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ABSTRACT

The aim of this PhD thesis was to investigate whether simultaneous sensor-based monitoring of
drinking patterns in multiple pens across a herd of growing pigs, could be used to detect outbreaks
of diseases in specific areas of a herd of growing pigs. The thesis is a contribution to the collection
of scientific work of the international PigIT alliance, which has the overall research goal to improve
animal welfare and productivity in Danish production of growing pigs, using advanced ICT methods.

Despite a generally high health and welfare status in Danish pig production, outbreaks of diarrhea
and fouling, which is a change in behaviour where the pigs start to lie on the slatted area of the pen
and excrete in the lying area, constitute an everyday challenge in the herds.

The structure of a Danish herd for growing pigs is sectionalized in the way that a herd consists of
a number of identical sections, and each section consists of a number of identical pens. Such a sectio-
nalized structure of a herd enables the use of a spatial model, which can relate specific observations
to specific areas in the herd.

Thus, in this study, water sensors were placed in multiple pens within multiple sections in two her-
ds of growing pigs (weaners 7-30 kg, finishers 30-110 kg), and the specific hypotheses defined in this
PhD study were: Hypothesis I) drinking patterns between pens within a section and sections within
a herd of growing pigs are correlated, and this correlation can be modeled using model parameters
defined at different spatial levels, and Hypothesis 1I) changes in the drinking patterns of growing
pigs are influenced by diarrhea and fouling. By monitoring the water consumption simultaneously in
multiple pens and sections, outbreaks of the conditions can be detected in specific areas.

In Paper I, an extensive literature review, was conducted. The objective of the review was to provi-
de an overview of different methods for reducing or prioritizing alarms from sensor-based detection
models in livestock production. The performances of detection models, developed over a twenty-
years period, were furthermore compared to three criteria in order to assess their implemental value
in a commercial herd. The results of Paper I showed that only three methods were developed for re-
ducing or prioritizing false alarms. In addition, the results showed that none of the evaluated models
were suited for implementation in a commercial herd. Poor detection performance was the primary
cause for the models being unsuited for implementation.

Based on the literature review, further research is needed on new approaches for improving perfor-
mances and reducing alarms from sensor-based detection models in livestock production.

In Paper II, Hypothesis I was addressed, and a spatial model was developed. The simultaneously
monitored drinking patterns were modeled by a multivariate dynamic linear model, where each mo-
nitored drinking pattern constituted a unique variable. Hereby all monitored drinking patterns were
modeled simultaneously, and different correlation structures could be defined. Thus, seven different

model versions were defined to express different degrees of correlation between the drinking patterns.
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ABSTRACT

Subsequently their ability to fit the data was measured as mean square error (MSE). The results in-
dicated a correlation in data from pens within the same section for the finisher herd (MSE = 13.850).
For the weaner herd, the results indicated an inverse relation between the model fit and the degree of
correlation, and the best fitting model version (MSE = 1.446) therefore expressed the lowest degree
of correlation between drinking patterns.

Based on the findings in Paper II, there is a degree of correlation between the drinking patterns in
different areas of a herd. However, the results for the weaner herd indicated that there were too few
pigs in each pen to evaluate the model rightfully, and an external validation of the model would be a
first step in identifying how future work on the model should be conducted.

In Paper III, Hypothesis II was addressed. The seven model versions, developed in Paper II, we-
re evaluated for their abilities to detect outbreaks of diarrhea or fouling in either a specific pen, a
specific section, or any pen in the herd. The evaluation was conducted by applying a two-sided ta-
bular Cusum control chart to generate alarms from the output of the models. The accuracy of the
alarms were then evaluated given three lengths of detection windows. The results were reported as
the the area under the curve (AUC), and for both herds, the longest detection window combined with
the strongest degree of correlation detected events in a specific setion with the highest performan-
ces (AUC = 0.98, AUC = 0.94). However, the settings applied to generate these high performances,
showed to be of little managerial value. It was found that the same model version combined with
the medium-length detection window, was able to detect event in a specific section as well, and
contituted better suited setting for implementation. Different postprocessing methods for reducing
or prioritizing alarms generated by the Cusum, were furthermore suggested in Paper III, and the
potential of an alarm-reducing method was presented by an exploratory example in Paper IV.

Based on the findings in Paper 111, it is possible to detect outbreaks of either diarrhea or fouling, and
to generate area-specific alarms. However, too many false alarms were generated, and it is suggested
that future focus on improving the detection system is targeted at a) improving model performan-
ces, b) methods for prioritizing or reducing the alarms, and ¢) methods for distinguishing between
different causes of alarms.

In conclusion, the research presented in this PhD thesis, emphasizes the general challenges in
obtaining high detection performances for the detection of specific events in livestock production.
Especially the use of indirect indicators for the events of interest impedes high performances. The
presented research points out difficulties in using detection performance as an indication for the im-
plemental value of a model in a commercial herd, and suggests that the results of external validation

should be used as an indication instead.



SAMMENDRAG

Formalet med denne PhD afhandling var at undersgge, om det er muligt at pavise sygdomsudbrud
i specifikke omrader af en svinebesaetninéﬂ pa baggrund af overvagning af grisenes drikkemgnstre i
flere stier. Afhandlingen bidrager til det samlede videnskabelige arbejde udfgrt i det internationale
forskningssamarbejde, PiglT, der har som overordnede malsatning at gge dyrevelfeerden og produk-
tiviteten i danske svinebes@tninger ved hjelp af avancerede teknologiske lgsninger.

Til trods for den generelt hgje sundhed og velferd i danske svinebes@tninger, udggr udbrud af di-
arré og stivending (en adfeerdsendring, hvor grisene “vender” stien, og begynder at ggde i lejearealet
og legge sig i ggdearealet) en tilbagevendende udfordring i den daglige drift.

Svinebesatninger i Danmark bestar typisk af én bygning, der er opdelt i flere identiske sektioner.
Derudover bestar hver sektion af flere identiske stier. Denne sektionsopdelte struktur ggr det muligt
at anvende en spatiel, eller rumlig, model, som kan forbinde en specifik observation til et specifikt
omrade af besatningen.

Derfor er der, i denne PhD, placeret vandsensorer i flere stier fordelt over flere sektioner i to be-
setninger med grise i vakst (smagrise, 7-30 kg, slagtesvin 30-110 kg), og to specifikke hypoteser er
formuleret som: Hypotese I) drikkemgnstre mellem stier indenfor samme sektion, og mellem sektio-
ner i samme bes&tning, er korrelerede og denne korrelation kan udtrykkes i en model, hvis parametre
er defineret pa forskellige rumlige niveauer, og Hypotese II) endringer i vaekstgrises drikkemgnstre
pavirkes af diarré og stivending. Gennem samtidig sensorovervagning af drikkemgnstre i flere stier
med grise, kan udbrud af disse ugnskede tilstande forudsiges i specifikke omrader af besatningen.

Artikel I praesenterer en omfattende litteraturgennemgang. Formalet med litteraturgennemgangen
var at skabe et overblik over de metoder, der hidtil er anvendt til at reducere, eller rangordne, alarmer
fra sensorbaserede alarmsystemer i husdyrproduktionen. Derudover blev performanc af sensorba-
serede alarmsystemer, udviklet gennem en tyvearig periode, holdt op mod tre kriterier for at vurdere
deres verdi for en kommerciel svineproduktion. Resultatet af Artikel I viste, at der kun var beskre-
vet tre metoder til at reducere eller rangordne alarmer. Derudover viste resultatet, at ingen af de
alarmsystemer, der var beskrevet i den gennemgaede litteratur, egnede sig til brug i kommercielle
besatninger. Den primere arsag til den manglende egnethed var dérlig performance i forhold til at
pavise udbrud af ugnskede tilstande hos dyrene korrekt.

Pa baggrund af denne litteraturgennemgang kan det fastslas, at yderligere forskning er ngdvendig
for at gge performance og udvikle nye tilgange og metoder til at reducere mengden af alarmer fra
sensorbaserede alarmsystemer i husdyrproduktionen.

Artikel IT adresserer Hypotese I og beskriver udviklingen af en rumlig model. De simultant over-

vagede drikkemgnstre fra stierne blev modeleret i en multivariabel dynamisk lincer model, hvor hver

'Besaztning med vakstgrise: Smagrise (7-30 kg), eller slagtesvin (30-110 kg)
2Praestation, ydeevne, resultat
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enkelt drikkemgnster indgik som en unik variabel. Herved blev samtlige drikkemgnstre modeleret si-
multant, og forskellige grader af korrelation mellem dem kunne defineres. Syv forskellige modelver-
sioner blev derfor defineret for at udtrykke forskellige grader af korrelation mellem drikkemgnstrene.
Efterfglgende blev hver modelversion vurderet i forhold til, hvor godt den passede til de observerede
data, og graden af tilpasning til data blev udtrykt som mean square error (MSE). Resultaterne indi-
kerer, at data er korreleret mellem stier indenfor samme sektion i slagtesvinebesa@tningen (MSE =
13.850). I smagrisebesatningen indkerer resultaterne derimod, at der er en omvendt relation mellem
modellens evne til at passe til data, og den grad af korrelation, der er udtrykt i modellen. Det betyder,
at den model, der tilpasser sig data bedst (MSE = 1.446) indikerer, at der er den lavest mulige grad
af korrelation mellem de enkelte drikkemgnstre.

Resultaterne i Artikel II viser, at der forefindes en grad af korrelation mellem drikkemgnstre i for-
skellige omrader af en besatning. De resultater, der blev fundet for smagrisebesatningen, tyder dog
pa, at der var for fa grise i de enkelte stier til at danne grundlag for at vurdere modellens performance
pa dette dataszet. En validering af modellen pa et datasat fra en anden besatning vil derfor vaere
fgrste skridt i at undersgge, hvordan fremtidig videreudvikling af modellen skal forega.

Artikel III adresserer Hypotese II, og evaluerer de syv modelversioner, defineret i Artikel II, i
forhold til deres evne til at pavise udbrud af diarré eller stivending i en specifik sti, en specifik
sektion eller en hvilken som helst sti i besetningen. Evalueringen foregér ved at anvende en two-
sided tabular Cusum control chart til at danne alarmer udfra data fra hver af de syv modelversioner.
Alarmernes ngjagtighed blev vurderet indenfor tre definerede tidsperioder mellem alarm og udbrud
af en handelse. Resultaterne blev angivet som area under the curve (AUC), og de viste at for begge
bes@tninger var det kombinationen af den lengste tidsperiode, sterkeste grad af korrelation samt
pavisning af en haendelse i en specifik sektion, der gav de hgjeste performances (AUC = 0.98, AUC
= (0.94). Denne kombination viste sig dog at ville have meget lille verdi i en kommerciel bes®tning.
Derimod ville samme model, kombineret med den mellemlange tidsperiode, have en langt hgjere
vaerdi i en kommerciel besatning. I Artikel III blev forskellige metoder til at reducere eller rangordne
de alarmer, der blev dannet af Cusum foreslaet. Potentialet for en af de alarmreducerende metoder
blev derudover illustreret i et eksplorativt eksempel i Artikel I'V.

Resultaterne i Artikel IIT viser, at det muligt at pavise udbrud af enten diarré eller stivending i
et specifikt omrade i en bestning. Der bliver dog dannet for mange falske alarmer, og det foreslas
derfor, at fremtidig forbedring af alarmsystemet fokuserer pa a) at forbedre performance, b) metoder
til at rangordne, eller reducere mengden af alarmer og ¢) metoder til at skelne mellem forskellige
arsager til alarmerne.

Den overornede konklusion af den forsking, der prasenteres i denne PhD athandling, fremheaever
de generelle udfordringer, der ligger til hinder for at opna hgj performance i pavisning af specifikke
hendelser i husdyrproduktion. Det er i hgj grad anvendelsen, af indirekte indikatorer for de enkelte
handelser, der hindrer hgj performance. I det presenterede arbejde udpeges nogle udfordinger ved
at bruge performance som indikation for, hvorvidt et alarmsystem kan give verdi i en besatning.
I stedet foreslas det, at en sadanne nytteverdi af et alarmsystem skal vurderes ved at evaluere pa

dataset fra andre bes@tninger.
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OUTLINE OF THE THESIS

Chapter [T] contains an introduction to the present thesis and provides both the background and the

state-of-the-art for the conducted research

Chapter 2] presents the scientific aim of the thesis.

Chapter 3| presents the materials and methods used for the three manuscripts in Chapters[6] [7] and
Chapter [4] presents findings and discussions of the four manuscripts.
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multiple pens. Accepted for publication in Proceedings for the EC-PLF conference in Nantes,
12-14 September 2017

Chapter [9] contains a general discussion and perspectives of the research presented in the thesis

Chapter [10] provides the overall conclusions of the presented PhD
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INTRODUCTION

1.1 BACKGROUND

Pig production has changed over the past 40 years. From small scale farms housing both breeders,
weaners and finishers, into larger centralized herds, which are highly specialized production units
each designed for either breeders, weaners or finisher pigs (Kashiha et al., 2013; Sorensen et al.,
2010).

This multi-site production is a part of a bio-security strategy, which has effectively reduced the
impact and spreading of diseases and improved the overall health of pigs. Particularly the focus on
high health status herds with Specific Pathogen Free (SPF) pigs and All-In-All-Out (ATAQ) mana-
gement has improved animal health in Denmark as compared to other parts of the world (Cameron,
2000; Danish Agriculture and Food Council, 2010).

Despite the high health status of pigs in Danish production herds, some diseases still have signifi-
cant impact on the welfare and result in too high mortality and reduced productivity. The increased
number of animals within the herds leaves less time available to attend to individual pigs during the
daily check. It is therefore more difficult for the caretaker to recognize events like diarrhea, tail bi-
ting, and fouling, which is a change in behaviour where the pigs start to lie on the slatted area of the
pen and excrete in the lying area, at the early signs of an outbreak. Interventions implemented after
an outbreak will often reduce the consequences of the condition, but both welfare and productivity
will be compromised to some extent for the rest of the growing period of the affected animals.

If the pigs were monitored around the clock, any early signs of undesired events might be recog-
nized. Hereby interventions could be implemented timely enough to either prevent the events from
occurring, or limit the consequences to a greater extent than with subsequent interventions.

Constant monitoring by personnel is, however, not a realistic option considering both monetary
expenditures and efficiency. Technical solutions are still getting more affordable, though, and by
installing sensors in the herd, the pigs would be monitored automatically around the clock, and
constant data streams could be modeled into early warning systems.

An early warning system can detect early stages of events like changes in behaviour or outbreaks
of diseases. If an event is detected, the warning system will communicate an alarm to the caretaker.
The alarms provide the caretaker with valuable information on the status of the animals and will act

as decision support in the daily management.
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The research, which will be presented here, focuses on the development of such an early warning
system. The described PhD project is a part of the larger PiglT allianceﬂ which is an international
cooperation of scientists working on developing monitoring and decision support tools in growing
pigs. By integrating Information and Communications Technology (ICT)), PigIT aims to improve
both welfare and productivity in Danish production of growing pigs.

PiglIT focuses on three events of interest, which have severe impact on both welfare and producti-
vity in Danish pig herds; diarrhea, tail biting and fouling. Tail bites were, however, not occurring in

the data included in the present work, and will not be discussed any further in this thesis.

1.2 STATE-OF-THE-ART RESEARCH

The development of sensor-based detection models for livestock production has been a field of
increased scientific focus for more than twenty years (Berckmans, 2014; Wathes et al., [2008]).

The overall concept of sensor-based detection models is to automatically detect a given condition
based on continuous real-time monitoring by one or more sensors. The data observed by the sensors
serve as input to one or more mathematical models in a detection system, and if a predefined threshold
is exceeded by the modeled data, an alarm is generated. Based on the alarms, the farmer can decide
to target interventions and managerial focus, thus using the detection model for decision support in
the everyday production.

Throughout the years, livestock science detection models in general, have focused primarily on
detecting individual animals with specific conditions like clinical mastitis, lameness and oestrus. Few
detection models have been developed for groups of animals, Madsen et al. (e.g.[2005)) developed a
model for prediction of diarrhea in a section of weaner pigs, and recently Jensen et al. (2017 and
Jensen et al. (2016) focused on events in a pen of finisher pigs.

If a warning system could provide precise information on specific animals or groups of animals
in need of high attention, it would be of high managerial value to the farmer. Such precise alarms
would require high performance of the detection model in order to avoid false alarms. False alarms
are both costly and time consuming for the farmer, and in addition to the costs, excessive alarms
devaluate the managerial value, and diminishes the trust in the warning system. In other words, a
warning system, which generates too many false alarms, will not be suited for decision support and
should not be implemented in a livestock producing herd (Hogeveen et al., 2010).

Alarms are generated by comparing the modeled data to a predefined threshold, which is defined
according to the nature of the detection system and the condition sought detected. A simple system
might measure the body temperature of an animal and generate an alarm if a certain temperature is
reached or exceeded, whereas a more complex system might predict the next value of the observed
variable and generate an alarm if the modeled data deviates systematically from what is expected.

Whether an alarm is true or false is determined by comparing the time of each alarm with informa-

tion on whether the condition, or event of interest, occur at the same time or not. For this purpose,

Uhttp://pigit.net



1.2 STATE-OF-THE-ART RESEARCH

the gold standard must be known. The gold standard ideally expresses the true state of the modeled
system, hence stating with certainty whether the event is present or absent. In practice, however, the
gold standard often consists of human observations, which will always be associated with a natural
subjectivity, as discussed in Paper II. Although the subjectivity usually is sought minimized by a
clear definition of case vs non-case, there is little or no consensus in such definitions across studies
of the same condition. Thus in the scientific literature, as different clinical mastitis definitions as
“Somatic Cell Count (SCC) above 100,000 cells/ml or treatment performed” (Cavero et al., [2007)
and “one or more alerts given in a defined period around the recorded date of an observed case” (Mol
and Ouweltjes, |[2001) can be found.

Since alarms seldom occur at the exact same moment as the events are registered, periods of time,
known as time windows, relative to an event, are often defined (Hogeveen et al., 2010; Kamphuis
et al., [2010a; Sherlock et al.,|2008)). All alarms generated within a time window are treated as one
single alarm correctly identifying the event. The length of the time window may vary according to
the event of interest, and it can extend from before an event is observed to after an event is observed
(Cavero et al., 2006} Jensen et al.,[2017; Mol et al., [1997).

Whether an alarm is associated with an event or not, lays to ground for a categorization into one

of four categories of true and false alarms as follows:
¢ True Positive (TP) is an alarm occurring in the defined time window around an event
* False Positive (EP) is an alarm occurring outside a time window around an event
¢ True Negative (TN) is when there is no alarm and no event occurring
¢ False Negative (EN) is when there is no alarm at an event or during the time window.

As illustrated in Figure from Paper III, the length of a time window influences the categoriza-
tion of true and false alarms, and this will affect the performance of the detection model.
Based on the categorization of the alarms, the model performance is measured by the conditional

probabilities sensitivity (Se) and specificity (Sp), which are estimated as:

TP
TP M
and
TN
SP = TN Py @

where TP denotes the total number of TP cases and accordingly for the other variables, as shown in
Paper I1I.

Sensitivity reflects the model’s ability to correctly identify the occurrence of the event of interest,
whereas specificity reflects the model’s ability to correctly identify the absence of the event of interest.
Thus a high sensitivity is needed in order to identify the events, but since the event of interest usually
is of low prevalence in the herd, a high specificity is crucial in order to reduce the number of false

alarms.
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Figure 1.1: Example of definitions of true positives (TP), false positives (FP), true negatives (TN), and false
negative (FN). All observed events are associated with a time window, and overlapping time windows are
merged into longer windows. Three lengths of time windows are illustrated; 3/0 = three days before an event
and zero days after, 2/0 = two days before an event and zero days after, 1/0 = one day before an event and
zero days after. All alarms occurring within a time window are counted as one TP alarm. If no alarms occur
within a time window, it is counted as one FP. Days outside of time windows but with alarms, are counted as
FP, whereas days outside of time windows with no alarms are counted as TN. Based on illustration by Jensen
et al. (2017) (Figure from Paper III).
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The importance of correct identification of both cases and non-cases has resulted in a definition
of minimum performance requirements for clinical mastitis detection, which must be met if the
detection system should be implemented in a production herd. Both 70 and 80 have been suggested
as minimum sensitivity levels, whereas a specificity of 99 is agreed on as minimum level (Mein and
Rasmussen, 2008; Rasmussen, 2002)). Although no minimum requirements have been defined for
detection of other conditions than clinical mastitis, it is a general challenge to reduce the number
of false alarms from livestock detection systems (Berckmans, 2014), and it can be argued that the
performance requirements defined for clinical mastitis detection, could be used as guidelines for
evaluation of livestock detection systems in general.

Only five sensor-based detection models described in the scientific literature, fulfill the defined

minimum performance requirements, when comparing to either of the minimum requirement for Se:

* Mol and Ouweltjes (2001) (Se = 100, Sp = 99.5) used Fuzzy Logic to detect clinical mastitis,

but also used the same data set for learning and testing the model

* Liuet al. (2009) (Se = 100, Sp = 100) validated their B-spline transformed logistic regression
model for lameness detection by “leave-one-out” for each of the 260 cows included in the study,

which leads to almost identical learning and testing data sets as well

» Kamphuis et al. (2010b)) (Se = 71.4, Sp = 99) detected clinical mastitis and used a decision
tree in combination with the ensemble classifying methods bagging and boosting (Witten and

Frank, 2005) to obtain the high performances

* Maertens et al. (2011) (Se = 90, Sp = 100) used linear regression in combination with an
unspecified method, and obtained high performances on identifying severely lame (gait score

3) cows correctly, but reported no performance for lower gait scores

* Cornou and Lundbye-Christensen (2011) (Se =100, Sp = 100) applied a Dynamic Generali-
zed Linear Model (DGLM)) to detect sow parturition, but the high performances were to some

extent caused by an overfitting of the model, as was recognized by the authors.

