Linear Model

D L M Dynamic Linear Model

F N False Negative

F P False Positive

I C T Information and Communications Technology

M S E Mean Square Error

N B N Naïve Bayesian Network

R O C Receiver Operating Characteristics

S P F Specific Pathogen Free

T N True Negative

T P True Positive
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