
Optimization Methods in a Stochastic

Production Environment

2016-10

Reza Pourmoayed 

PhD Dissertation

DEPARTMENT OF ECONOMICS AND BUSINESS ECONOMICS

AARHUS BSS � AARHUS UNIVERSITY � DENMARK



OPTIMIZATION METHODS IN A

STOCHASTIC PRODUCTION ENVIRONMENT

PhD dissertation

Reza Pourmoayed

Aarhus BSS, Aarhus University

Department of Economics and Business Economics

2016





Preface

This dissertation is the result of my PhD studies at Department of Economics and Business

Economics, Aarhus University, during the period March 2013 to March 2016. My PhD project is

a part of the PigIT project funded by the Danish Council for Strategic Research.

I have always been interested in working with real-world problems and I am very grateful

that I could focus my PhD studies on a practical problem related to livestock production. Now

that my PhD studies are coming to an end, I have a very good feeling and I think my knowledge

has been improved in theoretical aspects as well as computer programming.

This PhD dissertation is the result of academic work on three research projects, each presented

as an independent research paper in the dissertation. The first paper has already been published,

the second paper has been submitted to a peer-reviewed operations research journal, and the last

paper is in the final stage for submission to a peer-reviewed journal.
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Summary

This dissertation with an interdisciplinary approach applies techniques from Operations Research

and Statistics in order to develop models that support decisions regarding feeding and marketing

of growing/finishing pigs. Stochastic dynamic programming is used as the main optimization

tool to model decisions, and state space models are used as the primary statistical technique to

describe the stochastic nature of the system. Based on data streams from online farm sensors and

market prices, the state space model transforms data into information which is embedded into

the decision models using Bayesian updating.

In the production of finishing pigs, feeding is an important operation and has a direct influence

on the cost and the quality of the meat. Another important operation is the timing of marketing.

It refers to a sequence of culling decisions until the production unit is empty. As a result, the

profit of the production unit is highly dependent on the feeding cost and on good timing of

marketing, i.e. decisions about feeding and marketing have a high impact on the profitability.

Hence, it is relevant to consider decision models that optimize feeding and marketing decisions.

This dissertation focuses specifically on three challenges. 1) Marketing and feeding decisions

could be optimized simultaneously. 2) Fluctuations in the pork, feed, and piglet prices may have

an impact on the optimal marketing policy. 3) Cross-level constraints implied by considering

decisions at different levels such as animal, pen, section, and herd may affect the marketing

policy.

Besides an introduction, this dissertation consists of three papers. In the first paper, feeding

and marketing decisions are taken into account simultaneously. Since the choice of feed-mix

affects the pigs’ growth, a specific feeding strategy has an impact on the marketing policy.

That is, economic optimization of feeding and marketing decisions is interrelated and requires

simultaneous analysis. It is therefore relevant to combine these decisions in the same model. In

the second paper, marketing decisions are considered under fluctuating pork, feed, and piglet
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prices. Since the reward of marketing a pig depends on the pork, piglet, and feed prices, weekly

fluctuations in these prices may have an impact on the farmer’s decision on when to market the

pigs and buy new piglets or feed stock for the farm. Hence, it is relevant to model stochastic

market prices instead of assuming deterministic prices in the model. Finally, in the third paper,

marketing decisions are considered at different levels simultaneously. The paper considers the

challenge of integrating decisions at animal, pen, section, and herd level. That is, decisions at

one level (e.g. animal or pen) may influence decisions at other levels (e.g. section or herd). An

example could be that delivery to the abattoir must be coordinated with marketing at pen level

and termination of a whole section at section level.



Resumé

Denne afhandling har en tværfaglig tilgang og anvender teori fra både operationsanalyse og

statistik til at udvikle modeller, der understøtter beslutninger vedrørende fodring og levering af

slagtesvin. Stokastisk dynamisk programmering anvendes som hovedoptimeringsværktøj til at

finde optimale beslutninger, og state space modeller anvendes som det primære statistiske værktøj

til at beskrive systemets stokastiske karakter. På basis af data fra online sensorer i bedriften og

markedspriser, bruges de statistiske modeller til at omdanne data til relevant information, som

inkorporeres i beslutningsmodellerne vha. Bayesiansk opdatering.