The dynamic approaches used by Cornou and Lundbye-Christensen (2011) and Kamphuis et al.
(2010b)) seem well suited for modeling time series of sensor data. This is further supported by high
performances obtained in seven studies, all using Dynamic Linear Model (DLM)]) with or without
postprocessing methods (see Table [I.1).

Despite the high performances obtained in studies using dynamic linear models, too many false
alarms are still generated, and the developed models are not suited for implementation in livestock
production herds without further customization. A possible explanation for the general difficulties of
reaching minimum performance requirements might be that sensitivity and specificity are epidemio-
logical terms designed for evaluation of binary test output. The majority of conditions in livestock
production, like clinical mastitis, lameness, oestrus, diarrhea, and fouling, progress over time and
are more complex than binary conditions (Friggens et al., 2007, 2010). A precise detection of such

conditions will therefore be difficult when using a fixed threshold for generating alarms.



INTRODUCTION

Table 1.1: Sensitivity and specificity obtained by various DLM applications

Paper Method Se Sp  Focus

Cornou et al. (2008)) Univariate DLM 75 95.4 QOestrus

Cornou and Lundbye-Christensen (2010) Multivariate DLM 96 96 Activity types
Ostersen et al. (2010) Multiprocess DLM  89.2 96.9 Oestrus

Mol et al. (2013) DLM 100 95.4 Clinical Mastitis
Jensen et al. (2016) Multivariate DLM 80 81 Clinical Mastitis
Jensen and Kristensen (2016)) Multivariate DLM 80 88 Diarrhea

Jensen et al. (2017) Multivariate DLM 80 81 Diarrhea or fouling

In addition to the progressive nature of the conditions, detection performances might be reduced
because the modeled parameter contains more information on the animal than what relates directly
to the event of interest. Studies indicate that this is true for water consumption of pigs in particular.
Thus Jensen et al. (2017) found that water was the one single variable containing most information
in the prediction of diarrhea or fouling in finisher pigs, which coincide with the findings by Aparna
et al. (2014)), in a study predicting the onset of farrowing.

Other studies indicate that pigs’ water consumption reflects the true state of the animals more
detailed than when the gold standard is directly observed by human. Thus, a study by Andersen
et al. (2016) showed that changes in the diurnal drinking pattern of finisher pigs could indicate the
presence of stressors in general, rather than specific events. This is also considered in a study by
Madsen et al. (2005)), who found that changes in the drinking pattern of weaner pigs can be used to
predict outbreaks of diarrhea, but also that it may reflect the general wellbeing of the pigs.

If alarms caused by reduced wellbeing in the animals are communicated to the farmer, the warning
system would be less event-specific. Unspecific warning systems have a high potential of predicting
very early stages of a condition or other stressors amongst the animals. This is of considerably
managerial value, but some sorting or prioritization of the unspecific alarms are necessary though.
The alarms could be presented to the farmer as risk indicators, as suggested by Friggens et al. (2007,
2010), or they could be prioritized by including non-sensor information in a Naive Bayesian Network
(NBN), as was done with success by Steeneveld et al. (2010).

An alternative alarm-prioritizing approach is to relate the unspecific alarms to a specific area of
the herd using a spatial model. This would allow the farmer to include any specific knowledge of the
animals in the targeted areas and choose the right intervention timely enough to prevent an outbreak
or reduce the consequences of the condition.

Modern Danish production sites for growing pigs are very well suited for such spatial modeling
due to the construction of the sites and the managerial routines. The sites are organized in identical
sections consisting of a number of identical pens. Pigs are inserted in the sections following an AIAO
strategy where pigs of same age are inserted in a section on the same day, and the section is emptied
and disinfected before the insertion of a new batch of pigs. This construction of the herd allows it
to be modeled as a system consisting of one large unit (the whole herd), which consists of a number
of identical subunits (sections), with each subunit consisting of a number of identical sub-subunits

(pens), as illustrated in Paper II.
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Standardized managerial routines cause a high degree of correlation between pigs in the individual
pen as well as between pens within a section, and sections within a herd. Pigs are inserted in the
individual pens in a section according to gender or size, and for bio-security reasons pigs from one
section do not enter another section in the herd. Both feed mixture and climate control is managed
individually for each section according to the age of the pigs it contains. It is, however, the same
central feeding system which supplies the whole herd, and both power and main water supply are
central as well.

The AIAO strategy described above, constrains the spreading of conditions like diarrhea and fou-
ling between sections. If the conditions do occur, they will spread within a section from one or few
pens to more, but it is not given that all pens within a section get affected.

Some points in time during the growth period are known to constitute higher risk of outbreaks than
others. Thus outbreaks of diarrhea have shown to be related to shifts in the environment experienced
by both weaner and finisher pigs at insertion in the section (Pedersen, 2012) (and personal com-
munication Weber, N.). Routinely shifts in the age-optimized feed mixture two to four weeks after
insertion, often cause diarrhea amongst weaners as well (ibid.). In a study by Aarnink et al. (2006]),
it was found that outbreaks of fouling is closely related to room temperature and body weight. Alt-
hough pen density and climate related parameters like humidity and draft have some effects (Huynh
et al., 2005; Randall et al., |1983)), most fouling occur amongst finishers in the end of the growing
period, where the increased emission of body heat adds to the environmental temperature (Aarnink
et al.,[2006}; Spoolder et al., 2012).

The development of a spatial detection system for Danish production units for growing pigs, will
make it possible to predict events at separate spatial levels within the herd. The system will be able
to identify irregularities in a specific pen within a specific section, in a specific section within the
herd, or in a pen within the herd. Such area-specific alarms allow the farmer to include any specific
knowledge of high risk periods and of the specific animals in the pointed area, and choose the best

suited intervention, as discussed in Paper III.
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2.1 WORKING HYPOTHESES

Hypothesis I: Drinking patterns between pens within a section and sections within a herd of growing
pigs are correlated, and this correlation can be modeled using model parameters defined at different

spatial levels.

Hypothesis II: Changes in the drinking patterns of growing pigs are influenced by diarrhea and fou-
ling. By monitoring the water consumption simultaneously in multiple pens and sections, outbreaks

of the conditions can be detected in specific areas.

2.2 SPECIFIC AIMS

Paper I: In Paper I, the specific aim is to evaluate the performance of sensor-based detection models
in the scientific literature, focusing on alarm-reducing methods. An extensive review of the scientific
literature is conducted, and performance, modeling methods, and validation methods of the included

models are discussed.

Paper II: Paper II addresses Hypothesis I, and the aim of the paper is to develop a multivariate spatial
model, which can model correlations between drinking patterns in pens and sections in any herd of
growing pigs. The work presented in Paper II is the first of two steps in the development of a full

spatial detection system.

Paper III: Paper III addresses Hypothesis II. The aim of the paper is to evaluate the performance
of the detection system, based on the detection model developed in Paper II. This is done through a
systematic change of model specifications and performance evaluating settings. An additional aim
of Paper IlI is to present and discuss alarm reducing and prioritizing strategies. The work presented

in Paper III is the final step of two in the development of a full spatial detection system.

Paper IV: The aim of Paper IV is to exemplify the alarm reducing potential of the detection system

developed in Papers II and II1.
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MATERIALS AND METHODS

Data collection for the research presented in this thesis is conducted in accordance with PigIT
alliance aims and decisions. The two included herds are chosen by the PiglT alliance in order to
represent different age-groups of pigs, and different managerial resources and routines. Likewise,
sensor types and sensor placement within each herd is decided by the alliance, and standard procedu-
res for event registration are described in a PigIT protocol (Lyderik et al.,[2016).

The following sections include a description of the materials and modeling methods used for Pa-
pers I, III and IV in the present PhD study. Since both materials and methods are described in the
papers as well, the following sections serve as an overview, including considerations and motivations
for the choice of data processing and modeling methods. All modeling was done using the statistical

programming language R (R Core Team, [2014).

3.1 HERD DESCRIPTION

Water data from two Danish herds of growing pigs (weaners 7-30 kg and finishers 30-110 kg) lay
ground for the research presented in this thesis. Herd A is a commercial finisher herd, and Herd B is
the experimental weaner herd, “Grgnhgj”, which is owned by the Danish Pig Research Centreﬂ

Both herds conduct AIAO management, thus inserting pigs of same age in all pens within a section
on the same day, followed by a complete emptying, cleaning and disinfection of the section before
new pigs are inserted. Pigs inserted in the same section at the same time are defined as a batch of
pigs, and the period they stay in the section is defined as the growth period. The growth period for
finisher pigs in Herd A lasts 14 weeks including one week for cleaning, whereas the growth period
for weaner pigs in Herd B lasts 8 weeks including four days for cleaning.

Herd A consists of five sections, of which four are included in this study. Herd B consists of
four sections in total, and all of those are included in this study. Batches are inserted in subsequent
sections in the herds following a production cycle as illustrated in Figure [3.1] from Paper II. This
implies that pigs are of different ages across the sections in the herd at any given time. In Herd A
the study period was initiated in May 2014 and ended in March 2016, thus monitoring water data

from seven batches from each section during the study. Water data from Herd B was monitored from

'www.pigresearchcentre.dk
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Figure 3.1: Production cycle for a finisher herd (A) and a weaner herd (B) (Figure from Paper II).

October 2014 to December 2016, which included 13 batches from three sections and 14 batches from

one section.

A section in Herd A consists of 28 pens each with 18 finisher pigs. Two neighbouring pens
share the same feeding trough and the same water pipe. The water consumption of two pairs of
neighbouring pens, called double pens, per section is monitored, and both sections and pens within
the sections are randomly chosen. A section in Herd B consists of 12 pens each with 15 weaner pigs.
All pens have individual feed and water supply, and four pens from each section are included in the
study. Both sections and pens are chosen by the Pig Research Centre. The structure of the two herds,

and the placement of the pens included in the research, can be seen in Figure [3.2]from Paper IL

3.2 SENSOR DATA

Water data was monitored using photo-electric flow sensors (RS V8189 15mm Diameter Pipe).
The sensors measured water flow per millisecond as pulses proportional to the velocity of the water
(Anonymous, 2000), and the number of pulses were converted to litres and aggregated per hour,
yielding water use in litres per hour.

The sensors were placed on water pipes supplying either double pens in Herd A, or single pens
in Herd B (Figure[3.3). In Herd A a total of eight sensors were installed, thus monitoring the water
consumption of eight double pens containing a total of 36 finisher pigs each. In Herd B sixteen
sensors were installed, each monitoring the water consumption of 15 weaner pigs.

Sensors were calibrated before initiations of new batches, and no sensor data was obtained during

cleaning periods between batches. Therefore the cleaning periods are considered planned periods of



3.2 SENSOR DATA
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Figure 3.2: Plan of Herd A (top) and Herd B (bottom). Sensors were placed in eight double pens in Herd A
(marked with grey) and in sixteen pens in Herd B (marked with grey). (Figure from Paper II).

Figure 3.3: One water pipe supplying two neighbouring pens in Herd A (left) and a single pen in Herd B
(right). (Figure from Paper II).
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missing data, as opposite to unplanned periods of missing data, which are seen in the data sets as
well. Some of these unplanned periods are caused by sensor outages, or other technical irregularities
in the process of transferring data from a sensor to the central data base. The periods may last from

a few hours to several days, although few periods as long as a whole batch are also registered.

In Herd A unplanned periods of missing data occurred almost every night in all pens. Since
it is not possible to distinguish between sensor outages and hours without drinking activity (zero
observations) in the present data sets, it was suspected that the missing data reflected sleeping pigs.
Samples of video recordings from the pens confirmed the suspicion, and therefore missing data of
maximum 5 hours length occurring between 10:00 PM and 4:00 AM, as standard, were interpreted as
zero observations. In Herd B water consumption was registered in every hour during the night, which
may be related to a higher metabolism in smaller animals (weaners) than in larger (finishers). The
cause of this night activity is, however, beyond the scope of this research, and will not be discussed

further.

Data from each sensor constitute an individual time series, and the full data set for Herd A therefore
consists of eight time series, whereas the full data set for Herd B consists of sixteen time series. A full
data set begins with the first observation by any sensor in the herd, and ends with the last observation

by any sensor in the herd.

The full data sets are split into learning data (4 batches from Herd A and 10 (11) batches for
Herd B) used to train the detection model in Paper 11, and test data (2 batches from both herds) used
to evaluate the performance of the detection model in Paper III. Data from one batch per sensor
was omitted between training data and test data for both herds, in order to avoid the risk of having

observations from the same pigs occurring in both data subsets.

3.3 EVENTS OF INTEREST

During the study period, the personnel in both herds registered on a daily basis, if either diarrhea
or fouling had occurred in any of the monitored pens. These registrations of the two event types

constitute the gold standard in the evaluation of the model’s predictive performance in Paper II1.

At the initiation of the study period, the personnel was given instructions on how to assess the two
types of events, and a protocol with detailed descriptions were handed out (Lyderik et al.,2016)). In
Herd A the assessment routines were calibrated by a trained technician at regular visits, however this
was not considered necessary in Herd B since the herd is a research facility. For the rest of the present
thesis, no distinction between diarrhea and fouling are made, though. This approach is chosen since
the aim of the detection system is to generate area-specific alarms rather than distinguish between
different conditions. Registrations of diarrhea and fouling are therefore merged for each herd under

the common term “event”.
When examining the event registrations from the two herds, it was evident that significant herd-
specific differences occurred in the frequencies of registrations. Herd A experienced multiple repla-

cements of the daily caretaker during the study period, and this resulted in inconsistent event registra-
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tions including periods with none at all. Therefore all available event registrations were included as
gold standard. In Herd B, periods of 14-21 days in a row with positive diarrhea registrations occurred
multiple times. None or few treatments were initiated in those periods, though, and conferring with
the daily manager confirmed that the personnel’s threshold for identifying diarrhea was very low.
Thus, for Herd B, the initiation of an intervention (medical treatment of diarrhea or cleaning of pens

with fouling) were used as gold standard for performance evaluation.

3.4 MODELING METHODS

Initial evaluation of the drinking patterns from both Herd A and Herd B showed a clear diurnal
pattern (see Figure[3.4). Such a diurnal drinking pattern has previously been modeled by Madsen et
al. (2005), who used a superpositioned univariate dynamic linear model to model the drinking pattern
of a section of weaner pigs. A dynamic linear model is dynamic by nature. It can model fluctuations
over time in the underlying mean, which makes it well suited for modeling the evolution in pigs’
water consumption over time. Therefore, a multivariate spatial dynamic linear model is chosen as
the modeling method in this research, and the model, developed in Paper II, is made on the basis of
the work by Madsen et al. (ibid.).

The characteristics of a general multivariate DLM, can be described, following West and Harrison
(1999), as:

The observation vector Yy = (Y7,...,Ynt)’ , contains the observation at time t for each of the
n sensors. Both the relation between Y; and the underlying parameter vector 0, at time t, and
the evolution of the system over time, are described through an observation equation and a system

equation (Equations (3]) and (@) respectively):

OBSERVATION EQUATION
Y =F0c+ve, ve~N(0,Vy), 3)

and

SYSTEM EQUATION
0t = GOr—1 +wy, wi~N(0, W,). 4

The overall aim of the DLM is to predict the next observation of the monitored variable by esti-
mating the parameter vectors, 01, ...,0, from the observations, Y7,..., Y. Every observation is
added to the model’s prior knowledge of the modeled system, and this dynamic updating enables the
model to predict the next observation with increased certainty over time. When a new observation
is made, the predicted value and the observed value are compared, and any differences between the

predicted and the actual observations are due to the two error terms, v and w.
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For the modeling of pigs’ drinking patterns, this means, as quoted from Paper IV, that “if the
pigs follow their normal drinking pattern and drink as much water as expected, the prediction of the
next observation is close to perfect, and any prediction error will be small. If, on the other hand,
something is causing the pigs to drink more or less than expected, the prediction error will be larger.
A systematic change in the normal drinking pattern will generate a sequence of larger prediction

errors, and this will lead to an alarm, as will be described later.”

3.4.1 Modeling diurnal patterns

Madsen et al. (2005) tested how many harmonic waves should be included in order to model
the diurnal drinking pattern of pigs. They found, that three waves were sufficient, and in the work
presented in this thesis, the same three harmonic waves are used. Therefore, the modeling of the
diurnal part of the drinking pattern is done by combining three harmonic waves of lengths 24h,
12h, and 8h as illustrated in Figure 3.4] Each harmonic wave is expressed as cyclic models in a
dynamic linear model through the trigonometric Fourier form representation of seasonality (West
and Harrison, |1999) as:

F{‘ _ ( 1 ) and GI‘ _ ( cos(w) sin(w) ) 5)
0 —sin(w) cos(w)

with w = 27/24 yielding a wave with a period of 24h, w = 27t/12 a wave with a period of 12h,
and w = 27/8 a wave with a period of 8h. The three harmonic waves are denoted, H1, H2, and H3
respectively.

However, since pigs drink more water as they grow, a trend must be added to the diurnal pattern
in order to model the full drinking pattern. A dynamic linear growth model models the underlying
level of water consumed as well as the increase in the level from time t — 1 to t. It is described by

West and Harrison (ibid.) as:

Fl = ] and G! = T (6)
o \lo 1)

3.4.2 Modeling correlation

All four elements found by Madsen et al. (2005) always contribute to the pigs’ drinking patterns
at the same time, but in Paper 1II it is investigated whether each of the three wave elements, indepen-
dently of each other, peak at the same time in all pens in a herd, only at the same time in pens within
a section, or if there are individual differences in the time of peaking between all pens in a herd.

If a wave peaks at the same time in all pens in the herd, then that element of the full drinking
pattern is correlated at herd level (see Table [3.1). This could for example be the wave with 24h

wavelength (H1), and this would then indicate that the pigs have their majority of water intake at the



3.4 MODELING METHODS

H1
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Figure 3.4: From top to bottom: H1 (24h), H2 (12h), H3 (8h), Sum of H1+H2+H3, Diurnal drinking pattern
Herd A, Diurnal drinking pattern Herd B
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same time every day (for example at noon) in all pens across the herd, and their minimum of water
intake 12 hours later (at midnight). Since all pigs in the herd experience night and day at the same
time, this correlation would not be unexpected to find.

If, on the other hand, all pigs in one section have their maximum water intake at 10 AM (and
minimum at 10 PM), and all pigs in another section have their maximum water intake at 1 PM (and
minimum at 1 AM), then this would indicate a correlation in the 24h wave element of the drinking
pattern at section level. Since the pigs differ in age and size between sections, this correlation would
not be unexpected to find either.

Finally, if differences in the time of day, where the major water intake takes place, are found
between all pens in the herd, it would indicate little or no correlation in the 24h wave element of
the drinking pattern, and the correlation would then be expressed at pen level. Bearing the AIAO
sectionalized structure of a herd in mind, such a correlation would be less expected to be found for
the 24h wave. It would, however, not be unlikely for the 12h (H2) or the 8h wave (H3) since this

would express differences in the minor peaks of drinking activity between pens.

Table 3.1: Terminology and interpretation of seven model versions applied to the data sets from Herd A and
Herd B. The letters denoting the model versions are: H = Herd level, S = Section level, and P = Pen level. In the
interpretation, H1 = Harmonic wave of length 24h, H2 = Harmonic wave of length 12h, and H3 = Harmonic
wave of length 8h.

Model version Interpretation

HHH: The full harmonic pattern evolves identically for all pens in the herd

HSS: HI1 evolves identically for all pens,
H2 and H3 evolve identically within each section but differently between sections

HSP: HI1 evolves identically for all pens,
H2 evolves identically within sections but differently between sections,
H3 evolves differently in each pen

SSS: The full harmonic pattern evolves identically within each section
but differently between sections

SSP: H1 and H2 evolve identically within sections but differently between sections,
H3 evolves differently in each pen

SPP: HI evolves identically within sections but differently between sections,
H2 and H3 evolve differently in each pen

PPP: The full harmonic pattern evolves differently in each pen

3.4.3 Estimating variance components

For each of the seven model versions, the variance-covariance matrices, Vi and Wy, are estimated
on the learning data. Three observation variance components are defined at herd level, section level,

and pen level, respectively, to allow for observational errors to occur in one pen, in all pens in a
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section, or in all pens in a herd. By combining the three spatially defined variance components, the
full variance-covariance matrix, Vy is expressed. The system variances, Wy, are modeled as a fixed
proportion of the posterior variances, C¢, using discount factors. Thus, for each of the three cyclic

models as well as for the linear growth model, a discount factor is estimated.

For estimation of the variance components, the Nelder-Mead algorithm in the opt im function in
R (R Core Team, [2014)) is used. The algorithm optimizes all parameters with respect to an optimi-
zation criterion. In the present case, the parameters are the variance components of the model (three
V¢ components and four discount factors used to express W), and the optimization criterion is to
minimize the Mean Square Error (MSE). When variances are estimated in order to optimize the
MSE, there is a risk of bias-variance tradeoff, which leads to excessively large variances and small
MSEs, or vice versa (Hawkins, [2004; Torgo, 2017, Witten and Frank, [2005)).

Variance components can be estimated by other methods than optimization. They can be conside-
red unknown and be estimated for each observation using a Kalman filter, as done by Madsen et al.
(2003), or estimated more directly through an Expectation-Maximization (EM) algorithm, as done
by Jensen et al. (2017)) and Bono et al. (2012)). In the presented work, the estimation by the EM algo-
rithm was initially attempted, but the iterative algorithm repeatedly failed to converge. This finding
was also made by Madsen (2001)), and it may be that the EM algorithm is unsuited for estimation
in models which include harmonic elements based on the Fourier form representation of seasonality,
as mentioned in Paper II. In the presented research, the estimation through optimization is therefore

sought investigated, and the outcome of that will be discussed in Section[#.2.4]

3.4.4  Model fit

In order to express how well the models predict the next observation in the water data, the Mean
Square Error is calculated individually for each model version and each herd. The MSE is
defined as % ZI:1 e et, and expresses the average of the squares of the forecast errors. If a model
fits the data well, the differences between the predicted, or forecasted, pattern and the observed
pattern will result in smaller errors than for a model, which fits the data less well. Therefore the
interpretation of MSE is that a smaller numerical value indicates a better model fit. The MSE can not
be compared between herds, but should be compared between model versions applied to the same

data set.

3.4.5 Cusum control chart

Each modeled time series of sensor observations generates a series of forecast errors, e¢. Moni-
toring of forecast errors can be used to detect whether a process is in control or out of control, as
described in Paper III. Out of control situations may lead to an alarm, which may proceed unwanted

events. In Paper Il a two-sided tabular Cusum control chart is used to monitor the generated forecast
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errors of each model version. The model versions are evaluated on their ability to detect unwanted

events in either a specific pen, a specific section, or in any monitored pen within the herd.

Since the multivariate dynamic linear model generates one series of forecast errors per pen, more
forecast errors must be added together in order to express errors at section and herd level. The
procedure for preparing the forecast errors to the Cusum is described in details in Paper III, and only

a short overview is presented here.

The pen level input to the Cusum consist of the series of forecast errors from the sensor in the
corresponding pen (8 in Herd A, 16 in Herd B). The series of forecast errors for a section (4 in both
herds) is generated by adding the forecast errors of all sensors within the section at time t. Likewise,
the series of forecast errors for the entire herd (1 in both herds) is generated by adding the forecast

errors of all sensors within the herd at time t together.

Because pigs drink more as they grow, the numerical values of the forecast errors increase over
time as the underlying level of water consumption increases. The growth-related increase must be
eliminated if an increase caused by a systematic change is to be identified. Therefore the forecast
errors are standardized with respect to the forecast variances, Q+, before they are monitored. Series
of forecast variances for standardization are generated for each spatial level following the method

described in Paper II1.

Since each series of forecast error and forecast variances is generated for a specific pen, section or

herd, it is denoted e} or Qj' respectively, where u relates to the specific unit (pen, section, herd).

The following is quoted from Paper III and describes the “applied standardized two-sided Cusum

control chart is defined by Montgomery (2013) as:

Since the expected value of e} is 0, the standardized value yi* simply becomes

wo & (7)
Yt =
foqy
where q* = /Q}"
Then, the Upper Cusum for the unit is the series
Ci*" = max[0, yy —k+ CiH] (8)
and the Lower Cusum is the series
CY =max[0,—k—yi' + Cy 1 )

where k is the reference value”.

The two-sided Cusum generates cumulated sums of the positive and the negative forecast errors
separately over time and plot them as Upper Cusum and Lower Cusum respectively. If either of the
Cusums exceed a defined threshold, h, the monitored process is considered out of control, and an

alarm is generated (see Figure[3.5)).
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Subsequently the generated alarms are categorized as true positive (TP), false positive (FP), true
negative (TN), or false negative (FN) based on whether they occur within a chosen time window or
not. Three different time windows were defined, each including either three, two, or one day before

an event, and no days after (denoted 3/0, 2/0, 1/0 respectively). The time windows are illustrated in

Figure[I.T] Section[I.2}

—— Upper CUSUM

AAAW fM L L)
JJWV VUV"V‘U“P’

Time (Days)

Figure 3.5: Two-sided Cusum control chart. The Upper Cusum reaches or exceeds the threshold seven times,
whereas the Lower Cusum exceeds the threshold once. In total eight individual alarms are generated.

The process of the full performance evaluation is described in details in Paper III. A total of

2 x 7 x 3 x 3 =126 model combinations are evaluated for their detection performance based on:

Herd (Herd A, Herd B)

Model version (HHH, HSP, HSS, SSS, SSP, SPP, PPP)

Spatial level (Pen, Section, Herd)

Time Window (3/0, 2/0, 1/0)

For each of the 126 model combinations a Cusum is run with different settings of the two control
chart parameters, k and h, and the final performance of the detection system is evaluated indepen-
dently of a threshold using Receiver Operating Characteristics curves and calculating the
Area Under the Curve (AUC) for each curve as described in Paper III. If the AUC = 1, then the

predictive performance is perfect, so values close to 1 are preferred.
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FINDINGS AND DISCUSSION

In this chapter, the overall findings from the four original papers will be presented and discussed.
More in-depth and detailed results are found in the papers in Chapters[5][6] [7] and [§]

4.1 PAPER I1: FOCUS NEEDED ON ALARM REDUCING METHODS

Two primary findings are made in Paper I. The first is that further focus on alarm reducing methods
is needed, and the second is that none of the evaluated models are suitable for implementation in
commercial herds based on the three evaluation criteria.

Paper [ is a literature review, and the initial aim was to evaluate different alarm prioritizing or alarm
reducing methods for detection models in livestock production. However, an extensive literature
search soon revealed that only three scientific papers focused specifically on this area. Therefore
the focus of the review was expanded to include a performance evaluation of sensor-based detection
models within the field of livestock production.

The literature search showed that a variety of modeling methods have been applied to different ty-
pes of livestock related sensor data for the past twenty years. Therefore, a total of 34 included papers
were sorted into three groups based on the complexity of their methodology and their focus on priori-
tizing alarms. All described detection models were evaluated with respect to minimum performance
demands (sensitivity = 80 and specificity = 99) defined in the scientific literature. Subsequently the
models were evaluated with respect to their study design, which should reflect field conditions, and

a maximum length of 48 hours time window, if one was applied.

4.1.1 Alarm reducing methods

As mentioned above, only three of the evaluated papers focus specifically on alarm reducing met-
hods. In the first paper, Mol and Woldt (2001) use Fuzzy logic to reduce the number of false alarms.
The method is, however, developed for quantifying linguistic values like “a little”, “to some extent”,
or “very much”, and is not well suited for sensor-based data sets of numeric variables (Klir and
Folger, [1988]).

In a second paper, Aparna et al. (2014) model the successive behavioural patterns undergone by

sows prior to farrowing. They then use the Hidden phase-type Markov method to predict the precise
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onset of the farrowing. This approach is well suited for conditions known to happen, such as the
farrowing, and with well-defined behavioural stages preceding the event. The general situation for
detection models in livestock production is, however, an uncertainty of whether the condition will
occur or not. Additionally, knowledge on a well defined behavioural pattern prior to a condition

occurring is generally lacking.

The third paper is by Steeneveld et al. (2010a) and introduces Naive Bayesian Network (NBN)
as a successful method for discriminating between true positive [TPl and false positive [EP] alarms in
the detection of clinical mastitis. By combining information from the automatic milking system with
non-sensor cow-specific information, the probability of an alarm being true or false is calculated, and

the number of TP alarms is reduced significantly.

Of the three methods, NBN is found to be the better suited for sensor based models detecting
unforeseen events in livestock production. This is supported in the findings of Jensen et al. (2016)),
who recently combined sensor and non-sensor information using a dynamic linear model with a

Naive Bayesian Classifier (NBC) for clinical mastitis detection as well.

Kamphuis et al. (2010b)) used a decision tree combined with the ensemble classifying method
bagging to improve the performance for detecting clinical mastitis. Ensemble classifying methods
are machine learning methods, which combine the output of different models, or of the same model
trained on different data sets, to increase the predictive performance over a single model as described
by Witten and Frank (2005). Retrospectively, the methods used by Kamphuis et al. (2010b) should
therefore have been categorized as an alarm-reducing method as well. Machine learning methods are
well suited for analyzing large amounts of data (Witten and Frank, 2005)), but they are not yet widely
used for detecting conditions in livestock production. However, if the amount of sensor-based data in
livestock production increases as expected (Berckmans, 2014; Sorensen et al., 2010), both decision

trees and ensemble classifying methods are likely to be increasingly relevant for further research.

4.1.2 Performance evaluation

In Paper I, the sensor-based detection models for livestock production, presented in 34 scientific
papers published between 1995 and 2015, are evaluated for their suitability for implementation in
commercial herds. The included models were evaluated on three implementation criteria initially
defined by Hogeveen et al. (2010) in a review of 16 models for detection of clinical mastitis. These
criteria are a) a sensitivity (Se) of minimum 80% and a specificity (Sp) of minimum 99%, b) a time
window of maximum 48 hours, and ¢) the studies had to be conducted under conditions as similar to
practical field conditions as possible. In order to be evaluated in Paper I, the model input also had to
be obtained directly from sensors, and not through laboratory analyzes, as was for example done by
(Chagunda et al., 2006b}; Friggens et al., |2007) who modeled the enzyme lactate dehydrogenase in

cow milk.

The evaluation in Paper I show that none of the included detection models, developed over a

twenty years period, were suited for implementation in commercial livestock production in their
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current form. Some of the poorer performances may reflect that focus was on an initial investigation
of new modeling methods (Freson et al., [1998; Kamphuis et al., 2010a), but it is still surprising to

find that fulfilling the implementation criteria appear so difficult.

Two possible explanations may be lying the ground for the findings in Paper 1. The first is that the
implementation criteria developed for mastitis detecting models may be too restrictive for models
focusing on other conditions. The second is that the evaluation methods, which are generally applied
to measure model performances, may not apply for livestock production data. Thus, the use of impre-
cise gold standards in combination with sensitivity and specificity has been questioned by Chagunda
et al. (e.g.[2006a) and Friggens et al. (2007,|2010), and in the following the use of these performance

measurements will be discussed further.

4.1.3  Evaluation criteria

The first of the three implementation criteria defines the minimum requirements for the detection
performance. As described in Chapter[I] the sensitivity reflects the model’s ability to identify animals
with the condition correctly, and the specificity reflects the model’s ability to identify animals, who do
not have the condition, correctly. Most animals in livestock production are healthy and sound, which
means that the conditions sought detected by detection models generally are rare. Thus, the minimum
required specificity of 99% is considered necessary for reducing false alarms from livestock detection

systems in general.

The minimum requirement for sensitivity (80%) used by Hogeveen et al. (2010) reflects that un-
detected cases of mastitis may lead to significant consequences. An undetected cow with clinical
mastitis constitutes a risk of infected milk getting in the bulk tank. The consequence of that is, that
the full tank of milk has to be discarded, which implies significant economic consequences for the
farmer (Rasmussen, 2002). However, not all undetected conditions have equally important conse-
quences in livestock production, and as high a sensitivity may not be required for detecting them as

for mastitis.

When considering a condition like lameness, the economic consequences of a detection model
missing a lame animal are smaller than for a missed case of mastitis. A (mildly) lame animal is not
as high yielding as a sound animal (Garcia et al., 2014}, but otherwise the production as a whole
is largely unaffected. Within lameness evaluation, different degrees of lameness are defined, and
models for lameness detection generally aim to identify early stages of lameness to allow for early
interventions (Garcia et al., 2014; Maertens et al., 2011; Mol et al., 2013). However, lameness in
general progresses slower than clinical mastitis, and if a mildly lame cow is missed by the detection
system, there will be more chances for it to be detected before neither welfare nor productivity is
significantly affected.

A minimum sensitivity of 80% for mastitis detection may therefore be more restrictive than what
is required for other conditions, and even within the field of mastitis detection a sensitivity of 70%

has been suggested (Mein and Rasmussen, |2008). The higher performance criterion is, however, still
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used in the evaluation of all models in Paper I. This was decided because a sensitivity of 80% is found
to be obtainable by human observation in a study by Quimby et al. (2001)), and the consideration was

that a detection system should be able to match that standard.

The second implementation criterion states that studies should be conducted under conditions as
close to field conditions as possible. This criterion is highly relevant if the study aims to develop a
model for implementation in commercial herds. It is less significant if the study is focused on testing
new methods for data modeling, though, but the aim of Paper I is to evaluate the models for their
implementation suitability, which is why the second criterion is applied to all models disregarding

the condition in focus.

The third implementation criterion defines a maximum detection window, or time window, of 48
hours prior to the occurrence of the condition. A time window is a defined period associated with
the occurrence of a condition, and any alarm generated within that time window are considered
true, detecting the condition correctly (see Figure [I.T| Chapter[I)). The length of the optimal time
window is related to the specific condition, and may be longer for a slower progressing condition, like
lameness, than for a faster progressing condition like mastitis. However, in the everyday management
of a commercial herd, too long time windows are of little managerial value since the alarm indicates
the occurrence of condition with less precision. The 48 hour time window is therefore considered

suited for evaluation of models detecting all types of conditions in Paper 1.

4.1.4 The use of performance measurements

When evaluating the models in Paper I, it was the lack of fulfilling the performance criterion alone,
which caused the majority of models to be categorized as unsuited for implementation in commer-
cial herds. In the development process of livestock detection models, it is, however, very useful to
measure the sensitivity and specificity of different model versions. A performance comparison of the
same model run on different data sets, or different models run on the same data set, can help points
the modeler towards the better choice of modeling parameters and methods. This is widely done in
studies evaluated in Paper I Cavero et al. (e.g.2006), Cornou et al. (2008), Kamphuis et al. (2008),
and Mol and Ouweltjes (2001) as well as Papers II and III in the present thesis.

However, using sensitivity and specificity to evaluate whether a model is suitable for implementa-
tion may not be reflecting the model’s true potential after all. A lower performance can be founded in
an imprecise gold standard registration, or it can be founded in the modeled parameter reflecting the
wellbeing of the animals, or even subclinical stages preceding the outbreak of a disease. Such a de-
tection model could contain a lot of information on the animals, and may therefore have significant
managerial value. A grading or sorting of the information is, however, crucial for the managerial
value to be realised. For the rest of this section, the challenges of gold standard registrations and

subclinical stages of diseases is sought elaborated.
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4.1.5 Gold standard challenges

As briefly mentioned, most unwanted conditions, such as diseases, in livestock production are pro-
gressive, which means that all stages can not be correctly identified using a fixed threshold (Friggens
et al.,[2007, 2010). Furthermore, sensitivity and specificity ares calculated on the basis of a categori-
zation of the generated alarms as true and false by comparison to the gold standard, as described in

Section[I.2] Hence a true alarm is associated with a registered event, and a false alarm is not.

The registration of the gold standard is usually conducted by human observation, often the daily
caretakers in the herds. The presence or absence of the event is registered on the basis of a defined
threshold or a description of what the event should look like, when present. For lameness detection,
there is no consensus of how to assess different degrees of lameness, which has resulted in more than
twenty different lameness scoring scales (Tello et al., 2011). For mastitis detection, a consensus for
gold standard definitions has been proposed multiple times (Mein and Rasmussen, 2008; Rasmussen,

2002, 2005)), but it has not been reached.

4.1.6 Subclinical stages

However, neither consensus nor clear definitions of the gold standard guarantee a true reflection
of the state of the animal. The natural subjectivity embedded in human observation will always have
an impact, but sometimes it may not even be possible to assess the gold standard by observing the
animal. For diseases like diarrhea, clinical mastitis, and laminitis (causing lameness), subclinical
stages may precede the clinical stage (Maatje et al.,[1997; Somers et al., 2003 Weber et al., 2015). A
disease is clinical when it is observable, which means that the subclinical stage is unobservable in a
direct assessment of the animal. In a study by Weber et al. (2015)), one-third of the weaner pigs, who
were assessed healthy by the personnel, actually did suffer from subclinical diarrhea when faecal

samples were analyzed.

An animal will always be affected to some extent by the subclinical stage of a disease, and if
the modeled parameter in a detection model reflects the true state of the animal, an alarm will be
generated. Such an alarm will be classified as a false alarm when compared to the observed gold
standard, and reduce the performance measurement of the model. Even though subclinical stages
of diseases are not sought detected in the papers included in Paper I, the possible effects of reduced

model performance are addressed (Hertem et al., 2014; Kamphuis et al.,2010a, 201 1).

In Section [I.2] it was mentioned how changes in the general wellbeing of growing pigs may be
reflected in their drinking patterns (Andersen et al., [2016; Madsen et al., [2005). The same is not
described for other modeled parameters or other groups of animals, but is is not unlikely, that changes
in the general wellbeing affect the outcome of a detection system. If alarms are generated due to

changes in the general wellbeing of the animals, they too will be categorized as false alarms.
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4.1.7  Future focus

A clear distinction between reduced wellbeing and subclinical conditions may not be possible, and
such a distinction may not represent a managerial value either. It would, however, be of managerial
value to get a warning timely enough to prevent an outbreak of the condition. Both reduced wellbeing
and subclinical conditions can progress to unwanted conditions (Andersen et al.,[2016; Kamphuis et
al., [2011)), and therefore alarms generated for the reasons presented above, all contain information
on the livestock animals. If the alarms are categorized as false, valuable information may be lost.
Therefore, the future challenge is to include the alarms, but in a prioritized structure, or presented in
a conceivable form to the farmer. Hereby the total number of alarms communicated will be reduced,

while the value of the information is preserved.

Alternative approaches to alarm handling have been suggested or applied. Friggens et al. (2007,
2010) suggested the use of a risk index for grading alarms, Steeneveld et al. (2010b) included non-
sensor information in an NBN in order to reduce the number of false alarms, and Kamphuis et al.
(2010b) improved the model performance significantly by applying an ensemble classifier. However,
a spatial approach has not yet been investigated as an alarm reducing method, which is why this is

developed, evaluated and explored in Papers II, III, and IV.

4.2 PAPER II: CORRELATIONS CAN BE MODELED SPATIALLY

In Paper II, I addressed Hypothesis I “Drinking patterns between pens within a section and secti-
ons within a herd of growing pigs are correlated, and this correlation can be modeled using model

parameters defined at different spatial levels.”

Multiple water sensors were installed in multiple pens across a finisher herd (Herd A) and a weaner
herd (Herd B) as described in Section[3.2] Simultaneous monitoring of the drinking patterns in more
pens, allowed for interactions, or correlations, between the patterns to be identified. For this a spatial
dynamic linear model was developed, and the degree of correlation was sought modeled separately

for each of the two herds.

4.2.1 Correlations in drinking patterns - an introduction

As described in Section [3.4.2] the full drinking pattern consist of four elements. The fourth ele-
ment, the underlying level, describe the amount of water consumed by the pigs in a pen over time.
Pigs drink more as they grow, which means that the underlying level increases over time as well.
Since the sections in the herd each are filled with pigs of same age and size at different times (see
Figure Section [3.4), the underlying level is assumed to evolve identically for all pens within
a section but differently between sections. The model, which described the underlying level, was

therefore defined at section level in all model versions.
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In both Paper II and Paper III, each model version was denoted by three letters. The first letter
responds to the 24h harmonic wave (H1), the second letter responds to the 12h harmonic wave (H2),
and the third letter responds to the 8h harmonic wave (H3). The letter “H” reflects a correlation at
herd level, whereas the letters “S” and “P” reflects correlations at section and pen level respectively.
Thus, the model version, which defines a herd level correlation between all three waves, is denoted
“HHH”, and the model version defining H1 at herd level, H2 at section level, and H3 at pen level is
denoted “HSP” (see Table[3.1). Generally speaking, the more pens a wave describes, the higher the
degree of correlation. Therefore, the HHH model version expresses the highest degree of correlation,

whereas the PPP model version expresses the lowest.

4.2.2 Findings Herd A

As seen in Table 4.1} the SSS model version obtained the best fit (MSE = 13.850) of the seven
model versions in Herd A. This model version defined the full drinking pattern at section level and
hereby indicated that pigs within the same section were more similar to each other than to pigs of
different ages and sizes in other sections. Thus, the sectionalized AIAO production, which charac-
terize herds for growing pigs in Denmark, was reflected in the pigs’ drinking patterns in Herd A, as
initially expected.

Further results for Herd A (see Table [4.1) showed that model versions, which include minimum
one wave parameter at herd level (HHH, HSS, HSP), fitted data the worst. This indicated that the
drinking patterns were too different between sections in Herd A to be characterized by the same
parameter. Since all sections were placed within the same building and the same central water supply
lead to all pens, there has to be some correlation between sections in the herd as well. However, the
fits of the three model versions, which included herd level waves, indicated that this correlation was
not very strong.

Model versions which included wave parameters at pen and section level (SSP, SPP, PPP) fitted
the data better than any version with a herd level parameter, but worse than the SSS model version.
This indicated that some pen differences were apparent in the data from Herd A, but these differences
were not larger than the section specific similarities.

Since Herd A is a commercial finisher herd, and no major managerial routines were altered for
the sake of the present study, it is likely that we can find a similar correlation between pens within

sections to be found in other commercial finisher pens as well.

4.2.3 Findings Herd B

For Herd B, the fit of the model versions got poorer as the degree of correlation increased (see
Table 4. 1)). Thus, the best fitting model version was PPP (MSE = 1.466), whereas the worst fitting
was HHH (MSE = 1.750). This result indicated, that the drinking patterns in the individual pens, both

within a section and across the herd, differed too much to be characterized by a common parameter.
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Table 4.1: MSE (mean square error) for seven model versions for Herd A and Herd B (test data). The lowest
numerical value of the MSE indicate the best model fit. The MSEs are herd-specific and can not be compared
between herds. Notations: H1 = Cyclic model of length 24, H2 = Cyclic model of length 12, H3 = Cyclic
model of length 8. H = Herd level, S = Section level, P = Pen level

Model Version MSE

H1 H2 H3 Herd A Herd B
HHH 15.687 1.750
HSS 14.535 1.727
HSP 14.612 1.712
SSS 13.850 1.621
SSP 13.976 1.559
SPP 13.946 1.556
PPP 13.924 1.466

This apparent lack of correlation structure between the drinking patterns in Herd B did not match
the initial expectations of a section level correlation structure. The correlation in the evolution of
the drinking patterns over time, is still expressed by the system variance (Wy) though, and it may
be sufficient to describe any interactions in the system. However, since Herd B is a research facility,
there are some factors, which were expected to reduce the difference between pens within a section,
and hereby increase their correlation as compared to a commercial weaner herd. These factors are
a) the pigs are more uniform, considering weight and condition, at insertion (unpublished data), b)
there are more managerial resources available, and c¢) the production environment, including feed
management, is highly controlled. Such an increased correlation between pens in a section was,

however, not recognized by any of the seven model versions.

Although the results from Herd B were unexpected, explanations can be found in the complexity
of the model, the estimation of the variance components, and a high degree of random noise in the
data from Herd B. These aspects all point towards an overfitting of the learning data, which will be

discussed in the following section.