I produktionen af slagtesvin er fodring et vigtigt element, der har direkte indflydelse på pro-

duktionsomkostningerne og kødets kvalitet. Et andet vigtigt element er timingen af leveringer til

slagteriet, dvs. vi må tage en række beslutninger om levering af de enkelte svin indtil produk-

tionsenheden er tom. Som følge heraf er produktionsenhedens overskud i høj grad afhængig af

omkostningerne til fodring og timingen af leveringer. Det er således vigtigt at betragte beslut-

ningsmodeller, der optimerer beslutninger vedrørende fodring og levering. Denne afhandling

koncentrerer sig om tre udfordringer: 1) at beslutninger vedr. levering og fodring i nogle tilfælde

bør optimeres simultant; 2) at variationer i priserne for svinekød, foder og smågrise kan have ind-

flydelse på den optimale leveringspolitik; og 3) at begrænsninger på tværs af forskellige niveauer,

såsom dyr, sti, sektion og besætning, kan have indflydelse på leveringspolitikken.

Afhandlingen består af en introduktion samt tre selvstændige artikler. I den første artikel

betragtes beslutninger vedrørende fodring og levering simultant. Eftersom valg af foderblanding

har betydning for dyrenes vækst, så har en specifik fodringsstrategi også indflydelse på lever-

ingsstrategien. Vi skal altså optimere beslutninger vedrørende fodring og levering simultant i

den samme model. I den anden artikel ses der på leveringsstrategier under varierende priser på

svinekød, foder og smågrise. Eftersom overskuddet afhænger af priserne på svinekød, smågrise

og foder, kan ugentlige variationer i priserne have betydning for, hvornår grisene skal leveres,
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og hvornår der skal indkøbes nye smågrise eller foder. Det er således relevant, at modellere

stokastiske markedspriser i stedet for at forudsætte deterministiske priser i modellen. Afhan-

dlingens tredje artikel omhandler leveringsstrategier givet begrænsninger på tværs af forskellige

niveauer, såsom dyr, sti, sektion og besætning. Beslutninger på ét niveau skal tages under disse

begrænsninger. For eksempel skal levering til slagteriet betragtes givet en kapacitet af lastbilerne,

og den begrænsning, at nye smågrise kun kan indsættes når en sektion er tom og rengjort.



Chapter 1

Introduction



2 Introduction

This PhD dissertation considers optimization algorithms and statistical forecasting that sup-

port sequential marketing and feeding decisions in the production of growing/finishing pigs. More

precisely, stochastic optimization models and statistical learning algorithms are applied to utilize

information streams such as online information from farm data and market prices and make them

an integral part of the decision process. As a result, this dissertation considers interdisciplinary

research and uses techniques from both Operations Research and Statistics.

The dissertation is the outcome of a sub-project within the project PigIT1 funded by the

Danish Council for Strategic Research. PigIT focuses on integrating information and communi-

cation technology in the production process of growing/finishing pigs through statistical models

for automatic monitoring and operations research methods for decision support systems. The

objective of PigIT is to contribute significantly to the competitiveness of the Danish slaughter pig

industry while still ensuring a satisfactory level of animal welfare. This dissertation focuses on

developing decision models at farm level and the main scope is limited to marketing and feeding

decisions of growing/finishing pigs in finisher production units.

The remainder of the introduction starts by giving an overview over finisher pig production

with a focus on marketing and feeding decisions. Next, the main modeling techniques used in

the dissertation are briefly discussed to familiarize the reader with the methodologies used in this

dissertation. Finally, the structure and contributions of the dissertation are described.

1.1 Marketing and feeding decisions in finisher pig

production

In Denmark approximately 30 million piglets are produced in every year. A significant number

of these piglets are exported to other countries (around 11 mill) and the rest of them (approx.

19 million) are sent to fattening units in Denmark. The number of pig farms in Denmark are

approximately 3600 where 50% are finishing farms, 30% are integrated farms (both sow and

finishing pigs), and the remaining 20% are sow farms (Danish Agriculture and Food Council,

2015). Pork constitutes about 5% of the Danish export representing a profit of about 30 billion

DKK per year (Landbrug & Fødevarer, 2015).