4.2.4 Overfitting

If a model is so flexible that it adjusts to any irregularities, or random noise, in the data set, it is said
to be overfitting the data (Hawkins, [2004; Torgo, 2017)). Since random noise by nature is random,
the noise will be different in all pens, and by adjusting to the random noise, an overfitting model will

fail to recognize a general underlying pattern in the data.

In Herd B, a high degree of random noise is present in all pens, which is expressed by drinking
activity throughout the night. In all pens, one or two weaner pigs get up at some point during
every hour to eat and drink a little, while the rest of the pen sleeps (validated by samples of video

recordings). Since a pen in Herd B contains 15 weaner pigs, such night activity by a few pigs
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constitutes a relatively large degree of random noise. It is therefore likely that the model versions with
wave parameters defined at pen level, adjust to the random noise in each pen, and fail to recognize

any correlation.

A model can be overfitting for more causes. One is, if the modeled variables are highly correlated.
Another is, if the model consists of more parameters than what is needed to describe the pattern
in the data. A third is if the estimated variance components are very high as a consequence of a
bias-variance tradeoff (Hawkins, 2004; Torgo, |2017; Witten and Frank, 2005)).

As described above, the variables, or drinking patterns, are likely to be highly correlated in Herd
B. All pigs within a section are very uniform at insertion. In addition to that, pigs are inserted in
subsequent sections with one week in between. Of this follows that there is a little weight span bet-
ween the youngest and oldest pigs across the herd, which ought to support a degree of correlation in
drinking patterns at herd level as well. Correlated data, which is the first possible cause of overfitting,

is therefore present in Herd B.

The second possible cause for overfitting is excess model complexity. And the spatial dynamic
linear model described in Paper Il is fairly complex. It includes three variance components (pen level,
section level, herd level) for the full observation variance-covariance matrix, V¢, and four discount
factors for the full system variance-covariance matrix, Wy (see Paper II for further description). The
observational variances depend on rather constant cause of errors included in the observed data. For
a pen, this could be a leaking water bowl, or it could be measurement inaccuracies in the water sensor.
For a section this could be a leak or a cloak in the water pipe supplying the section, and for the herd

it could be a degree of failure in the central water supply.

However, the influence of observation errors at herd level is rather insignificant in both Herd A
and Herd B (see Table [4.2)), and a removal of the herd level variance in future work will reduce the
complexity of the model without information loss, whereby the risk of overfitting is reduced as well.
Although Table [4.2] also shows that the contribution of the section level variance component is very

small for Herd B, it is significantly for Herd A, and should therefore not be removed.

The third possible cause for overfitting is a bias-variance tradeoff, which is seen as an increase
in the variance estimates when the MSE is sought minimized (Torgo, 2017)), as is done in Paper
II. High variance estimates do not express the true variance, but the values optimizing the MSE.
They do, however, increase the flexibility of the model and enables it to adjust to random noise, as
described for Herd B. Variance estimates as high as 176 litres?/hour are found for Herd A, whereas

the estimates for Herd B are even higher with values as high as 6474 litres?/hour (results in Paper II).

4.2.5 Conclusion Paper I1

For Herd A, the results of Paper Il indicated a correlation in drinking patterns between pens within
a section, as initially expected. It hereby addresses Hypothesis I, as stated in Chapter 2] and confirms

it.
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Table 4.2: Average contributions in % from observation variance components at different spatial levels to the
full observation variance. The contributions are calculated from the sum of variance estimates within a level
across the seven model versions.

Level Herd A Herd B
Herd 2.32 0.13
Section 50.16 1.25
Pen 47.52 98.62

For Herd B, the overfitting of data was likely to cause the PPP model version to obtain the best fit,
although it may not reflect the true correlation structure in the herd. Different correlation structures
were, however, reflected through other model versions. Although the model should be reduced in
complexity and run on data from a commercial weaner herd in order to clarify the degree of overfit-

ting, Hypothesis I is confirmed for Herd B as well.

4.2.6  Future focus

The better fitting model versions are not necessarily the best predicting model versions, though. In
other words, the ability of a model to detect unwanted events in specific areas of a herd, can not be
concluded on the basis of the model fit. A high fitting model may adjust too well to irregularities and
fail to recognize changes preceding unwanted events. It will therefore be a better choice to build a
detection system on a model with less flexibility. A less flexible model will tend to follow the general

pattern, be less adaptive to changes in the pattern, and therefore be more prone to detect them.

The model developed in Paper II constitutes the initial step of two in the development of a full
spatial detection system, and in Paper III the seven model versions will be applied to a Cusum control

chart, and the detection performances will be evaluated.

4.3 PAPERS III AND IV: AREA-SPECIFIC ALARMS

In this section, the findings of Papers III and IV will be presented and discussed. Paper III evaluates
the detection accuracy of the seven model versions defined in Paper II with regard to their managerial
value, and discusses both an alarm-reducing and an alarm-prioritizing strategy as well. In Paper IV
a reduced number of alarms for a section is compared to the total number of individual alarms for
pens within the section. This is exemplified on a data sample from each of the two herds, Herd A
and Herd B.

In Paper III, the second working hypothesis is addressed. The hypothesis is, as stated in Chapter
“Changes in the drinking patterns of growing pigs are influenced by diarrhea and fouling. By
monitoring the water consumption simultaneously in multiple pens and sections, outbreaks of the

conditions can be detected in specific areas.”
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The overall finding in Paper III was, that area-specific alarms for either diarrhea or fouling could
be generated in a herd of growing pigs based on changes in their drinking patterns. The results
showed that the HHH model version, which defines the strongest degree of correlation for the full
drinking pattern, was the best suited version for detection of unwanted events in both Herd A and
Herd B. This overall finding hereby confirms Hypothesis II.

The overall finding in Paper IV was, that 6 individual pen alarms from pens within the same section
in Herd A could be reduced to 4 section alarms, whereas 42 individual pen alarms were reduced to 8

section alarms in Herd B.

4.3.1 Performance evaluation - an introduction

Each of the seven model versions, defined in Paper 11, were all evaluated for their ability to generate
area-specific alarms given different lengths of time windows. In this context, “area-specific alarms”
are alarms, which can detect the occurrence of either diarrhea or fouling at any of the three spatial
levels pen level (in a specific pen), section level (in a specific section), or herd level (in any of the
pens in the herd). By nature, the pen levels describe a more specific area than section levels, which
again are more specific than the herd level.

As described in Section [I.2] time windows are often defined relative to an event when the perfor-
mance is evaluated. If a time window includes a period after the event, then the alarm may occur
after the event as well, and it will still be classified as a true alarm. Such an alarm has, however, little

managerial value, and therefore all time windows in Paper III are defined to include days before the

event and the actual day of the event as follows:

* Time window 3/0 includes three days before the event and zero days after
* Time window 2/0 includes two days before the event and zero days after

* Time window 1/0 includes one day before the event and zero days after

The lengths of the time windows were chosen in order to reflect settings that would have a value in
the everyday management of a herd of growing pigs. It was taken into consideration that longer time
windows allow for less precise timing of managerial interventions, and therefore may encourage the
manager to trust the daily visual assessments of the animals to a greater extent than the information
from the detection system.

Although the defined time windows in this study are relatively short, they will be prolonged if
subsequent events occur before the time window of a previous event has passed. This will lead to
overlap of the time windows as illustrated in Figure [I.1] Section[I.2] Prolonged time windows have
significant impact on the performance evaluation of events at the different spatial levels as will be
discussed later.

When evaluating the performance at pen level, only the events occurring in the specific pen are

used as gold standard. However, when evaluating the performance at section level, all days with
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events registered in any pen within the section are included in the gold standard. The same applies
for the evaluation of the herd level performance, which implies that all events registered at any time

in any pen in the herd constitute the gold standard.

In the present study, the combination of the longest time window (3/0) and events at herd level,
caused overlap of multiple subsequent time windows. As a consequence of that, very high detection
performances for both Herd A (AUC = 0.9358, longest time window = 20 days) and Herd B (AUC
= (0.9842, longest time window 47 days) were found. Although these performance measurements
are close to perfect, the managerial value of such long time windows is low, as is the managerial
value of alarms at herd level regardless of time window settings. Based on these findings, these two
model settings (herd level alarms and 3/0 time window) should therefore not be investigated further

in future studies.

4.3.2 Findings Herd A

In Herd A, the HHH model version, which defines correlation in the full drinking pattern between
all pens in the herd (see Table [3.1), obtained the overall highest performance of all model versions
(results in Paper III). Since the HHH model version obtained the poorest fit in Paper II (see Table
M.1), this finding indicates that the least flexible model version is better at making a clear distinction
between general drinking patterns and systematic changes preceding unwanted events in a pen, in a

section, and in the herd.

The detection performances (AUC) for the HHH model version in the three spatial levels given
all three lengths of time windows are presented in Table[d.3] The results show that the performance
measurements increase as the spatial level gets more general, and the time windows get longer. Ho-
wever, all model versions with herd level settings, and those using time window 3/0, constitute low

managerial value, as mentioned above, and will not be discussed further here.

The results in Table .3 also show that the detection performances are almost identical for pen
level and section level given the same length of time window for model version HHH. This indicates
that the model detects an upcoming event with the same accuracy whether the alarm is generated for
a specific pen or for a specific section in the herd. The performance is significantly higher at both
pen and section level with the application of the 2/0 time window than with the 1/0 time window.
This indicates that an alarm generated within a 2/0 time window is more prone to be true than an
alarm generated within a 1/0 time window. Both time windows would likely be of managerial value,
though, and the better choice for an implementation of the detection system would depend on the

preferences of the manager of the individual herd.

Thus, alarms at pen level would allow the manager to target preventive interventions in specific
pens whereby a spreading of the condition throughout the section may be avoided. Alarms at section
level may, however, be generated on the basis of either large changes in the drinking pattern of one

pen, or by simultaneous changes in multiple pens within the section. If a section-specific alarm
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Table 4.3: AUC (area under curve) for the HHH model version (all three harmonic waves defined at herd level)
for both Herd A (commercial finishers) and Herd B (research centre weaners) at three spatial levels given three
lengths of time windows. Herd level = any pen in the herd, Section level = a specific section in the herd, and
Pen level = a specific pen in the herd. 3/0 time window covers tree days before the event and zero days after
the event, 2/0 time window covers two days before the event and zero days after the event, 1/0 time window
covers one day before the event and zero days after the event.

Area-specific Herd A Herd B
level 3/0 2/0 1/0 3/0 2/0 1/0
Herd 0.9358 0.9194 0.8013 0.9842 0.9734 0.8878
Section 0.8882 0.8708 0.8144 0.8715 0.8576 0.7705
Pen 0.8878 0.8701 0.8164 0.7671 0.7348 0.6871

is caused by multiple simultaneous pen-specific alarms, then one section-specific alarm would be

communicated instead of multiple pen-specific alarms.

4.3.3 Findings Herd B

In Herd B, no single model version provided the highest AUC across all spatial levels (results
in Paper III). However, the HHH model version obtained the highest detection performance at herd
and section levels given all time window settings, which coincides with the findings in Herd A. The
highest detection performance at pen level was obtained by the SPP model version when the 3/0
and 2/0 time windows were applied, and by the PPP model version when the 1/0 time window was

applied.

Both the SPP model version and the PPP model version define almost individual drinking patterns
in each pen of the herd (see Table [3.1)), and these results may be influenced by the night activity in
the pens, which were discussed in Section[4.2.4] The performances are generally poor for all model
versions detecting events at pen level in Herd B, regardless of the length of the time window, as
shown for the HHH model version in Table[d.3] Pen level settings should therefore be tested on data
from another weaner herd in order to clarify whether the results are specific for Herd B, having only

15 pigs per pen, or if they apply to herds with more pigs per pen as well.

The finding of the HHH model version obtaining the highest detection performance in general in
Herd B, coincides with the findings for Herd A. The reasonings for the results coincide as well, and

will not be repeated here.

Based on detection performance and managerial value, only one combination of model settings
showed satisfying abilities for detecting unwanted events in Herd B. This combination is the HHH
model version generating section level alarms within the 2/0 time window (AUC = 0.8576). As seen
in Table[d.3] the performance of this combination is a little lower than for the same settings in Herd A
(AUC =0.8708). They are, however fairly high, and both section level alarms and a 2/0 time window

constitute settings with high managerial value.
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As discussed in Section [#.1.5] performance is measured by comparisons of alarms to a gold stan-
dard, which seldom reflect the true state of the animals. In the presented study, water consumption
is monitored as an indirect indicator of health and welfare in growing pigs, and the results found in
Paper III clearly show that the water consumption contains a high degree of information on the mo-
nitored animals. The information is, however, more likely to reflect the general health and wellbeing
of the animals, rather than to detect a specific condition.

On that consideration, the interpretation of the area-specific alarms should be that the alarms point
out specific focus areas in the herd, not that they predict specific events. Area-specific alarms allow
the manager to include knowledge of the pigs in that area, including high risk periods as mentioned
in Section [I.2] Hereby a more detailed and thorough focus in the pointed area can be applied, both
regarding the pigs, and factors affecting the pigs.

4.3.4  Alarm handling strategies

The managerial value of an alarm from a livestock detection system will always be evaluated as
a trade-off between the added information on the animals and the extra time spend on attending
the alarm. An acceptance of lower detection performances, than the minimum demands defined
by Hogeveen et al. (2010), has been suggested in Section f.1.4] Lower model performances will,
however, lead to more alarms being generated, and they may offer a varying degree of information
on the animals. In order to prioritize the information, or reduce the generated alarms, an alarm
handling strategy can be applied.

Alarms are generated by a two-sided tabular Cusum control chart in Paper III. The output of the
dynamic linear model is monitored by the Cusum chart, which generate alarms for any specific pen,
any specific section, or for the herd in general. This spatial monitoring allows for an alarm prioritizing
and an alarm reducing strategy, which are both founded in simultaneous monitoring of forecast errors
in pens and sections. The difference between a prioritization and a reduction of alarms is, that the
former ranks certain alarms as more important than other, whereas the latter merely reduces the

number of alarms communicated to the manager. In the following, both strategies will be presented.

Alarm prioritizing strategy

The alarm prioritizing strategy is based on the occurrence of alarms in a pen and the corresponding
section at the exact same time, t, as illustrated in Figure Section level alarms are either caused
by a very large deviation in the drinking pattern of a single pen within the section, or by several
relatively smaller simultaneous alarms in more pens within the section. Very large deviations in
a single pen may be caused by a sudden malfunction in a drinking bowl or a drinking nipple, but
deviations may also be caused by a very abrupt changes in the drinking activity in the pen. A number
of relatively smaller simultaneous alarms, on the other hand, indicate that the health or wellbeing
of a larger number of pigs in a section has changed at the same time. A pen-specific alarm, which

has instant impact at section level, is likely to contain more information on the animals than a pen-



4.3 PAPERS III AND IV: AREA-SPECIFIC ALARMS

I
|| A

|
E A i'lll 'IﬂIUIIH"'l_ |l_|I LA "‘lL||iJ |'-,_."'. IHL.-‘L H_ _."'-_J'Ill' s '
s
5
52 \ B
e
’fll i I ’I‘
Ej A MhﬂhnM}ﬂAA ‘\ﬂ A A Aﬁﬂf‘d]
- TPV V [
]
» - "‘L !
=

Time (Days)

Figure 4.1: Example of a Cusum from one pen (top) and the corresponding section (bottom) with simultaneous
alarms. The two red lines mark the upper and lower thresholds. If the threshold is reached or exceeded by the
Cusum, an alarm is generated. Alarms marked with an X occur at the exact same hour in the pen as in the
section (Figure from Paper III).

specific alarm, which only occur at pen level. Therefore the alarm prioritizing strategy implies that
alarms, which occur at the same time at pen level and section level, should be prioritized in the daily

management.

Alarm reducing strategy

The alarm reducing strategy is based on the merging of more simultaneous pen-specific alarms
into one alarm communicated for the section. Alarms occurring on the same day in multiple pens
within the same section, can be merged and communicated as one alarm for the section instead of
multiple individual pen-specific alarms. Fewer alarms pointing towards a section may constitute
a higher managerial value than a higher number of pen specific alarms. They may, however, also
devaluate pen-specific information for the sake of communicating fewer alarm. The preferences in
this trade-off will always depend on the animal health status, managerial resources and preferences

in the individual herd.
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The section alarms generated with this alarm reducing strategy differs from those generated by a
section-specific Cusum chart. The alarm reducing strategy merges alarms generated separately on
pen-specific vectors of forecast errors, whereas the section-specific Cusum generates alarms based

on added forecast error vectors from all pens within the section, as described in Section [3.4.5]

Section-specific alarms may provide sufficient information

In Paper IV, the same Cusum settings were applied to one week’s data from all pens within a
section in Herd A and in Herd B. Subsequently the number of alarms per pen were counted, and the
sum of pen-specific alarms was compared to the number of section-specific alarms for the associated
section. For Herd A, two pen-specific Cusum charts generated a total of 6 individual alarms for the
week and the section-specific Cusum yielded 4 section alarms. In Herd B, one pen was empty, and
therefore three pen-specific Cusum charts generated a total of 42 pen alarms as compared to 8 section

alarms generated by the section-specific Cusum chart (results in Paper 1IV).
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Figure 4.2: Example of a Cusum for one week in a section of Herd A and a section of Herd B. The two
horizontal lines mark the thresholds for the upper CUSUM (grey line) or the lower CUSUM (black line). Four
events (marked by x on the threshold lines) are registered in Herd A and eight in Herd B. The tabular CUSUM
detects three events in Herd A, and eight in Herd B. TP = True Positive, FN = False Negative. The gap around
day 5 in the plot is caused by sensor outage (Figure from Paper V).
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Figure .2 shows section-specific events and section-specific Cusum charts for the tested week for
Herd A and for Herd B. The Cusum charts illustrate remarkably coinciding alarms and events in both
herds, which indicate, that section-specific alarms may contain sufficient information on the state of
the pigs they represent. This can imply, that the extra information contained in pen-specific alarms
is of less relevance than the information in section-specific alarms. The high number of pen-specific
alarms in Herd B may reflect the night activity cause alarms to be generated. Since the night activity
occurs at different times in each pen, the forecast errors from the pens may even out each other as the
pen-specific vectors of forecast errors are added into one vector of section-specific forecast errors.

Although the findings are made on data from the study, they only explore data from one week in
one section of each herd. Furthermore no time windows were applied in the example, which would

have reduced the number of pen-specific alarms for the comparison.

4.3.5 Conclusion Papers Il and IV

In Paper III, each of the seven model versions for Herd A and for Herd B are evaluated for their
ability to detect outbreaks of either diarrhea or fouling (unwanted events) based on changes in pigs’
drinking patterns, at three spatial levels. The findings show that it is possible to generate such area-
specific alarms with high predictive accuracies and satisfyingly short time windows. Hereby the
findings confirm Hypothesis II.

The HHH model version was found to be the overall better performing model version, which may
be due to a higher rigidity in the model parameters, which allow it to register changes in the observed
pattern instead of adjusting to them. The 2/0 time window was found to be the better of three in both
herds, whereas the shorter, 1/0 time window resulted in performances equal to the 2/0 time window
in Herd A, but not in Herd B.

The generating of area-specific alarms offers multiple strategies for handling and communication
of alarms to the manager. An alarm prioritizing and an alarm reducing strategy were suggested,

though further research is needed to develop and evaluate the managerial value of the two.
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1. Introduction

Livestock production has moved from extensive production to
intensive production over the last few decades (Sorensen et al.,
2010). Society’s demand for high-quality animal products is con-
tinuously increasing while the number of farmers producing the
products is decreasing (Kashiha et al.,, 2013; Berckmans, 2014).
The natural consequence of this situation is a centralization of
the production units with increasing numbers of animals at each
site (Sorensen et al., 2010; Kashiha et al., 2013).

This centralization, together with the 2008 financial crisis, has
changed the conditions of the whole managerial situation leaving
the farmer with fewer personnel and less time for each of the daily
management tasks creating an increasing market for technical
solutions. Technology in livestock production includes automatic
monitoring and management information systems (MIS), which
gathers available information, and decision support systems
(DSS), which analyses the available information, in order to detect
and control the health and welfare status of the animals at any
given time, by providing early warnings of potential problems
(Sorensen et al., 2010; Kashiha et al., 2013; Berckmans, 2014).

Giving the right alarm at the right time is a crucial property of
an early warning system, and too many false alarms represent a
recurring challenge throughout the field of building models for
early warning systems. The false alarms are time-consuming and
diminish the trust in the system which in livestock production
might lead to the consequences of farmer or personnel either
ignoring the alarms from time to time or making personal prioriti-
zation of the alarms based on experience, time expenditure, gut
feeling and work enthusiasm. In such cases, both animal welfare
and gross margin are at risk of being compromised and in order
to optimize the benefit of an early warning system for the farmer,
a prioritization of alarms must be made ensuring communication
of only the relevant alarms to the farmer.

Prioritization of alarms can be done at two levels; either by a
reduction in the number of false alarms produced by the early
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warning system, or by a prioritization of alarms. A reduction in
the number of alarms can be done through a satisfying level of per-
formance of the early warning system, while a prioritization of
alarms seek to rank true positive (TP) and false positive (FP)
alarms. Ranking can be done according to severity of the condition
in focus, for example lameness, from those that need immediate
attention to those that can be attended within a given period of
time. The ranking can be made according to different overall moti-
vations such as animal welfare, costs or production efficiency.

The aim of this review is to evaluate methods for prioritizing
sensor-based alarms in livestock production in order to reduce
the number of false alarms. The evaluation will be done through
a presentation of the different methods described in the scientific
literature. Then the advantages and disadvantages of the methods,
for their realistic implementation in commercial livestock produc-
tion, are discussed.