The different production processes within pig production can be classified as mating, gesta-

tion, farrowing, weaning, and finishing (Christensen, 2010). This PhD dissertation focuses on

1http://pigit.net

http://pigit.net
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operational decisions in the production of finishing pigs, i.e. from inserting the piglets (with a

weight of approx. 30 kg) into the finishing unit until marketing/culling the pigs for slaughter (with

a weight of approx. 100-110 kg). In the finishing unit, animals are grouped at different levels:

herd, section, pen, and animal. Herd is a group of sections, a section includes some pens, and a

finisher pen involves some animals (usually 15-20). One of the important challenges in relation

to decision support models in finishing units is how to integrate decisions at animal, pen, section,

and herd level. That is, decisions at one level (e.g. animal or pen) may influence decisions at

other levels (e.g. section or herd).

During the growth period, decisions should be taken such that the profit is maximized under

a set of constraints such as transportation, weaner supply policy, welfare, disease strategy, and

housing conditions. Two main factors affecting the profitability of the production process are

feeding and marketing (Pourmoayed and Nielsen, 2014). The cost of feeding has a high impact

on the production cost of a finisher pig and the reward of marketing a pig depends on the pork

price of the carcass weight of the pig. The pork price per kg carcass weight is a piecewise linear

function which is highest if the carcass weight lies in a specific interval. Hence, the farmer must

find the best time to market the pigs for slaughter. Moreover, the farmer should choose the best

feed-mix giving the optimum growth of the pigs at the lowest cost. As a result, feeding and

marketing decisions are important in the production of finishing pigs.

Marketing of pigs refers to a sequence of culling decisions until the production unit is

empty. In general pigs grow with different growth rates and obtain their slaughter weight at

different times. Therefore, during the last weeks of the growing period, the decision maker should

determine which pigs should be selected for slaughter (individual marketing decision). Next,

after a sequence of individual marketings, the decision maker should decide when to terminate

the whole section/pen, i.e. all the remaining pigs are sent to the abattoir (termination decision).

The feeding strategy of the pigs affects the growth of the pigs and hence the marketing time.

Furthermore, a feed-mix resulting in a faster growth generally costs more compared to a feed-mix

with a lower growth. Phase feeding is a common method used in the production of growing pigs.

The whole growing period typically includes 3 or 4 phases and each phase (period) involves

a predefined feed-mix which is a mixture of different ingredients (barley, soy, maize, etc). A

relevant decision is when to change the current feed-mix and what type of feed-mix to use in the

next phase (feeding decision). Since the choice of feed-mix affects the pigs’ growth, a specific

feeding strategy has an impact on the marketing strategy. That is, the economic optimization of

feeding and marketing decisions is interrelated and requires a simultaneous analysis.
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Remark that, there is a high degree of stochasticity in the production of finisher pigs. Animals

in general do not grow at the same growth rate and hence there will be a high degree of uncertainty

about the weight of the pigs during the growing period. Moreover, the reward of marketing a pig

depends on the pork price of the carcass weight, the cost of buying the piglet on the market, i.e.

the piglet price, and the cost of feeding which is dependent on the feed price at the time when the

feed stock is bought. Weekly fluctuations in pork, feed, and piglet prices may impact farmer’s

decision on when to market the pigs and buy new feed stock for the farm. Hence, it is relevant to

take into account stochastic elements such as growth and market price fluctuations in modeling

feeding and marketing decisions.

1.2 Modeling techniques

This dissertation considers stochastic models from both Operations Research and Statistics.

Stochastic dynamic programming and statistical learning algorithms based on Bayesian updating

are the main tools used to model feeding and marketing decisions and to describe the stochastic

nature of the system. More precisely, state space models (SSMs) are used as the main statistical

tool for modeling weight, growth and market prices. Time-series of data retrieved from online

monitoring (using e.g. sensor data or image processing) are transformed into information about

weight and growth using Bayesian updating. Similarly, uncertainty about pork, feed, and piglet

market prices can be described using SSMs to help the farmer in forecasting future prices.

In order to optimize marketing and feeding decisions at pen level, Hierarchical Markov

decision processes are used for optimization and the uncertainty of weight and price information

are embedded into the models using SSMs. Due to the importance of cross-level constraints (e.g.

termination at section level and transportation at herd level), it is relevant to consider marketing

decisions at herd level. However, when decisions are modeled at herd level, the size of the model

increases dramatically and we cannot use regular techniques to find optimal marketing policies.

That is, the curse of dimensionality becomes apparent due to the high number of states, actions

and possible values of random information. Hence approximate dynamic programming is applied

to optimize marketing decisions.