The studies included in this review are of such a variety in terms
of study-designs, conditions in focus, and definitions of case (a con-
dition, which should be detected by the model) vs non-case (a con-
dition, which should not be detected by the model), that a true
comparison of methods and results are not possible. Therefore, this
review does not focus on one species, one condition, or on one type
of sensor. Instead, it strives to elucidate the general development
of sensor-based detection models with a focus on the prioritizing
methods. The challenging task of expressing biological variation
through statistical methods at an implementable level of accuracy
is hereby sought illustrated.

2. Conceptual framework
2.1. Sensor-based detection systems
The idea of a sensor-based detection system is to automatically

detect a condition based on observations from one or more sensors
installed in the pen or the barn. Examples of conditions include
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oestrus, parturition, diseases or impaired productivity. In most
cases, the outcome is binary in the sense that the condition is
either present or not present at a certain time. The following
description assumes a binary outcome, although detection systems
with categorical outcomes are also reported (e.g. Cornou and
Lundbye-Christensen, 2010; Viazzi et al., 2013).

The basic principles behind a detection system can be described
as follows: Assume that a sensor system observes the value of a
variable x; at time t = 1,..., T. The variable can either be univariate
(i.e. a scalar) or multivariate (i.e. a vector). We shall denote as D
the set of all observations until time ¢, i.e. Dy = {x1,...,X;}.

The detection system will typically provide some kind of
summary statistic s, = f(D;) based on the available information
until now. The function f can be very simple, for example
f(Dy) =X (returning the most recent observation) or
f(D¢) = (X¢_ns1 + -+ + X)/n (returning the average value of the n
most recent observations). However, the f function can also be
derived through more sophisticated advanced methods like Kal-
man filtering, neural networks or other computer intensive
methods.

The detection is (either literally or conceptually) based on the
comparison of the summary statistic s; to a predefined threshold
7. An alert is given if the summary statistic s; exceeds the thresh-
old. Thus, at time t, we will either have the event A/ (7):s; > 7
“Alert at time t” or the event A, (7) : s; < T “No alert at time t”.

As a very simple example of this framework, assume that we
wish to detect a certain disease in an animal. The disease is known
to cause fever, so a temperature sensor is attached to the animal.
The temperature is logged every hour and transmitted to a com-
puter. In this case xi,...,x, are simply hourly temperature mea-
surements. A simple summary statistic would be the current
temperature implying that s, = f(D;) = x, but also the average over
the last few hours might be relevant.

In order to finish the detection system we need to define a
threshold, 7. Assuming that the normal temperature of the animal
in question is 7, it would be natural to choose a higher threshold
T=Tg+J where § > 0. It is not straight forward to choose the
threshold. It is obvious that if § is small, many alerts will be given.
It has the advantage, that most of the disease cases will be found
(true positives), but on the other hand, we will also have cases
where the temperature is above the threshold for other reasons
(oestrus, measurement errors or other conditions). In other words,
a low threshold will lead to many false positive cases. If, on the
other hand, a high threshold is chosen, the number of false positive
cases will decrease but on the cost of sometimes not detecting true
cases (for instance if they are less severe). Thus, we are at risk of
having many false negative cases.

This illustrates the general problem in detection methods,
namely that there is a built-in conflict between few false positive
and few false negative cases. Methods for measuring the perfor-
mance of detection systems are therefore needed. The traditional
approach has been to characterize a detection method by two con-
ditional probabilities known as the sensitivity and the specificity.
For given threshold, t, the sensitivity, se;, and the specificity, sp,,
are defined as follows

ser = P(A! (7)|E;) (1)

sp. = P(A; (DIE, ), (2)

where E} and E; are the true presence and absence, respectively, of
the condition we try to detect.

It should be noticed that all performance indicators introduced
so far are specific for the chosen threshold. Since, in many cases,
the threshold can be chosen so that the sensitivity becomes 1
(or close to one) it will be at the cost of a lower specificity. It is,

therefore, necessary always to look at both primary performance
indicators simultaneously.

In order to estimate an over-all performance indicator (inde-
pendently of a threshold), the Receiver Operating Characteristic
Curve, roc, is often used. The curve is defined by the following
parametrization:

roc = {(fpr(t),se(t)) : T € R}, 3)

where fpr(t) = 1 — sp(t). The over-all performance indicator is the
Area Under Curve, determined as

auc = / se(T)fpr' (1)dz. (4)
A perfect system will have an auc = 1 so, in general, values close to
1 are preferred.

A study by Aparna et al. (2014) has chosen a completely differ-
ent approach, where the summary statistic is defined as the
expected time to next condition. Thus, if the random variable @
is the time to next condition, then

st =f(D:) = E(O|Dy). (5)

Hence, there is no comparison with a chosen threshold. This seems
to be a natural approach in cases where the condition will eventu-
ally happen (e.g. oestrus or parturition) or will happen with high
probability.

An overview of the symbols, concepts and definitions is given in
Table 1.

2.2. Estimating the performance of detection methods

Even though Egs. (1) and (2) define the most common perfor-
mance indicators it is, in most cases, not possible to calculate them
analytically. Instead, they must be estimated from data. A neces-
sary condition is that a gold standard allowing us to know the true

Table 1
Conceptual framework and performance assessment of sensor based detection
systems.

Symbol  Description Formula/Condition®
Xt Observation at timet =1,...,T From sensors

D; Set of all observations until now D¢ = {X1,..., X}

St Summary statistic at time ¢t st = f(Dy)

T Threshold at time t Decided

Ef Condition (true) at time ¢ Gold standard

E; No condition at time t Gold standard
Af(T) Alert at time t with threshold 7 SE>7T

A (7) No alert at time t with threshold © S$<T

se(T) True sensitivity with threshold se(t) = P(A] (T)|E))
sp(t) True specificity with threshold © sp(t) = P(A; (T)|E;)
er(t) True error rate with threshold t er(t) = P(E; |A{ (1))
for(t) False positive rate with threshold © for(t) =1-sp(7)
roc Receiver Operating Curve roc = {(fpr(t),se(t)) : T € R}
auc Area Under Curve auc = [ se(0)frp(t)dT
TP, Number of true positive cases TP, = S (A (7) NE)
FP; Number of false positive cases FP. = S (A (1) NE;)
TN Number of true negative cases TN; = S J(A; (1) NEf)
FP, Number of false negative cases FP = > I(A; (t) NE;)
Se; Estimated sensitivity Se; = TP;/(TP; + FNy)
Sp; Estimated specificity Sp; = TN¢ /(TN + FP:)
SR; Estimated success rate SR; = TP /(TP; + FPy)
ER; Estimated error rate ER; =1 -SR;
FPR. Estimated false positive rate FPR; =1 - Sp,
FAR. Estimated false alert rate FAR; = FP,/T

ROC Receiver Operating Curve” ROC = {(FPR¢,Se;) : T € S}
AUC Area Under Curve Numerical integration

2 1() is the indicator function.
b S is a set of tested values of .
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state of the system (whether the condition is present or absent) is
available. The gold standard is seen as a perfect test enabling us to
observe E; and E; directly. In practise, the gold standard often con-
sists of human observations which is problematic because of the
natural subjectivity in these observations, but often it is the only
option. In the following description this problem is ignored. It is
simply assumed that each time step can be classified as either E;
orE;.

Given a detection system as described in the previous section, a
time series of observations xq,...,xr and a gold standard, the
detection system can be run with a given threshold, 7, for
t =1,...,T. This will result in a time series of events drawn from
the following four different combinations of detection result
(A (7) or A; (1)) and true state (E; or E, ):

True positive: A (1) NE;
False positive: A; (1) NE,
True negative: A, (1) NE,
False negative: A, (1) NE;.

The next step in measuring the performance is to count the
number of occurrences of each of the four event combinations.
Denoting the numbers as TP, FP;, TN, and FN,, respectively, the
estimated sensitivity, Se;, and specificity, Sp,, are calculated as

TP,

Se: =T, 1 PN, ©
TN,

SPe =N, & PP, @

Other similar performance indicators like success rate (SR), error rate
(ER), false positive rate (FPR) and false alert rate (FAR) are also occa-
sionally estimated (see Table 1 for an overview).

The estimated ROC curve is constructed by choosing a large set
S={11,72,...,Tn} of possible threshold values (where
T1 < Ty < --- < Ty). For each 7; € S, the sensitivity, SE;, and false
positive rate FPR;, are estimated and plotted as (FPR;, SE;,) for
i€{1,2,...,N}. Finally, the AUC is determined by numerical
integration.

2.3. The curse of false positives

In traditional diagnostic tests, focus is often on the level of sen-
sitivity, because the test usually is carried out only once. With only
one test result available it is therefore very important that as many
true disease cases as possible are detected. In sensor based detec-
tion systems, on the contrary, tests are carried out continuously (or
at least regularly). Accordingly, there will be many opportunities to
detect a condition so the demands on the sensitivity can be
relaxed. Therefore, the true vulnerable point of sensor-based
detection systems is the specificity.

Monitoring sensor data from several different data sources has a
built-in risk of generating too many false alarms. This can also be
the case when only one time series is monitored. The number of
false positives may be a problem, even in systems where the speci-
ficity of the detection method is very high. This was for instance a
problem with an automatic heat detection method (Ostersen et al.,
2010) for sows returning to oestrus that had a specificity around
99%. Nevertheless, the error rate (as defined in Table 1 the ratio
of false positive out of all alarms) exceeded 95%. This is a natural
consequence of sows returning to oestrus being a relatively rare
condition.

The phenomenon is easily illustrated using the notation of
Table 1. Assume that the condition being detected occurs with
probability p at an arbitrary time ¢ (i.e. the prevalence is p). Thus,
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Fig. 1. Error rates as a function of prevalence for three levels of specificity. In all
cases the sensitivity is 0.8.

P(E/) =p. The error rate is the conditional
P(E, |A} (7)). According to Bayes’ Theorem, we have
er(t) = P(E;|A; (1))
_ P(A; (D)IE; )P(E,)
P(A; (7)|E;)P(E;) + P(A; (1) E{)P(E;)
___(=sp)(1-p) )
(1—sp(7))(1 —p) +se(t)p’

Fig. 1 illustrates the error rate as a function of prevalence for
three values of specificity and with a sensitivity of 0.8. As it is seen
in the figure, even a specificity of 0.99 and a prevalence of 0.01
leads to an error rate above 0.5. In other words, more than half
of the alarms will be false positive. If only a specificity of 0.9 is
assumed, the error rate will be more than 0.9 with a prevalence
of 0.01. When time series from different data sources are moni-
tored simultaneously there is an even higher risk of false alarms.

Only some of the raw alarms will, therefore, require interven-
tion, and it is therefore important to have methods for prioritizing
alarms in order to reduce the number of false alarms.

probability

3. Criteria for implementation

According to Hogeveen et al. (2010) three criteria must be ful-
filled for a detection model to be implemented in commercial live-
stock production. These are (A) a high performance in terms of
sensitivity (Se) and specificity (Sp), (B) a time window correspond-
ing to the necessary response time for the specific condition, and
(C) a high degree of similarity between the study design and the
real everyday conditions in commercial farms. The level of value
created by the warning system, relative to the investments needed
by the farmer for sensors or equipment, could be added as fourth
criteria - but first and foremost models fulfilling the three basic cri-
teria must be developed. Throughout this review, the performance
criteria is generally given the highest influence when considering
the implementability of a model. If the performance is too poor,
neither time window nor similarity will be considered further.
Should the performance level fulfill the minimum demands (as
described in Sections 3.1 and 3.3), the lengths of time windows
and the criteria of similarity will be considered according to
relevance in the given article.

3.1. Performance considerations

The nature of the condition to be detected must be taken into
consideration when defining the level of satisfying performance.
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So must the costs and consequences of false alarms in monetary,
welfare and production efficiency terms. The performance needed
for detecting conditions like oestrus or clinical mastitis (CM), which
both need immediate response, is fairly high (Rasmussen, 2002;
Ostersen et al., 2010) whereas the demands for detecting conditions
like lameness, or impaired daily gain, are considered to be lower,
hence reflecting a less urgent condition in some aspects (van
Hertem et al., 2013). It is discussed by Pastell and Kujala (2007) if
an early warning system, which detects lameness, is rather meant
to alert the farmer towards animals that need more focus, than
towards animals needing immediate treatment. It is hereby implied
that a few false positive alarms have smaller consequences in the
detection of lameness than in the detection of for instance CM.

As mentioned in Section 2.3, the prevalence of the given condi-
tion highly influences the requirements to the performance. A high
Se is desirable when identifying a condition with high prevalence,
while a high Sp is necessary when a condition with low prevalence
- like CM or oestrus - is sought to be detected (Rasmussen, 2002).

Although the epidemiological terms of Se and Sp are tradition-
ally used for expressing the performance of a detection model,
Friggens et al. (2007) state that Se and Sp are of limited value when
it comes to monitoring continuous conditions, time series, and pro-
gressive scales of conditions. These limitations and the risk-based
alternatives to Se and Sp will be discussed in Section 5.3.

Some authors (Firk et al., 2002; Sherlock et al., 2008; Claycomb
et al., 2009) have preferred to describe the performance of detec-
tion models by SR, ER (Firk et al., 2002), FAR (Sherlock et al.,
2008) or FPR (Viazzi et al., 2013). SR is defined as the proportion
of true alarms out of all alarms (cf. Table 1) and provides as such
an easily interpretable expression of how often the model is right
when giving an alarm. Likewise, the ER is the proportion of false
positive out of all given alarms. Thus, both SR and ER relate to
the number of given alarms, but do not give any information on
whether the detection model identifies all cases or has an accept-
able level of false negative observations.

FAR, on the other hand, is defined as the proportion of false pos-
itive out of the total number of observations. This indicator is used
by Hogeveen et al. (2010) and Viazzi et al. (2013). Sherlock et al.
(2008) suggest that FAR is expressed as the proportion of false pos-
itive out of a given, predefined number of observations - for
instance 1000 milkings when detecting CM. Communicating to
the end user of the alarm system, how many times out of 1000
milkings one must expect a false positive alarm, is easily done,
and this interpretation is used by Kamphuis et al. (2008b) and
Claycomb et al. (2009).

3.2. The missing gold standard

Throughout the literature, the definitions of case vs non-case
are individually set for each study dependent on the study design.
In defining a case of CM such different definitions as “presence of
clinical signs like clots in the milk or swollen quarters” (de Mol
et al.,, 1997; de Mol et al., 1999), “Somatic Cell Count (SCC) above

Table 2

Distribution of conditions covered by presented detection models. Detection of CM
and lameness have had the highest focus overall but also detection of oestrus is well
covered. Other diseases, parturition, activity types and weight estimation are all
sparsely covered. Some papers cover multiple conditions.

Condition Animal category Number of papers
Clinical Mastitis (CM) Cow 17
Lameness Cow and sow 14
Oestrus Cow and sow 9

Other diseases Cow and sow 5
Parturition Sow 2
Activity types Sow 1

Weight estimation Weaned pigs 1

100,000 cells/ml or treatment performed” (Cavero et al., 2007)
and “one or more alerts given in a defined period around the
recorded date of an observed case” (de Mol and Ouweltjes, 2001)
illustrate that there is no reference to a generally accepted defini-
tion for automated detection of CM, since none currently exists.
Mein and Rasmussen (2008) suggest a less stringent definition of
a TP case (CM detection) than the one defined in the International
Standard (ISO 20966, 2007 in Mein and Rasmussen, 2008, Annex
C). This is done as an attempt to agree on a general definition that
both maintains the robustness of the gold standard, is practically
assessable, and is strengthening the statistics for calculation of
the performance of a detection model. The suggestion has not led
to a consensus on the matter.

Visual scoring the degree of lameness on a lameness score scale
(LS) is widely used as a detection tool. These scorings are often
considered the gold standard, although it is a highly subjective
method, where the reliability of the scoring result is positively cor-
related with the experience of the observer (Tello et al., 2011).
More than 20 different types of lameness score scales, both dis-
crete and continuous, exist (Tello et al., 2011). Often scorings on
a four- or five-point scale are reduced to a three-point trait
(Garcia et al., 2014) or even to a binary (Alsaaod et al., 2012), which
illustrates the difficulties of ranking lameness in detailed degrees
using this method.

Since the terms FP, FN, TP and TN are based on the ability of the
detection models to recognize a case or a non-case, it can be argued
that with no consensus in the case/non-case definitions, a direct
comparison of performance measures is like comparing apples to
oranges. This review, however, illustrates the difficulties in obtain-
ing implementable results regardless of the choices of species, con-
ditions and underlying definitions. In Tables 3-5, all inputs are
reported with the same terminology as is used in the respective
publication when listing methods, variables and performances.

3.3. Performance - minimum requirements

For detection of CM, two minimum requirements for sensitivity
are defined in the literature whereas there is only one defined min-
imum requirement for specificity. In the International Standard
(ISO 20966, 2007 in Mein and Rasmussen, 2008, Annex C) a target
value for sensitivity is suggested to be 70%, and the target speci-
ficity to be above 99%, before a cow is registered on a mastitis
attention list. Rasmussen (2002), on the other hand, defines the
minimum requirements for sensitivity as 80% and 99% for the
specificity, as it is done in Annex C. Since the main reason for build-
ing sensor-based detection models is to provide a foundation for
better decision support than what human experts can give
(Quimby et al., 2001; Kristensen et al., 2010), and since the highest
obtained accuracy by human observation is found to be 80%
(Rasmussen, 2005), the higher of the two minimum demands to
sensitivity is well supported. There is no consensus in the choice
of minimum requirement to a threshold though, and both the def-
initions by Rasmussen (2002) (Hogeveen et al., 2010; Kamphuis
et al.,, 2010b; Huybrechts et al., 2014) and those of Annex C
(Kramer et al., 2009; Steeneveld et al., 2010a; Miekley et al.,
2012) are used in publications on CM detection.

No standard requirements for performance in lameness detec-
tion - or detection of the onset of farrowing - are found in the lit-
erature. The performance requirements defined for CM detection
will therefore be generally applied when discussing these models.

Some studies define diseases in disease blocks defined as unin-
terrupted sequence of “days in disease” in association with a detec-
tion of the condition (Miekley et al., 2013a). The performance is
then expressed in block specificity and block sensitivity (Kramer
et al., 2009; Cavero et al.,, 2007; Miekley et al., 2012; Miekley
et al., 2013a). Disease blocks can be defined similar to time win-
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dows (Kramer et al., 2009), which will be discussed in the next sub-
section. A reason for the use of disease blocks can be to focus on
early detection (Kramer et al., 2009; Miekley et al., 2013a) but it
is important to notice that by calculating block sensitivity instead
of sensitivity at day level or even at case level, information on the
number of successive alerts is neglected (de Mol et al., 2013). This
can cause the sensitivity of the models to be higher since the num-
ber of observations registered by the model is reduced, and the
chance of TP is increased.

3.4. Time window

Time windows define time frames for conditions in livestock
production. The gold standard is the true clinical status, and the
time window can be defined as the minimum expected length of
the true clinical status (Sherlock et al., 2008). The length of a time
window can be based on direct or on indirect indicators. Direct
indicators are for example SCC (Hojsgaard and Friggens, 2010), lab-
oratory analyzed hormone levels (de Mol et al., 1997) or visual
observations by the farmer for CM in cows (de Mol et al, 1997;
Kamphuis et al., 2010b; Miekley et al., 2013a). Indirect indicators
can be back pressure test for oestrus in sows (Cornou et al,
2008), changes in feeding behavior for lameness in cows
(Quimby et al., 2001) or animal activity as in Cornou et al. (2008)
and Cornou and Lundbye-Christensen (2011). Time windows can
overlap if the condition is occurring multiple times with short
intervals. In such cases, the time windows can be merged into dis-
ease blocks (Cavero et al., 2006; Kramer et al., 2009; Miekley et al.,
2012; Miekley et al., 2013a), and Se and Sp of disease blocks can be
reported as block sensitivity and block specificity (Cavero et al,
2007; Kramer et al, 2009) which might have both advantages
and disadvantages as mentioned in the previous subsection.

If a condition is present and an alarm occurs within the time
window, the alarm is TP. If an alarm occurs before or after the
defined time window, it is considered FP. On the other hand, if a
condition is present but no alarm occurs within the defined time
window, the situation is FN whereas it is TN if no alarm occurs
in the absence of the condition of interest (Fig. 2).

The length of the time window has great influence on the per-
formance of the detection model. A very long time window like
17 days for CM (de Mol et al.,, 1997) heightens the chance of TP
and increases the performance of the alarm system because all
alarms occurring within the time window are classified as TP. It
can be argued that a system that generates an alarm anywhere
between 1 and 10 days before to a week after an intervention is
needed, might be of little practical use to the farmer. A short time
window, like 6 h for oestrus detection (Ostersen et al., 2010) or
during the very milking in CM detection, would generate alarms
of great use as a managerial tool (Kamphuis et al,, 2010a) for con-
ditions that require fast intervention. But such short time windows
increase the demands to the accuracy of the model.

3.5. Similarity between models and real life

5 Similarity between the study population and commercial live-
é g stock production populations is of utmest importance if the devel-
g = " A

5255 oped detection n_u?dels should have a chance of performing well

. e SEES under field conditions and later be implemented. Three reasons
b-,E % % T ‘Ej 5§ E for dissimilarities between the study population and commercial
z E, - % & £ —ag g livestock populations are: a narrow data Iset that dcx?s not depict
z "3f%g g g o the variety of commercial farms, indistinct definitions of case
§ § E_ =z Z ;% é: § ¢ = (TP) and non-case (TN) in the study design, and the capability of
g3 E SEE fg :‘E é th_e mpde! to handle missing data (Hog-eveen et al., 2010). If these
E oE E E % g\,: 53 criteria are not fulfilled, the risk of a disappointing level of detec-
& e ffj‘ :— g f ;J tion performance in a commercial herd is high (Hogeveen et al,

2010).
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Fig. 2. Along time window (A) can cover more successive alerts hence affecting the
performance of the detection model in terms of Se and Sp as well as success rate
and error rate. Alerts occurring within the range of the time window are all
considered TP. A shorter time window (B) allows for a more detailed classification
of all alerts and calculation of model performance. t: time. TW: Time window. TP:
True positive. FP: False positive.