Below, a brief introduction to the different models is given. Part of the notation is taken from

Pourmoayed et al. (2016) (Paper I) and in general it is kept as close as possible to the notation

used in the other papers presented in this thesis.
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1.2.1 Hierarchical Markov models

In order to have a frame of reference, first a finite time-horizon semi-Markov decision process

(see e.g. Tijms, 2003, Chap. 7) is described and then an introduction to hierarchical Markov

decision processes is given.

Finite time-horizon semi-Markov decision processes

A finite-horizon semi-Markov decision process (semi-MDP) models a sequential decision problem

over N stages. At a (random) point in time (the start of a stage), the state of the system is

observed and an action is chosen. The choice of action at the current state produces two results:

an immediate reward is received, and the system evolves probabilistically to a new state at a

subsequent (random) point in time.

Let In denote the finite set of system states at stage n. Given state i ∈ In is observed, then an

action a from the finite set of allowable actions An(i) must be chosen, generating reward rn(i,a).

Moreover, let un(i,a) denote the stage length, i.e. the expected time until next decision epoch

(n+ 1) given action a and state i. Finally, let Pr( j | n, i,a) denote the transition probability of

obtaining state j ∈ In+1 at stage n+1 given that action a is chosen in state i at stage n.

A policy R is a decision rule/function that assigns for each stage n = 1, . . . ,N−1 and state

i ∈ In an action R(i) ∈ An(i), i.e. a policy prescribes which action to take whenever the system

is observed in state i at stage n. Note that no action is taken at stage N. Instead the terminating

reward at this point of time is a function of the state i ∈ IN denoted by rN(i).

Given a policy and terminating rewards, the expected reward until termination when we start

in state i at stage n can be found using the recursive equations:

ν
R
n (i) =

rN(i), n = N,

rn(i,R(i))+∑ j∈In+1 Pr( j | i,n,R(i))vR
n+1( j), n = 1, . . . ,N−1.

(1.1)

Given an initial distribution Pr0(·) of the states at stage 1 and expected initial reward r0, the total

expected reward of the semi-MDP can be calculated as

ν(R) = r0 + ∑
i∈I1

Pr0(i)vR
1 (i). (1.2)

Equations similar to (1.1) and (1.2) can be formulated to calculate the expected time until termi-

nation (when we start in state i at stage n) and the total expected time of the process, respectively.
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1 2 3 4 5 N = 6

i j1

j2

a1

a2

Figure 1.1: A semi-MDP with time-horizon N = 6 illustrated using a state-expanded hypergraph.
At stage n each node corresponds to a state in In. The hyperarcs correspond to actions, e.g. if the
system at stage 3 is in state i, then there are two possible actions. Action a1 (solid line) results in
a transition to either state j1 or j2 with a given probability.

A semi-MDP can be illustrated using a state-expanded hypergraph (Nielsen and Kristensen,

2006). An example is given in Figure 1.1 that illustrates a semi-MDP with time-horizon N = 6.

At stage n each node corresponds to a state in In. For example, there are 2 states at stage 1 and

four states at stage 3. Each hyperarc corresponds to an action, e.g. if the system at stage n = 3

is in state i, then there are two possible actions. Action a1 (solid line) results in a transition to

either state j1 or j2 with a probability Pr( j1 | i,a1,n) and Pr( j2 | i,a1,n), respectively. Action

a2 (dashed line) is a deterministic action with a transition from i to j2. A policy corresponds to

choosing a single hyperarc/action out of each node/state. Note that given a policy, the expected

reward until termination can be found by assigning rewards and transition probabilities to all

hyperarcs, terminating rewards to the nodes at stage 6, and then calculating (1.1) in the opposite

direction of the hyperarcs.

Hierarchical Markov decision processes

A hierarchical Markov decision process (HMDP) is an extension of a semi-MDP where a series

of finite-horizon semi-MDPs are combined into one infinite time-horizon process at the founder

level called the founder process (Kristensen, 1988; Kristensen and Jørgensen, 2000). The idea is

to expand stages of a process to so-called child processes, which again may expand stages further

to new child processes leading to multiple levels. At the lowest level (Level 2 in Figure 1.2) the

HMDP consists of a set of semi-MDPs.