A detection model must be validated externally to prove its
accuracy under conditions other than the ones it is created under.
A high degree of accuracy is reflected in high sensitivity, specificity
and reproducibility (Liu et al., 2009).

When evaluating models with promising performances, it is
highly relevant to include the validation method to get a more ful-
filling picture of the potential for implementation. Financial limita-
tions or different types of deadlines can be reasons for designing
the study validation in a way that does not meet the similarity cri-
teria - and it might be of greater importance to build a model first,
and then validate it under conditions less challenging than in herds
representative for the average production form in the given area of
interest.

The strongest validation is on data, which is completely inde-
pendent from the data set used for training and learning the model,
as for instance data coming from another herd. If it is not possible
to obtain suitable data from an independent herd, and if the data
set is large enough, validation can be done by dividing the original
data set into test data, learning data and validation data (Witten
and Frank, 2005). Often the data set is too small for such a division,
and other methods must be considered. A commonly accepted val-
idation method is a 10-fold cross validation as used by Viazzi et al.
(2013). With this method, the data set is randomly divided into ten
subgroups, one subgroup is then retained as validation data, and
the model is trained on the remaining nine subgroups. The valida-
tion is strongest with this method, when the process is repeated
ten times, each time with a new subgroup used for validation data,
although this is not always done (Witten and Frank, 2005).

Another validation method, which is used by Liu et al. (2009), is
“leave-one-out” cross validation. This method is to some extend
similar to the 10-fold cross validation, only it is n-fold, where n
is the number of observations/animals in the data set. The valida-
tion is performed n times, with each observation left out in turn,
and the rest of the data set used as training data (Witten and
Frank, 2005). Both cross-validation methods mentioned above
are relatively narrow in an implementation aspect due to the high
degree of dependency between training and validation data.

Basing a model on data from a few animals (Cornou and
Lundbye-Christensen, 2010, 2011; Aparna et al., 2014), animals
from a single herd (Bressers et al., 1995; Ostersen et al., 2010;
Viazzi et al., 2013; van Hertem et al., 2013, 2014; Garcia et al.,
2014) or from herds where the managerial status differs from the
average commercial herd, as might be the case in a research herd
(de Mol et al., 1997, 2013; de Mol and Ouweltjes, 2001; Cavero
et al., 2006, 2007; Pastell and Kujala, 2007; Kamphuis et al.,
2008b; Kramer et al., 2009; Steeneveld et al., 2010a; Maertens
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et al.,, 2011; Miekley et al., 2012, 2013a,b; Kashiha et al., 2014) can
have a high impact on the similarity between the study population
and commercial herds. This is either because the biological variety
of the whole herd is poorly represented in the small study popula-
tion, or because the routines are adjusted according to demands of
the study design. In the case of research herds, the available
resources might differ from what is possible in commercial herds.

The similarity of a model is also highly affected in studies where
data is collected in herds with extraordinary high/low prevalence
of the condition of interest compared to prevalence in average
commercial herds (Miekley et al., 2013a; van Hertem et al., 2013,
2014). And the same is true for studies where animals from the
same herd are divided into subgroups in order to define learning
data and test data (Kramer et al., 2009; Cornou and Lundbye-
Christensen, 2010) since this approach ignores any herd-specific
correlation, such as genetics or managemental factors.

An obvious reason for not validating the model under field con-
ditions, even though it strengthens the model, is that it can be very
time consuming (de Mol et al., 2001; Nielsen et al., 2005). This is
often the reason for cross validating on a subgroup of the study
population (van Hertem et al., 2014; Viazzi et al., 2013) or using
the same data for training and validating the model (Aparna
et al., 2014; de Mol and Woldt, 2001; Liu et al., 2009).

The definition of case/non-case can - as previously mentioned -
be very individual in some studies (de Mol et al., 1997, 1999;
Cavero et al., 2006; Miekley et al., 2012; Kamphuis et al., 2013;
Garcia et al., 2014) whereas other studies use definitions and rou-
tines that are already used by the personnel in the farm where the
data is collected (Maatje et al., 1997; de Mol and Ouweltjes, 2001;
Kamphuis et al., 2010a,b; Miekley et al., 2013b; van Hertem et al.,
2013, 2014; Huybrechts et al., 2014).

Since it is common in commercial production herds that data
are missing at a more or less influential level, a detection model
must be able to handle missing data as well. In some studies, data
sets with missing data are left out during the model developing
process for different reasons (Pastell and Kujala, 2007;
Steeneveld et al., 2010a; Maertens et al., 2011; de Mol et al,,
2013; van Hertem et al., 2013, 2014; Garcia et al., 2014) whereas
other models are based on incomplete - but more realistic - data
sets from commercial farms (Bressers et al., 1995; Liu et al,,
2009; Kamphuis et al, 2010a,b; Miekley et al, 2013b;
Huybrechts et al., 2014), hence showing a higher level of similarity.

4. Criteria for inclusion in this review
4.1. Primary criteria

Papers included in this review are all peer-reviewed and pre-
sent sensor-based detection models developed for modern live-
stock production with the purpose of optimizing animal health
or managerial routines. Papers on models that are based on param-
eters analyzed in laboratories (Barkema et al., 1998; Nielsen et al.,
2005; Chagunda et al., 2006; Friggens et al., 2007; Steeneveld et al.,
2008; Hojsgaard and Friggens, 2010), parameters assessed by
humans (Barkema et al., 1998; Steeneveld et al., 2010b), or where
the condition in focus is artificially applied to the animal as a part
of the study design (Milner et al., 1996; Abell et al., 2014) are
therefore not included.

Papers included must furthermore present results from a per-
formance analysis. Papers where methods for detecting, monitor-
ing or assessing parameters for early warning systems are
developed, tested or evaluated, but the results are presented as
the method having a future potential, are therefore not included.
This criterion leaves out several studies (Bressers et al., 1994;
Moshou et al., 2001; White et al., 2004; Madsen and Kristensen,
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2005; Madsen et al., 2005b; Oliviero et al., 2008; XiangYu et al.,
2008; Leroy et al., 2008; Ferrari et al, 2010; Kristensen and
Cornou, 2011; Tanida et al., 2011; Hoffmann et al., 2013; Kashiha
et al., 2013; Cornou and Kristensen, 2014b; Porto et al., 2014;
Abdanan Mehdizadeh et al., 2015; Dutta et al., 2015).

4.2. Conditions detected

A variety of conditions are sought to be detected in papers
included in this review. Some papers present models detecting
more than one condition (de Mol et al., 1997, 1999) or several
methods for detecting the same condition (Cavero et al., 2007;
van Hertem et al., 2014). Some papers combine two methods in
order to improve the overall performance (Kramer et al., 2009;
Kamphuis et al., 2010a; Cornou and Lundbye-Christensen, 2011;
Huybrechts et al., 2014), or to prioritize the outcome of the early
warning system (de Mol and Woldt, 2001; Steeneveld et al.,
2010a; Ostersen et al., 2010). Table 2 shows the distribution of con-
ditions covered. As it appears from the table, detection of CM and
of lameness have had the highest focus overall.

4.3. Sensor types

Multiple sensor types are included in this review representing
the technological evolution through the last two decades (from
1995 to 2015). Data from automatic milking systems (AMS) form
the basis for the vast majority of sensor-based detection models,
but a variety of other sensor types are included as well. Sensors
for monitoring movement include video cameras, different 2D
movement sensors (pedometers and neck transponders), and 3D
movement sensors (accelerometers and pressure sensitive sensors
like force plates and load cells). Other sensor types (flow meters,
feeding troughs with sensors, weight scales and climate comput-
ers) also provide valuable information in several studies.

4.4. Methods - presentation

The included papers are presented in three groups according to
their level of prioritization:

Group 1 (Table 3): Sheer detection models based on single-
standing univariate or multivariate methods with or without
the inclusion of non-sensor-based information.

Group 2 (Table 4): Improved detection models where the per-
formance of the described models are sought to be improved
through the combination of different methods.

Group 3 (Table 5): Prioritizing models where the model
includes a method of ranking or prioritizing alerts in order to
reduce the number of false alarms.

In many studies, performance indicators are reported several
times due to different thresholds or different subgroups of animals.
Therefore an approach has been taken in order to compare the
highest level of performance obtained by any method under any
circumstances given in the relevant study. In the tables, the nota-
tions HSe and HSp are used. HSe is the highest sensitivity achieved
in the study, and the specificity in brackets is the corresponding
specificity. Equivalently, HSp is the highest specificity achieved in
the study, and the corresponding sensitivity is shown in brackets.

The notations “HSe x, (Sp y)” and “HSp y,, (Se x)” are mathe-
matically defined as

(Xm,y) = (Seq,,Sp;,), Tx = argmax{Se.|t € S} 9)
(X, Ym) = (Sex,,Sp;,), Ty = argmax{Sp.|t € S}, (10)
T

S is the set of thresholds tested in the study.

4.5. Literature search strategy

For the initial search the following keywords were used: auto-
matic monitoring, livestock production, sensors, ranking, prioritiz-
ing, alarms and detecting. These keywords were then combined
with words like mastitis, lameness, estrus, gain, cow, sow, and
broiler. From those basic searches, backward searches were done
through references and bibliographies of relevant authors. The
databases used for the searches were Ovid (CAB Abstracts, Web
of Science, Agricola) and Sciencedirect in the period from Novem-
ber 2014 to June 2015.

5. Method description

In this section, the methods used for building detection models
in the reviewed papers are described according to their level of pri-
oritization. In both groups 1 Sheer detection models (Table 3) and 2
Improved detection models (Table 4) some papers present a tech-
nique where the level of one or both performance parameters are
fixed (Kamphuis et al., 2010b; Kamphuis et al., 2013), or defined
with a minimum level (Cavero et al.,, 2006; Kramer et al., 2009;
Miekley et al., 2012, 2013a) when doing performance analyses.
With a fixed parameter, it is possible to calculate the correspond-
ing threshold for detecting a condition under given circumstances,
and hereby reduce the number of false alarms generated by the
detection model. However relevant, according to the alarm-
reducing characteristics, this technique is not a part of the con-
struction of the detection model and will not be described further.

5.1. Sheer detection models

An overview of the sheer detection models (Group 1) identified
for this review is shown in Table 3.

5.1.1. Sheer detection models based on AMS sensors

Statistical methods used in models based on data from AMS (or
AMS-like) sensors all fall into one of the following four categories:
Time series with Kalman filter (de Mol et al., 1997; de Mol et al.,
1999; de Mol and Ouweltjes, 2001), local regression, moving aver-
ages (Cavero et al., 2007), and fuzzy logic (Cavero et al., 2006;
Kamphuis et al., 2008b; Kramer et al., 2009). de Mol et al. (1997,
1999) present a multivariate cow-dependent approach and an
AutoRegressive Integrated Moving Average (ARIMA) for analyzing
time series with Kalman filter. Later de Mol and Ouweltjes
(2001) use an unspecified time series model, where milking inter-
vals and milking frequencies are included as variables. The speci-
ficity for CM detection in de Mol et al. (1997) is based on milk
sampled with a two month interval, and cows with no CM patho-
gens or elevated SCC counts in any samples during the study period
were defined as TN. This means that a TN cow with one or more
alarms was considered FP. This case definition ignores any CM
cases which begin and end between two samples, and creates opti-
mal - but unrealistic - conditions for the detection model. The mul-
tivariate methods presented by de Mol et al. (1997, 1999) is,
however, a novel approach through the incorporation of the animal
history and traits, and it is widely implemented in later publica-
tions (de Mol and Ouweltjes, 2001; Cavero et al., 2007; Claycomb
et al, 2009; Kramer et al, 2009; Kamphuis et al, 2010b;
Steeneveld et al., 2010a; Garcia et al., 2014; Huybrechts et al,,
2014). General practice at the time of several of these studies
was milking in milking parlors, and the use of AMS was in its mod-
est beginning (Kamphuis et al., 2008a; Rutten et al., 2013) which
made the inclusion of sensor-based variables limited compared
to later studies.
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Performances presented in early studies by de Mol et al. (1997,
1999, 2001) and de Mol and Ouweltjes (2001), are fairly high, with
either sensitivities or specificities fulfilling the minimum require-
ments by Rasmussen (2002). The requirements are not met at
the same time for both performance measures, though. Not even
extremely long time windows, a variety of case definitions, or dif-
ferent techniques for performance analysis in de Mol et al. (1997)
led to both parameters meeting the requirements at the same time.
Authors agree that the performance of the presented models is too
poor for practical implementation and suggest either improvement
of both sensors and alert rules (de Mol et al., 1997; de Mol et al.,
1999) or addition of temperature sensors that have proven infor-
mative in detecting CM (de Mol and Ouweltjes, 2001). Simple con-
trol charts and local regression were tested and showed to have
poor performance in Cavero et al. (2007), and these methods are
only used in combination with other methods in later research
(Cornou et al., 2008; Lukas et al.,, 2009; Cornou and Lundbye-
Christensen, 2011; Miekley et al., 2012, 2013a; Huybrechts et al.,
2014). Even though a model for milk yield based on time series
was suggested already by Deluyker et al. (1990), it was on a general
cow level, and de Mol et al. (1999) seem to be the first to model
cow-specific “normal” behavior through time series based on sen-
sor data.

A binary classification is bound to misclassify some “grey zone”
cows (Cavero et al., 2006). The use of a lower SCC threshold of
100,000 cells/ml in defining healthy/sick cows as used by
Miekley et al. (2012); Cavero et al. (2006) raises another concern
of employing an artificially high sensitivity (Claycomb et al.,
2009) due to too many healthy cows being classified as sick (false
positive). Even though the chosen threshold of 100,000 cells/ml is
following the definitions from “Deutsche Veterindrmedizinische
Gesellschaft e.V.” for mastitis, it appears to be too low since a num-
ber of papers have reported average bulk tank SCC's from
151,000 cells/ml to >800,000 cells/ml (Maatje et al., 1997; Cavero
et al, 2006; Kamphuis et al., 2008b; Claycomb et al., 2009;
Kramer et al., 2009; Miekley et al., 2012). Mein and Rasmussen
(2008) even suggest that cows could be classified as “true nega-
tives” if the SCC is <200,000 cells/ml and all foremilk samples are
without clinical signs.

Fuzzy logic is a method where variables that can obtain multi-
ple lingual values are determined relative to the connection in
which they appear. The lingual variables can be “many, few, almost
all, several”, and they are given a numeric value (degree of mem-
bership) between 0 and 1 before they are included in for instance
statistical models (Klir and Folger, 1988). When this method is
used in models for CM detection (Cavero et al., 2006; Kamphuis
et al., 2008b; Kramer et al., 2009), it is applied through three steps
of a fuzzy logic system called fuzzification, fuzzy inference and
defuzzification:

Fuzzification transforms the sensor-measured input variable to
a fuzzy value that is a combination of linguistic interpretation
and grade of membership (Kramer et al., 2009).

Fuzzy inference applies a set of IF THEN rules generated on
expert knowledge for each trait described by fuzzy values and
combines them like IF (all X is Z) AND (no Y is X) THEN (no Y
is Z) (Klir and Folger, 1988).

Defuzzification transforms the fuzzy values into one numeric
value that is compared with a threshold to determine for
instance if a cow has got CM or is healthy (Kamphuis et al.,
2008b).

The Fuzzy Logic method was first applied by Cavero et al. (2006)
who used it on AMS sensor variables. The thresholds for case def-
initions were very low, which resulted in high performance (in
terms of Se and Sp) and large error rates. Fuzzy logic has been used
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later for detecting CM with both in-line and on-line SCC (Kamphuis
et al., 2008b), and for detecting both CM and lameness (Kramer
et al., 2009), but no results suitable for implementation in commer-
cial herds were achieved.

The method is good at representing the form of uncertainty that
is naturally imbedded in modeling traits with biological variation.
By using the so-called Fuzzy Expert System, crisp values can be
fuzzified (Klir and Folger, 1988) before applying rules and
defuzzification.

Cavero et al. (2006), Kamphuis et al. (2008b), and Kramer et al.
(2009) all use numeric sensor measurements as input variables,
and the numeric values are first fuzzyfied to lingual values then
defuzzified back to numeric values. This process does not seem
intuitively as the most obvious method, but it would be interesting
to see Fuzzy logic applied to categorization of lameness degrees in
cows since it is a trait with a high degree of biological variation.
The Fuzzy logic method is used for combining sensor-based alerts
with subjective human judging of CM in the study by de Mol and
Woldt (2001), and this will be discussed further in Section 5.3.

5.1.2. Sheer detection models based on behavior and movement
sensors

A variety of behavior and movement sensors are used in detect-
ing changes in the behavior or movement pattern of an animal. The
changes detected are either due to lameness, or the onset of a con-
dition associated with well known behavioral changes like oestrus
or farrowing. Numerous studies employ a variety of techniques for
assessing activities. These include pressure platforms measuring
weight distribution (Pastell and Kujala, 2007; Oliviero et al.,
2008; Pastell and Madsen, 2008; Pastell et al., 2008a,b; Pluym
et al., 2013; Mohling et al., 2014), pressure sensitive mats monitor-
ing irregularities in gait patterns (Maertens et al., 2011; Pluk et al.,
2012; Van Nuffel et al., 2013), and accelerometers measuring types
of activity in two or three dimensions (Cornou and Lundbye-
Christensen, 2010; Cornou et al., 2011; van Hertem et al., 2013;
Cornou and Kristensen, 2014b). Activity sensors fastened to the
animal (Alsaaod et al., 2012; Kamphuis et al.,, 2013; Miekley
et al., 2013b; Dutta et al., 2015) or infrared sensors fastened on
inventory (Freson et al., 1998; Aparna et al., 2014) are also used
in multiple studies. Although several types of statistical methods
have been used for building sheer detection models based on
behavior or movement sensors, the performance in general follows
the same trend as the sheer detection models based on AMS sen-
sors with either a high sensitivity or a high specificity, and with
consensus in the finding that multivariate models outperform uni-
variate (Maatje et al., 1997; Kamphuis et al., 2013; van Hertem
et al., 2013).

A study by Miekley et al. (2013b) found missing values are caus-
ing up to 30% information loss for some cows when using principal
component analysis (PCA), whereas (Pastell and Kujala, 2007)
found that other methods, like probabilistic neural network
(PNN), handle incomplete data sets better. The use of infrared sen-
sors in detecting onset of oestrus in sows is tested and found inad-
equate for implementation by Freson et al. (1998) since TN and FN
could not be distinguished.

Maertens et al. (2011) present an impressive highest accuracy
(HSe 90, HSp 100) in detecting lameness among dairy cows using
a spatiotemporal approach. This accuracy is however only on iden-
tification of severely lame cows whereas the overall performance
of the model is presented as a success rate above 80% without
specification of Se, Sp or FP. The spatiotemporal approach is new
in lameness detection of livestock animals though, and this is
investigated in further research (Pluk et al., 2012; Van Nuffel
et al., 2013; Meijer et al., 2014).

Some authors discuss improvements by inclusion of walking
speed (Meijer et al., 2014) or longer pressure mats to measure
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more gait cycles within one measurement (Van Nuffel et al., 2013).
The use of sensor mats for lameness detection is still a relatively
new area in research, and Pluk et al. (2012) naturally focus more
on improving the techniques and choosing the most informative
variables and methods instead of on implementation in commer-
cial farms.

The study by Cornou and Lundbye-Christensen (2010) on clas-
sifying activity levels of sows prior to farrowing, does not reach
the performance defined in Rasmussen (2002), but still the results
are remarkable since the corresponding Se and Sp are both 96% as
contrary to most other studies that reach either high Se or high Sp.
The performance is on identifying a sow in activity (walking, feed-
ing, rooting merged) correctly as opposite to lying down either lat-
erally or sternally. A reliable detection of activity category is
valuable in predicting conditions that follow a change in activity
level - like oestrus or parturition.

For models built on data from video cameras, infrared cameras
or 3D cameras, methods like decision trees or different types of
regressions have been used in detecting different conditions. None
of the presented models detect with a performance high enough
for implementation in commercial farms, and the results by van
Hertem et al. (2014) detecting lameness in cows reach neither sen-
sitivities nor specificities matching the definitions in Rasmussen
(2002).

Although Viazzi et al. (2013) have simplified the lameness score
scale from a 5-point to a 3-point, the performance presented as
TruePositiveRate and FalsePositiveRate is too low for implementa-
tion. Bressers et al. (1995) only present the success rate and a
notice of presence of many false positive in detecting oestrus by
monitoring sows’ visits to a boar, hereby indicating a high sensitiv-
ity and a low specificity. A similar study was later conducted by
Ostersen et al. (2010) with more complex methods that will be
presented in Table 5.

5.2. Improved detection models

The models in Table 4 all have in common that methods are
combined to create an improvement in model performance. The
improvements added are different types of control charts
(Cornou et al., 2008; Cornou and Lundbye-Christensen, 2011;
Miekley et al., 2012; Miekley et al.,, 2013a; Huybrechts et al,,
2014), further development of decision trees (Kamphuis et al.,
2010a; Kamphuis et al., 2010b), or of various regression methods
(Liu et al., 2009; Kashiha et al., 2014). Combinations of DLM with
other methods (Ostersen et al., 2010; de Mol et al., 2013) and par-
tial least squares discriminant analysis fitted by linear regression
and improved by reducing the number of variables through back-
ward variable selection (Garcia et al., 2014) are also included.

Combining different types of control charts with wavelet filter-
ing, autoregressive methods, time series, or either univariate or
generalized DLMs does not result in a performance high enough
for implementation (Cornou et al., 2008; Cornou and Lundbye-
Christensen, 2011; Miekley et al., 2012, 2013a; Huybrechts et al.,
2014). Using CUSUM in detecting the onset of parturition does
however result in both a sensitivity and a specificity of 100% for
a subgroup of nine sows based on activity level, and a sensitivity
of 100% combined with a specificity of 95% when including all 19
sows in the study (Cornou and Lundbye-Christensen, 2011).

Although the performance obtained by Cornou and Lundbye-
Christensen (2011) is impressive, there is an overlap between the
individual parameters used in both methods (DGLM and CUSUM)
and animal specific reference days which may have increased the
performance. This is mentioned by the author as a subject for
future change if a large-scale study should be conducted. Few
alarms appear at time zero (that is at the actual onset of the far-
rowing) but the majority of the alarms based on the CUSUM

method occur between 12 and 24 h before onset of farrowing
(mean 4.7-14.8 h, SD 4.9-9.1 h), while the DGLM method produces
alarms in average 15 h before farrowing (SD 4.3-7.5 h). An alarm
this long before farrowing with a relatively large standard devia-
tion is suboptimal if the purpose is to be present during farrowing.
If the purpose, on the other hand, is to prepare the sow or the far-
rowing crate in order to reduce piglet mortality as in the later dis-
cussed study by Aparna et al. (2014), an alarm long time before
would in most cases be sufficient.

Different methods for improving DLMs are presented by
Ostersen et al. (2010), de Mol et al. (2013). de Mol et al. (2013)
use quadratic trend models fitted with DLM to detect lameness
in cows. The presented performance of the model is not suitable
for implementation, but the authors mention that both discount
factors and threshold for the Bayes factor in the DLM can be
adjusted. Adjustments can prioritize a higher or lower Se according
to the needs of the end user, which means that the threshold for
alarms can be adjusted - or prioritized - according to individual
needs.

Ostersen et al. (2010) detect oestrus via both duration of a sow’s
visit to a boar, the frequency of the visit, and a combination of the
two parameters. Ostersen et al. (2010) combine a multiprocess
DLM with Markov probabilities of the DLM components in the
duration model and develop a DGLM for the frequency model.
The detection model combining both duration and frequency is
based on Bayes Theorem and calculates a combined probability
of the sow being in oestrus.

The multivariate model surprisingly enough performs worse
than the univariate duration model. An explanation for this finding
could be that the duration model includes the time distance
between the visits which is closely related to the frequency. The
results reported in the paper are remarkable due to the extremely
high Sp of 99.4%, but remakably enough the corresponding ER is as
high as 93%. This illustrates the almost impossible task of achieving
an overall satisfying performance of a detection model when using
solely sensor-based data for detection of conditions with very low
prevalence.

Kamphuis et al. (2010a,b) present decision trees with different
data mining techniques or cost matrices added as improvements
for detecting CM. Even though the inclusion of cost matrices in a
model designed for decision support is highly relevant, it does
not improve the performance enough for implementation.

5.3. Prioritizing methods

As seen in the descriptions of sheer and improved detection
models, there is a general problem with fulfilling the described cri-
teria for implementation. Scientific literature describes three over-
all alternative approaches to this problem; a higher extent of added
knowledge, in the form of non-sensor information, to the original
detection model (Fig. 3A), an acceptance of the original perfor-
mance level plus a postprocessing step of prioritization or ranking
of the alarms into TP or FP (Fig. 3B), or a presentation of the model
output as a time gradient or a risk of case vs. non-case (Fig. 3C) dis-
regarding the source of model input variables. To some extent, a
customization of thresholds according to the risk attitude of the
farmer can be regarded as a prioritizing measure, but this approach
implies that the model is adjusted to the specific herd at time of
implementation - and possibly multiple times hereafter as the
health or managerial status is dynamic and will change.

Fuzzy logic is used by de Mol and Woldt (2001) to combine
sensor-based output from earlier developed detection models with
additional information about the cow (Fig. 3A) in order to formal-
ize the manager’s reasoning when manually judging alert lists for
CM and oestrus. Hereby, they reduce the number of FP on the
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Fig. 3. Flow charts illustrating three prioritizing strategies for reducing the number
of false alarms. Flow chart A illustrates a reduction in the number of generated
alarms by using both sensor and non-sensor information as model input compared
to using only sensor information as model input. Flow chart B illustrates a
postprocess of the TP alarms generated by the detection model by adding, e.g. non-
sensor information and hereby sorting the alarms into TP and FP. Flow chart C
illustrates the cases of model output presented as a risk, a gradient up to or a
probability of a condition happening.

CM alert list from 1265 to 64 and the number of oestrus alarms by
32%.

The CM model combines the AMS alerts from de Mol and
Ouweltjes (2001) with average and variance of sensor measure-
ments, while the oestrus model combines alerts from de Mol
et al. (1997) with both qualitative and quantitative non-sensor-
based cow information. By combining qualitative and quantitative
parameters, de Mol and Woldt (2001) are fulfilling the basic
demands of the Fuzzy logic method, but as remarkable as their
results are, they must be interpreted with some care, since the Se
and Sp respectively are calculated on different divisions of the data.

Naive Bayesian Networks (NBN) as a tool for discriminating
between TP and FP alerts from AMS (Fig. 3B) is demonstrated in
a study by Steeneveld et al. (2010a) where the number of FP alerts
are reduced by 35%. Unfortunately, the model misses 10% of the TP
alerts meaning that the specificity is too low for implementation. A
satisfying performance level cannot be expected in this study
though since the initial performance of the AMS providing the alert
list has an Se of 70% and an Sp of 97.8%. The results do show a
potential for NBN as a prioritizing method and more research
should be done using this method.

A completely different approach for detecting or predicting a
condition is used by Aparna et al. (2014). The paper focuses on pre-
dicting the exact onset of farrowing, in order to reduce piglet mor-
tality caused by hypothermia. The underlying model is based on
Hidden Phase-type Markov methodology, where the time spent
in each defined phase of a given condition is modeled. For this
study the well-defined behavioral phases preceding a farrowing
is used.

The study is based on sows already inserted into farrowing sec-
tion which makes the probability of the sow actually farrowing
very high - almost definitely known to happen - unlike any other
condition included in this review. Well-defined behavioral phases
are known for a few conditions like parturition and to some extent
oestrus in both sows and cows.

This phase-based method is, however, difficult to apply on con-
ditions like CM or tail biting, where the chronological succession of
phases is unknown, and different phase-patterns can lead to the
same condition. Also a crucial difference between predicting the
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onset of farrowing and predicting events of CM and tail biting, is
not knowing beforehand, whether the condition will occur at all
or not.

Interestingly enough, Aparna et al. (2014) do not operate with
the traditional performance parameters (sensitivity, specificity
and error rate) but produce estimates of time to occurrence of far-
rowing (Fig. 3C) hereby providing decision support to the farmer in
choosing which sow to attend to first. By combining water and
activity sensors, the model produced 97% true warnings with a
mean of 11.5 h and an SD of 4.6 h. These results fulfill the aim of
the paper to provide sufficient warning time for preparing the crate
and sow for farrowing, but the SD is too long to provide accurate
alarms for the exact onset of the farrowing with the purpose of
providing timely aid to complications.

6. Method discussion

The previous description of sheer, improved and prioritizing
detection models illustrates a trend in the development of detec-
tion models over the last two decades (1995-2015). This trend is
not depicting a straight forward evolution of detection-methods
but rather a correlated evolution in both model complexity and
general evolution of sensor technology.

6.1. Evolutionary trends of methods and sensors

The evolution of sensor-based detection models is facilitated
both by the technological evolution causing lower market prices
and smaller, more precise devices in general, and by the joint sci-
entific experiences made through peer-reviewed studies and
research. In that sense, the evolution of sensor-based detection
models has generally moved from univariate models on general
species level (Deluyker et al., 1990) or comparing data with a sim-
ple threshold (Bressers et al., 1995) through improving detection
accuracy by including non-sensor-based animal-specific informa-
tion like “day of treatment”(Cavero et al., 2007), “calving dates”,
or “days in lactation” (de Mol et al., 2001). Parallel to including
non-sensor-based information, more multivariate models were
developed (Cavero et al., 2006; Kamphuis et al., 2008b; Kramer
et al., 2009).

With performance still not reaching a satisfying level, research-
ers have continued to develop models focusing on prioritizing the
generated alarms through the use of Fuzzy logic (de Mol and
Woldt, 2001), Naive Bayesian Network (Steeneveld et al., 2010a)
or variations of DLM (Cornou et al., 2008; Ostersen et al., 2010;
de Mol et al, 2013). During the same period in time (1995-
2015), the technical evolution of sensors has made it possible for
the precision in CM detection to move from udder level to quarter
level. Also data is available much faster, going from on-line
monthly or weekly pooled reference data like SCC, to in-line sen-
sors (Kamphuis et al., 2008b) providing the possibility of detecting
a CM case during the actual milking.

A similar evolution of both sensor types and method complexity
is also found in models detecting conditions like lameness in cows
and oestrus in both sows and cows, but since the history of auto-
matic detection is shorter for these conditions compared to CM,
the evolutionary changes are not as profound.

Rajkondawar et al. (2002) developed a fully automatic detection
model using limb-specific kinetic measures, and later several stud-
ies were based on partly automatic measures, using manual gait
score as gold standard (Pastell and Kujala, 2007; Maertens et al.,
2011). It has, however, been the development of force load cells
(Liu et al.,, 2009) and pressure sensitive mats (Maertens et al.,
2011), which has made a huge difference in lameness detection
for cows. The former of the two sensor types, has even been used
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Fig. 4. Performance (Highest Specificity (HSp), corresponding specificity (Se)) for the 26 papers that present model performance with sensitivity and corresponding

specificity. Lines indicate performance criteria (sensitivity 80% and specificity 99%).

in a commercially implemented product for lameness detection,
which Liu et al. (2009) sought to make more accurate in their
study.

6.2. The perfect performance - does it exist?

Despite the technological evolution and the increased complex-
ity of methods in sensor-based detection models, the accuracies of
these models are generally at a level that does not fulfill the criteria
of implementation (Hogeveen et al.,, 2010). A great variation in
model performance throughout the different studies is revealed
when the performance is visualized. The performance of HSp and
the corresponding Se is shown in Fig. 4 for the papers that present
both Se and Sp. Nine studies reach a Se above 80% and ten reach a
HSp above 99% but only three papers (Liu et al., 2009; Maertens
etal, 2011; Cornou and Lundbye-Christensen, 2011) present mod-
els that fulfill both performance criteria when including subgroups
of the data sets.

Liu et al. (2009) detect lameness in cows and use logistic regres-
sion in combination with B-spline transformation to obtain Se of
100 % and Sp of 100% when detecting lameness on forelimbs, and
Se of 99.5% and Sp of 100% when detecting lameness at cow-
level. The authors convert a five-point lameness score to a binary
(sound-lame) and furthermore validate the model by the leave-
one-out cross validation method on a data set consisting of 261
cows. It is reasonable to assume that leaving out the information
provided by only one cow for validation, using the remaining 260
cows to train the model a total of 261 times, is close to learning
and testing the model on the same data which will result in a high
level of performance. Therefore, the study does not fulfill the sim-
ilarity criteria. Maertens et al. (2011) obtain Se of 90% and Sp of
100% when detecting severe lame cows (gait score 3 on a three-
point lameness score) using linear regression on kinematic vari-
ables from pressure sensitive mats, but the aim of lameness detec-
tion is primarily to point the farmer towards the cow that needs
extra focus rather than those who need acute treatment (Pastell
and Kujala, 2007), and with this model not fulfilling the
performance-criteria for sound or mild-lame cows, it seems to be
of little use in the production. Cornou and Lundbye-Christensen
(2011) use CUSUM to detect the onset of farrowing based on the

sow’s activity pattern and obtain Se of 100% and Sp of 100% for a
subgroup of 9 sows with the sow’s individual variance. The level
of performance when including all sows (n =19) using individual
variance is Se of 100% and Sp of 95% whereas the performance
for all sows using group variance is Se of 95% and Sp of 89% thus
not fulfilling the performance criteria. In the discussion, the
authors mention that using individual variance might be over opti-
mizing the model since the reference days of each sow were known
beforehand. They recommend the study to be repeated in a large
scale experiment where this bias is avoided and suggest inclusion
of more animals and different setup of time windows.

The potential of sheer and improved sensor-based detection
models is well exploited and they generally do not detect at an
implementable level of accuracy. This calls for alternative
approaches with a higher degree of customization and adaptability
to individual needs at herd-, farmer-, or animal-levels.

6.3. Customization and prioritizing strategies

Throughout the literature, three strategies of prioritizing meth-
ods and few concrete suggestions for customizing models are
described. Fig. 3A-C illustrate three different strategies for improv-
ing the performance of a model or for ranking or prioritizing the
output of the detection models.

6.3.1. Customization

Customization of detection models based on DLM is suggested
by Cornou et al. (2008), Ostersen et al. (2010), and de Mol et al.
(2013) who all present different variations of DLM in their detec-
tion models and discuss further adaptation for implementation.

The DLM is not a prioritizing method as the previously dis-
cussed fuzzy logic and NBN in the manner of ranking alerts accord-
ing to a given preference or classifying alerts as true or false. The
DLM as a statistical method can predict - or produce a forecast
for - the state of the condition of interest one step forward and
compare the prediction with the following observation. Neverthe-
less, the method as presented in these three papers is capable of
adjusting to individual circumstances through described strategies
for changes in the discount factor of the DLM which alter the
adaptability of the model.
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The herd-specific adjustments could be on the prevalence of the
condition in focus (Hogeveen et al., 2010), the level of management
(Huijps et al., 2010) and the farmer’s risk attitude. The latter might
differ in terms of both economic consequences (Rutten et al., 2014)
and workload associated with accepting a lower, or a higher, level
of false alarms (Mollenhorst et al., 2012). In addition to this strat-
egy de Mol et al. (2013) describe how changing the threshold for
the Bayes factor of the DLM influences the Se and Sp of the model
so it can be adjusted to the risk attitude or level of management at
the individual herd.

6.3.2. Prioritizing strategies

Prioritizing strategy (A) combines sensor data with additional
non-sensor information at animal-, section- or herd-specific level
in a detection model in order to increase the level of performance.
This strategy is followed to some extent by Maatje et al. (1997);
Ostersen et al. (2010) who mention the potential of combining sen-
sor and non-sensor data and by Garcia et al. (2014) where the par-
ity of the cow is used as classification parameter when defining
groups in the data set. Different methods can be used for combin-
ing sensor data and non-sensor data, and NBN has been used with
interesting results in studies by Steeneveld et al. (2009, 2010b)
who use cow-specific information to provide probability distribu-
tions for pathogens and for prioritizing alerts from AMS alert lists.

NBN is also used by Jensen et al. (2016) for combining sensor
data and cow-specific information in a CM detection model. Using
NBN for combining data from different sources is not common in
livestock production but has been done previously by Steeneveld
et al. (2009, 2010b) and also recently in the world of computer
security where Benferhat et al. (2013); Bouzar-Benlabiod et al.
(2015) combine sensor alerts and expert knowledge to improve
performance of computer security models.

Even though animal-specific information has great impact on
the performance of a detection model, the use of cow-specific
information alone is not always enough as proven by Steeneveld
et al. (2008, 2010a). Animal-specific biological markers, as used
by Chagunda et al. (2006) in a dynamic deterministic biological
model, can however show that detailed cow-specific information
in combination with laboratory analysis of the enzyme L-lactate
dehydrogenase (LDH) can present an impressive performance level
with Se 82% and Sp 99% - including no other AMS information. This
type of model is yet not implementable due to technological
demands.

Prioritizing strategy (B) describes a different approach where
the sub-optimal performance obtained by a detection model,
whether based either solely on sensors or on combined informa-
tion types, is initially accepted and the generated alarms are prior-
itized or ranged by combining them with additional non-sensor
data in a following postprocessing step as it has been done by de
Mol and Woldt (2001); Steeneveld et al. (2010a) (see Fig. Flow
chart B 1,2). Two different methods using strategy (B) are
described in the literature; fuzzy logic and NBN.

By using fuzzy logic de Mol and Woldt (2001) reduce the num-
ber of false positive alerts from earlier developed statistical models
detecting CM and/or oestrus (de Mol et al., 1997, CM and oestrus);
(de Mol and Ouweltjes, 2001, CM). Two separate fuzzy logic mod-
els are created - one for each condition. In the CM model de Mol
and Woldt (2001) reduce the number of false positive alarms from
1265 to 64 by combining the output of the statistical model with
fuzzified additional information. The information is added on stan-
dardized deviation in electric conductivity of each quarter as well
as measured conductivity at quarter level. This use of fuzzy logic
raises the same issue as seen in Cavero et al. (2006), Kamphuis
et al. (2008b), Kramer et al. (2009) where numerical values are first
fuzzified to lingual values, and then defuzzified to numerical again.
Since fuzzy logic is a method meant for quantifying linguistic - or
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fuzzy - values, it seems more obvious to use the method on qual-
itative factors like reproductive status, level of activity or a descrip-
tion of lameness degree parallel to lameness scores in lameness
detection.

Furthermore, the input to this fuzzy logic model is the output of
a statistical model where the performance is obtained through long
time windows and a high degree of selectivity in the choice of
included data (de Mol and Ouweltjes, 2001). As opposed to the
CM model, the oestrus model include qualitative parameters like
reproductive status and information on activity level. The number
of false positive alerts were reduced by 32%, and the false alarms
were sought to be further reduced through manual and computa-
tional optimization of the model but without noteworthy improve-
ments. In their discussion the authors discuss that the model might
have been improved further by including the use of “expert knowl-
edge” from the herdsman or personnel. Even though de Mol and
Woldt (2001) reduce the number of false positive alarms, and pre-
sent a method of prioritization, it is our opinion that fuzzy logic
should be used with care on data sets consisting of large amount
of quantitative information like sensor-based data as the method
is not well suited for this.

Steeneveld et al. (2010a) also follow strategy (B) and use Naive
Bayesian Network (NBN) to classify which of the alerted cows on
an AMS alert list need further investigation for CM. This is done
by calculating the probability of an alert being TP or TN based on
information from either one variable or combinations of variables.
The variables originate either solely from AMS, solely from addi-
tional cow-specific information, or from combining this informa-
tion. The AUC clearly shows that combining the two sources of
information perform the best. NBN is well suited for expressing
uncertainties, which will inevitable be a part of describing large
individual variation. Even though NBN is the simplest version of
Bayesian Classification models, assuming no correlation between
the included variables, more advanced Bayesian Networks have
been tested on the same data sets without improving the results
(Steeneveld et al., 2010a).

Interestingly enough when analyzing the impact of single vari-
ables, Steeneveld et al. (2010a) find that from the non-AMS cow
information (parity, days in milk, season of year, SCC history, CM
alert history) only days in milk were significantly different
between FP and TP alerts. On the opposite, high levels of SCC found
in the SCC history of the cow were evenly distributed among the
cows generating FP and TP alerts. Because the level of SCC is con-
sidered a very important indicator of CM (Steeneveld et al,
2008), and the SCC level measured by Steeneveld et al. (2010a)
was significantly different between TP and TN milkings, these find-
ings indicate that the alert list is based solely on SCC. This indica-
tion makes the ranking of alarms based on multiple cow-specific
parameters - not only on SCC - highly relevant. High levels of
SCC provide valuable information, but just generate too many FP,
perhaps even detecting both CM and subclinical CM when used
as single variable (Rasmussen and Bjerring, 2005; Steeneveld
et al., 2010a).

Steeneveld et al. (2010a) do not reach a satisfying accuracy
when discriminating between TP and FP alerts, but the number
of FP is reduced by 33%, and the use of NBN as a simple prioritizing
tool in livestock production herds warrants further consideration.
The capability of NBN to combine information through adding
prior probabilities for any relevant information, sensor-based or
not, enables the incorporation of managerial factors. These factors
could be changes in feed composition, treatments, and herd-
specific routines. Information on the herd-specific health status is
also relevant for evaluating if the conditions of interest is of higher
or lower prevalence than in average herds.

An important aspect in customizing an early warning system to
a specific herd or risk-attitude of a farmer is the farmer’s prefer-
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ences to the detection system. Mollenhorst et al. (2012) have asked
farmers what preferences they have to a CM detection system, and
the result is that a low number of false alerts and alerts given in
good time with emphasis on the more severe cases is the most
important feature. The adaptability to individual circumstances is
also important for the farmers according to the questionnaire by
Mollenhorst et al. (2012). The probabilities for any relevant infor-
mation can be combined with herd-specific thresholds according
to the priorities and risk attitude of the farmer (Steeneveld et al.,
2010a). A method like NBN shows this high degree of adaptation,
hence meeting the demands for customization, characteristic for
modern farmers with ambitions (Mollenhorst et al., 2012).

Prioritizing strategy (C) represents an alternative to perfor-
mance presented by the epidemiological terms of Se and Sp. This
alternative is to present the output of the detection model as a gra-
dient or a risk of a condition occurring. Se and Sp are designed for
binary outputs, which essentially does not conditions like CM, tail
biting, or lameness, which are gradually evolving, and in nature
more complex than binary (Friggens et al., 2007, 2010). Detection
models in livestock production are, however, traditionally based
on discrete measurements in time (Sherlock et al., 2008) which
simplify the picture of a complex condition. Presenting the alarms
in the form of a risk indicator (Nielsen et al., 2005; Friggens et al.,
2007; Hojsgaard and Friggens, 2010) or as a time gradient leading
up to the occurrence of a condition known to happen (Aparna et al.,
2014) has been seen. In addition to these output types, the poste-
rior probabilities for a condition to occur as calculated by NBN
could be a future approach worth focusing on. Strategy (C) is well
suited as a decision support tool because it provides detailed infor-
mation on the individual animal and at the same time allows the
farmer to evaluate the alarms personally and use both experience
and knowledge of the herd in combination with well substantiated
information from the detection model.

6.4. What is more important - priorities are dynamic

In this review, the overall perspective for evaluating the priori-
tizing detection models has been to reduce the number of false
alarms communicated to the farmer. Traditionally the models have
generated alarms indicating what animal to attend to, but other
motivations for prioritizing can be mentioned. Decision support
for which intervention to choose if multiple are possible, or which
alarms to attend to first if more monitoring systems are installed at
the same farm generating alarms at the same time are both rele-
vant. The optimal prioritization is not a static solution. It might
change on a weekly or even daily basis according to multiple fac-
tors, and different interests could generate different optimal prior-
itization outputs. Market prices or costs associated with an
intervention (man-hours, equipment, etc.) could be used as added
information parameters in a prioritizing model. Such a cost mini-
mizing approach would most likely generate a different output
than using animal health parameters or welfare parameters. From
the farmers perspective, it might be of high priority to optimize his
or hers life quality by generating more free time to spend with the
family or by increasing the social acceptance in society.

6.5. Research perspectives for early warning systems

The field of automatic monitoring and modeling is still rela-
tively young, and concurrently with the technological evolution,
future perspectives for developing decision-supporting tools for
ambitious livestock producers continue to be an extremely inter-
esting field of research and development. This review only includes
papers that present a concrete performance, but many studies are
exploring a range of topics, including lameness detection
(Rajkondawar et al., 2002, 2006; Pastell et al., 2008a,b; Pastell

and Madsen, 2008; XiangYu et al., 2008; Chapinal et al., 2009;
Nielsen et al, 2010; Tanida et al, 2011; Pluk et al, 2012;
Hoffmann et al., 2013; Van Nuffel et al., 2013; Pluym et al., 2013;
Abell et al., 2014; Hothersall et al.,, 2014; Mohling et al., 2014;
Wood et al., 2015), vision-based monitoring (White et al., 2004;
Porto et al., 2014; Leroy et al., 2008; Cangar et al., 2008; XiangYu
et al., 2008; Abdanan Mehdizadeh et al., 2015; Kristensen and
Cornou, 2011; Kashiha et al., 2013), methods for reducing animal
mortality (Beltran-Alcrudo et al.,, 2009; Bono et al., 2012, 2013,
2014), modeling of behavioral traits as welfare indicators
(Bressers et al., 1994; Turner et al.,, 2000; Moshou et al., 2001;
Madsen et al., 2005a; Madsen and Kristensen, 2005; Oliviero
et al., 2008; Ferrari et al., 2010; Junge et al., 2012; Cornou and
Kristensen, 2014a; Dutta et al., 2015), as well as the continuing
focus on detecting CM in dairy cows (Kamphuis et al., 2008a;
Claycomb et al., 2009; Lukas et al., 2009).

Sceptics might argue that further research in the development
of early warning systems is of little use since the criteria for imple-
mentation are so difficult to fulfill. But looking at the broader per-
spectives, automatic monitoring and early warning systems offer
an opportunity to observe the animals 24 h a day 7 days week
365 days a year, which is far more than what is human possible
in traditional livestock production. Early warning systems will
always be a decision support tool for the farmer, and not a
bullet-proof management manual. The farmer accepting a certain
amount of false alarms, or relating to a given risk indicator for a
condition occurring, is a realistic scenario after the implementation
of a sensor-based early warning system. The perspectives for
improving animal welfare through precision livestock farming
are distinct, although more research is needed before warning sys-
tems with sufficient accuracy are ready for implementation.

7. Conclusion

Three methods have been used for prioritizing sensor-based
alarms in livestock production. Two of these methods, Fuzzy logic
and Naive Bayesian Network, combine sensor data with non-
sensor data whereas the third method, Hidden phase-type Markov
model, generates a time gradient to the onset of farrowing - a con-
dition known to happen. The use of Fuzzy logic reduces the num-
ber of alarms considerably but the method is not well suited for
data consisting of large amounts of numerical values like sensor-
based data.

Naive Bayesian Network reduces the number of alarms by 57%,
and this method shows potential for further research in prioritizing
true and false alarms. Hidden phase-type Markov model generates
a continuous output which is an interesting alternative to the bin-
ary Se and Sp although the Hidden phase-type Markov model
might not be the right choice for modeling conditions with no -
or diffusely defined - phases or with varying probabilities of
occurrence.

For 20 years, no sensor-based detection model has fulfilled the
performance demands needed to generate a satisfyingly low level
of false positive alarms, and these demands seem close to unreach-
able with the few models actually obtaining high performances
being associated with high error rates. Instead of focusing on ful-
filling unreachable demands based on binary performance param-
eters for more complex conditions, future research could seek
alternative approaches for the output of detection models as for
instance the prior probability - or the risk of a condition occurring
or not. Alarms from detection models can be prioritized in order to
optimize production efficiency, production costs, work load and
animal health, and a future with automatic monitoring in livestock
production looks promising considering both the life quality of the
farmer and the welfare of the animals.
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6.1 INTRODUCTION

SPATIAL MODELING OF PIGS’ DRINKING PATTERNS AS AN
ALARM REDUCING METHOD
I. DEVELOPING A MULTIVARIATE DYNAMIC LINEAR MODEL

K. N. Dominiak, L.J. Pedersen and A. R. Kristensen

Abstract: The overall objective of both the present and a following paper is to investigate spatial
modeling of pigs’ water consumption as an alarm reducing strategy for a future detection system
in commercial pig production. In the present paper, the initial step is taken, and a spatial model
is developed. For that purpose, the water consumption from multiple pens in multiple sections are
monitored simultaneously by flow meters in both a commercial herd of finisher pigs (30-110 kg) and
a research facility herd of weaner pigs (7-30 kg). The diurnal drinking patterns are modeled by a
multivariate dynamic linear model (DLM), which is superpositioned by four sub-models describing
three harmonic waves and a growth trend. Seven model versions reflect a variety of correlation
structures between the monitored drinking patterns. The model versions were trained on learning
data of the two herds, and run on separate test data sets from the herds. Their ability to fit the
test data is measured as mean square error (MSE). Results for the finisher herd indicate correlation
in data from pens within the same section (MSE = 13.850). For the weaner herd, results indicate
an inverse relation between the degree of correlation and the model fit. Thus, the best fit (MSE =
1.446) is found for the model version expressing least correlation in data from pens across the herd.
However, the estimated variance components indicate overfitting of the learning data, and the model
fit may therefore not express the actual correlation. The present paper is the first part of two in
the development of a spatial detection system. The application of the model to test data, and the

evaluation of detection performance, is described in a subsequent article.

6.1 INTRODUCTION

The everyday focus in livestock production is to ensure a profitable production without compro-
mising animal welfare. Over the years, livestock production has been subjected to an increasing
industrialization, which has lead to larger, centralized production units with less time available for
attending the individual animal (Berckmans, 2014; Sorensen et al., 2010).

Sensor-based monitoring and early warning systems can aid the daily manager to identify indivi-
dual animals, or groups of animals, which need primary attention. Ideally the system can generate a
warning timely enough for the manager to decide for the right intervention and either prevent any wel-
fare reducing condition from occurring, or at least reduce its consequences (Kristensen et al., 2010).
Such early warning systems, or detection models, for livestock production have been developed for
the past twenty years (Dominiak and Kristensen, 2017), and they often aim to detect very specific

conditions in individual animals, as for instance Clinical Mastitis (CM) in cows (Cavero et al., 2006,
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2007; Huybrechts et al., 2014; Kamphuis et al., 2010; Mol et al., |1997, [1999), lameness (Garcia
et al., 2014} Hertem et al., [2013], 2014; Kamphuis et al., 2013} Kramer et al., 2009; Maertens et al.,
2011; Pastell and Kujala, [2007}; Viazzi et al., 2013) and oestrus (Bressers et al., [1995; Cornou and
Lundbye-Christensen, 2008; Freson et al.,|1998; Maatje et al., [1997; Mol and Ouweltjes, 2001; Mol
et al.,[1997; Ostersen et al., 2010). However, the prevalence of animals with such specific conditions
is usually low relative to the amount of animals not having them, and the consequence of this is that
the warning systems generate too many false alarms (Dominiak and Kristensen, [2017; Hogeveen
et al., 2010; Rasmussen, 2002).

For bio-security reasons, modern Danish pig production units for growing pigs are run very dis-
ciplined and systematically with a clear spatial separation between pigs of different age groups in
closed sections (Cameron, 2000; Danish Agriculture and Food Council, [2010). This separation re-
strain most diseases from spreading between sections in a herd and, to a certain extent, between pens
in a section (Cameron, 2000; Pedersen, 2012; Vils, 2013)).

From a modeling perspective, such a construction of the production unit makes it well suited for
the development of a spatial model. Hence, the herd can be modeled as a system consisting of
one large unit (the whole herd), which consists of a number of identical subunits (sections), with
each subunit consisting of a number of identical sub-subunits (pens). Such a spatial detection model
aims to identify specific high-risk areas within the herd, rather than target individual animals. Area-
specific alarms enables the manager to include any specific knowledge of the animals in the targeted

areas, and hereby choose the best suited intervention under the given circumstances.

The parameter used in the model must contain relevant information on all animals across the herd
in order to reflect the entire modeled system. Madsen et al. (2005) modeled the drinking pattern
of a whole section of weaner pigs, and found that changes in the pattern contained information on
the general wellbeing of the pigs as well as predictive value for detecting outbreaks of diarrhea.
Later Andersen et al. (2016) showed that changes in drinking patterns could indicate stress caused
by a variety of factors like stocking density and amount of rooting material supplied. These studies
indicate a high level of information in water data, and this is supported in a recent study, where
Jensen et al. (2017) found unexpected changes in the pigs’ water consumption to be the one single
parameter containing most information in the prediction of outbreaks of either diarrhea or fouling in

a pen with finisher pigs.

Previous modeling of water data from growing pigs has been done on individual pens (Andersen
et al.,2016; Jensen et al.,[2017}; Kashiha et al.,2013) or on the total water consumption in a section
(Madsen et al., [2005). By modeling pens or sections separately, each modeled unit is considered
isolated from other parts of the herd, whereas an incorporation of a herd-specific correlation between

pens in the same section and sections in the same herd, could reflect interaction across the herd.

The objective of this paper is to present a spatial approach for modeling the drinking pattern of
growing pigs throughout the entire growing period using a multivariate dynamic linear model. It is
our hypothesis that pens and sections in a herd of growing pigs are correlated, and that this correlation

can be modeled using model parameters defined at different spatial levels.
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Figure 6.1: Production cycle for Herd A (A) and Herd B (B).

6.2 HERDS, SENSORS AND DATA
6.2.1 Herd description

For this study, water consumption data was obtained from two different herds. Herd A is a Danish
commercial finisher herd, and Herd B is an experimental weaner herd, “Grgnhgj”’, owned by the

Danish Pig Research centre.

The general routines in Danish weaner and finisher production are structured so that the time of
insertions of pigs in the farm, and the length of the growth period run in a cycle (Figure[6.I). Such a
production cycle is a part of a larger production plan coordinated with the suppliers of the incoming
pigs and the abattoir, when regarding finishers, or buyers, when regarding weaners. All pigs in one
section are inserted at the same day, and they are all of same age relative to weaning date. When a
section is emptied, it is cleaned and dried out for bio-security reasons before a new batch of pigs are
inserted. For Herd A one growth period (30-110 kg) is approximately 14 weeks including one week
of cleaning (Figure[6.1](A)), and for Herd B one growth period (7-30 kg) is 8 weeks including four
days of cleaning (Figure[6.1|(B)).

Herd A produces 10.000 cross-bred finisher pigs per year, and the herd has five identical sections,
of which four are included in this study (Figure[6.2] (A)). Each section consists of 28 pens, and two
neighbouring pens share the same water pipe, which supplies one drinking nipple in each of the pens
(Figure [6.3). Approximately 486 pigs are inserted in a section with 18 pigs in each pen, and they are
fed with liquid feed three times a day (Krogsdahl, 2014b). From 60 kg bodyweight the pigs are fed
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Herd A
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Figure 6.2: Structure of Herd A and Herd B. Grey double pens in Herd A and grey pens in Herd B were
equipped with sensors and included in the study

restrictively as it is common practice with finisher pigs in order to increase the lean meat percentage
(Vils, 2012).

Herd B consists of four sections, each with 12 pens for weaner pigs (Figure [6.2] (B)). One water
pipe supplies one drinking bowl per pen (Figure [6.3). 15 pigs are inserted in each pen, and the
pigs are fed ad libitum with dry feed three times a day during the whole growth period (Krogsdahl,
2014a).

The main characteristics of the two herds are summarized in Table [6.1]

6.2.2 Data

Water data was obtained by photo-electric flow sensors (RS V8189 15mm Diameter Pipe) mea-
suring water flow per millisecond as pulses proportional to the velocity of the water (Anonymous,
2000). The sensors were calibrated between batches, and the number of pulses entered a central data
base once every 24 hours. For this study the number of pulses were converted to litres and aggregated

per hour, yielding water use in litres per hour.



6.2 HERDS, SENSORS AND DATA

Figure 6.3: One water pipe supplying two neighbouring pens in Herd A (left) and a single pen in Herd B

(right)

Table 6.1: Characteristics for the two herds in the study (14 for section K11)

Characteristic

Herd A

Herd B

Production type

Animal group

Sections

Sensors total/ per section
Pigs per pen/ per sensor
Growth period (batch)
Batches per sensor
Learning data (hours)

Test data (hours)

Commercial
Finishers (30-110 kg)
4

8/2

18/36

14 weeks

7

9540

4441

Research Farm
Weaners (7-30 kg)
4

16/4

15/15

8 weeks

131

14657

3025

114 for section 4.

77



78

PAPER II

In Herd A a total of eight sensors were installed with two sensors placed in each of four identical
sections (Figure [6.2](A)). All sensors were placed on water pipes supplying two neighbouring pens,
and therefore each sensor monitored the joint water use of pigs in two pens. Both sections and pens
were randomly chosen, and seven batches were monitored per section from May 2014 to March 2016.

In this study a batch of pigs is defined as all pigs inserted in the same section at the same day.

The full data set for Herd A consists of eight time series, one per sensor, of length from the first
observation in the herd to the last observation in the herd. In total 16309 hours. Every observation
from each sensor is paired with the insertion date of the relevant batch of pigs at any given time. The
data set for Herd A was divided into a learning data set, which consists of the first four batches (9540
hours, 68%) and a test data set, which consists of the two last batches (4441 hours, 32%) (Table[6.T).
A total period of 2328 hours (one batch per pen) was left out between the two subsets to exclude the

possibility of observations from the same pigs occurring in both data subsets.

In Herd B a total of sixteen sensors were installed with four sensors in each of four identical
sections (Figure [6.2] (B)). Each sensor monitored the water use of one individual pen. The sections
included in this study were assigned by the research centre, whereas the pens within each section
were randomly chosen. 13 batches (Sections 1, 2, and 3) and 14 batches (Section 4) were included,

and data was collected from October 2014 to December 2016.

The full data set for Herd B consists of sixteen time series, one per sensor. The monitoring period
begins with the first global observation and ends with the final global observation. In total 18755
hours. As in the data set for Herd A, every observation is paired with the insertion date of the
relevant batch. The data set for Herd B was divided into a learning data set of the first ten batches
(14657 hours, 83%) and a test data set of the two last batches (3025 hours, 17 %) (Table [6.1). A
period of 1073 hours (one batch) was left out between the two data subsets to ensure no observations

from the same pigs would occur in both subsets.

During cleaning periods between batches, no sensor observations were made. Such periods were
considered planned periods of missing data as opposite to any occasional missing observations or

sensor outages during the growth periods.

As only actual water flow is measured, it is not possible to distinguish periods with no water
consumption from (short) sensor outages. Since water consumption is typically very low during
the night, it was decided to interpret missing observations of a duration of less than 5 hours between
10:00 PM and 4:00 AM as zero observations. All other missing observations are considered as sensor

outages.

6.3 MODEL DESCRIPTION

In this section the structure of the developed model is described. The model is developed as a

general tool, which in theory can be applied to any herd with either weaner pigs or finisher pigs.



6.3 MODEL DESCRIPTION

6.3.1 General Dynamic Linear Model

The water consumption over time is modeled simultaneously for all sensors in the herd. The
observation vector Yy = (Y7¢,..., Ynt)' is the water consumed within the last hour at time t for
each of the n sensors. It is modeled by the matrix quadruple F¢, G¢, V¢, and Wy, where, following

the description by West and Harrison (1999):

* F, is a known (n X r) design matrix;
* Gy is a known (n X n) system matrix;
* V; is a known (r X r) observation variance-covariance matrix;

* W, is a known (n X n) system variance-covariance matrix.

The four matrices, F¢, G, V¢, and Wy, define the way Y. relates to an underlying parameter

vector 0 at time t, and how the system evolves over time in the two equations:
OBSERVATION EQUATION
Ye =Fi0c+ve, vi~N(0,Vy), (10)

and

SYSTEM EQUATION
0t = G071 +wy, wi~N(0,W,). (11)

The aim of the DLM is to estimate the parameter vectors 01, ..., 0¢ from the observations Y7, ..., Yy

by sequential use of the Kalman filter. Let Dy denote the initial information before any observati-
ons are made so that (6g|Dg) ~ N(mg, Co). Furthermore, let Dy_7 = Do U{Y7,...,Yi_1} de-
note all available information before time t so that (6¢_1/D¢_1) ~ N(m¢_1,C¢_1). When a new
observation Y; becomes available, the Kalman filter will update the conditional distribution from
N(m¢_1,Cn_1) to N(my, Cy,) as described by West and Harrison (ibid.).

6.3.2 Model construction

When looking at Figures (6.4) and (6.5)) it can be seen that the water consumption of growing pigs
has a clear diurnal pattern. Furthermore, Figure (6.6) illustrates how the underlying level of water
consumed per day increases over time, implying that the underlying level of daily water consumption
increases as the pigs grow.

Madsen et al. (2005) found that the drinking pattern of a whole section of 405 weaner pigs could

be described in a DLM composed of four smaller DL.Ms, describing three harmonic waves of lengths
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Figure 6.6: Drinking pattern of one week (black line) where the underlying level increases over time (purple
line).

24h, 12h, and 8h, and a growth trend. The same four sub models describe the diurnal drinking pattern
of a pen of weaners or finishers very good as well, as illustrated in Figure (6.7)), and the development

of the full multivariate model will be described in the following subsections.

Cyclic models

The diurnal drinking pattern is modeled by three cyclic models, each describing a harmonic wave.
Harmonic waves can be expressed in a DLM using trigonometric functions in the Fourier form repre-
sentation of seasonality (Madsen et al., 2005; West and Harrison, [1999), where each wave takes up
two parameters, representing the phase and amplitude of the cosine waveform. According to West
and Harrison (1999), the harmonic waves can be described with the design matrix FI* and system

matrix GI' defined as:

F{‘ _ ( 1 ) and G]Q _ ( cos(w)  sin(w) ) (12)
0 —sin(w) cos(w)

with w = 27t/24 yielding a wave with a period of 24 (My1), w = 27t/12 a wave with a period of
12 (Myy2), and w = 27/8 a wave with a period of 8 (My3).

Linear growth model

The underlying level of water consumption can be described by a linear function, and the increase
over time is included by combining the linear function with a growing trend in a linear growth model,
modeling the increase from time t — 1 to t.

The general description of a dynamic linear growth model, as based on West and Harrison (ibid.)),

is characterized by the following design and system matrices:

F! 1 d G! T (13)
= an = .
t 0 01

The parameter vector O¢ consists of a level parameter 81y and a growth parameter 68,. Thus, the

expected level at time, 01, will be the sum of the level at time t — 1 and the growth parameter.

81



82

PAPER II

Pen 2.5 2015-07-30 to 2015-08-05

8 -
ol H1
$ o
Q -
g - L
’ ( "
O - -
1 I I |} 1 1 1
: § B S S M T w
Pen 2.5 2015-07-30 to 2015-08-05
S 4
v H2 AAA )/\Jk\/\
= ol
5 °
el Mo M i
v /\’ ~ "[\ \ e
| | 1 I 1 1 1
T - S S M T w
Pen 2.5 2015-07-30 to 2015-08-05
&
5 H3
& o
E -
)
s v -
O - / ' /j J V 4 A ‘ =
I 1 | 1 | I
T B S S M T W
Pen 2.5 2015-07-30 to 2015-08-05
Q o
o |SUM
S o
9 A and
S -
[«
I I I 1 1 1 1
T = S S M T w

Figure 6.7: The diurnal drinking pattern (black line) is shown together with the three harmonic waves; 24 h
(H1), 12 h (H2), and 8 h (H3). The sum of the three harmonic waves and the underlying level (which is not

depicted) is shown in (SUM).



6.3 MODEL DESCRIPTION

6.3.3 Full model - univariate

For a single sensor, the univariate model consisting of four sub models; one linear growth model

M1 g and the three cyclic models M7, M2 and M3, is characterized by the design matrix

/
Fe=(10101010) (14)
and the system matrix
1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 cos(w) sin(w) 0 0 0 0
G — 0 0 —sin(w) cos(w) 0 0 0 0 (15)
00 0 0 cos(2w) sin(2w) 0 0
00 0 0 —sin(2w) cos(2w) 0 0
0 0 0 0 0 0 cos(3w) sin(3w)
00 0 0 0 0 —sin(3w) cos(3w)

where w = 27/24.

The observation variance-covariance matrix reduces in the univariate case to a scalar, V{*, whereas
the size of the system variance-covariance matrix, Wt', is of size 8 x 8. The parameter vector 6 has

eight elements; one for level, one for growth, and two for each of the three harmonics.

Full model - multivariate

The simplest possible multivariate model for n sensors would be to define a system matrix G of
size 8n x 8n as a block diagonal matrix where each of the n blocks along the diagonal is identical to
G} from Eq. (I5). Similarly, the observation variance-covariance matrix would be a diagonal matrix
having all diagonal elements equal to V{*. The system variance-covariance matrix would be a block
diagonal matrix where each block along the diagonal would be equal to W}'. Finally, the design
matrix Fy would be a 8n x n matrix with n blocks each equal to Fi*. The underlying assumption

behind such a model would be that the observations from the n sensors were completely independent.

A multivariate model as described would, however, not add anything to a scenario with n univa-
riate models running separately in parallel. Therefore, the model has to be modified to allow for
interactions between sensors. This can, basically, be achieved by direct modeling of the interactions
in the design and system matrices and/or by estimating full variance-covariance matrices V¢ and Wy

allowing for correlations between sensors (as opposed to block diagonal matrices).

In this study both approaches will be used. The interactions bet