Consider Figure 1.2 which illustrates a stage of a three-level HMDP. At the first level, a single

founder process ρ0 is defined. Index 0 indicates that the process has no ancestral processes. We
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Figure 1.2: An illustration of a stage in an HMDP (Pourmoayed et al., 2016). At the founder
level (Level 0) we have a single infinite-horizon founder process ρ0. A child process, such as ρ1

at Level 1 (oval box), is uniquely defined by a given stage, state (node), and action (hyperarc)
of its parent process and linked with the parent process using its initial probability distribution
(solid lines) and its terminating actions (dashed lines). Each process at level 2 is a semi-MDP
(see Figure 1.1 for zoom).

assume that ρ0 is running over an infinite number of stages and that all stages have identical state

and action spaces and hence just a single stage is illustrated in Figure 1.2. Moreover, we may

skip the argument referring to stage number when we define rewards, stage length, etc. of the

founder process.

Let ρ l+1 denote a child process at level l +1, ρ l+1 is uniquely defined by a given stage nl ,

state il and action al of its parent process ρ l . For instance, the semi-MDP ρ2 in Figure 1.2 is

defined at stage n1 = 2, state i1 and action a1 of the process ρ1 symbolized by the notation

ρ2 = (ρ1 ‖ (n1, i1,a1)). Each process is connected to its parent and child processes using jump

actions which can be divided into two groups, namely, a child jump action that represents an initial

probability distribution of transitions to a child process or a parent jump action that represents

a terminating probability distribution of transitions to a parent process. This is illustrated in

Figure 1.2 for process ρ1 where child jump action a1 represents a transition to the child process

ρ2 with initial probabilities Pr
(
· | n1, i1,a1) and immediate expected reward rn1(i1,a1). The

expected length of the transition is un1(i1,a1) representing the expected time from the decision

is taken until the child process starts. Moreover, parent jump action a2 represents termination of
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the process ρ2, with terminating probabilities Pr
(
· | N2, i2,a2) and expected reward rN2(i2,a2),

and a transition (of length uN2(i2,a2)) back to the next stage of its parent process ρ1. The same

holds for process ρ1 = (ρ0 ‖ (n0, i0,a0)) defined for triple (n0, i0,a0) with child jump action

a0. Moreover, note that a stage of process ρ1 now is defined using its child process. Given the

comments above and Figure 1.2, some observations can be made:

1) Jump actions are like traditional actions associated with an expected reward, action length

and a set of transition probabilities.

2) A policy R is a decision rule that assigns to each state in a process a (jump) action which

means that choosing a policy corresponds to choosing a single hyperarc out of each node

in Figure 1.2.

3) Given a policy R and a semi-MDP, e.g. ρ2 at the lowest level, the terminal reward of a state

i2 at stage N2 equals the expected reward rN2(i2,a2) of the chosen parent jump action a2

given R. Hence, we can calculate the expected reward until termination of process ρ2 using

recursive equations (1.1) and, the total expected reward of the process can be found using

the initial reward rn1(i1,a1) and distribution Pr
(
· | n1, i1,a1) of child jump action a1 and

equation (1.2).

4) The reward at a stage of a parent process equals the total expected rewards of the corre-

sponding child process under the policy chosen. For instance, the reward of choosing action

a1 in state i1 at stage 2 in process ρ1 equals the total expected reward (1.2) of process ρ2. In

fact, for the founder process ρ0 the reward at stage n0 of a given action a0 can be calculated

by assigning zero terminal rewards to the states/nodes at stage n0 +1 and calculating the

expected reward of each state/node by processing the nodes in the opposite direction of the

actions/hyperarcs in Figure 1.2.

5) The above arguments can also be used to calculate the transition probabilities and the stage

length of an action at a stage of a parent process.

Let ZR(t) denote the total reward received up to time t of the founder process ρ0 under policy

R, and suppose the optimality criterion is to maximize the expected reward per time unit

z(R) = lim
t→∞

E(ZR(t))
t

. (1.3)

We assume that the Markov chain associated with ρ0 under policy R has no two closed disjoint

sets and hence z(R) will be independent of the starting state of process ρ0 (Tijms, 2003, Sec. 6.1).
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Other criteria, such as total expected discounted reward, can easily be used instead of z(R). The

optimal policy maximizing (1.3) can be found using modified policy iteration. Given the current

policy, the total expected reward per time unit z and the relative values vi can be computed as the

unique solution to the set of linear equations

vi =

r(i,R(i))− zu(i,R(i))+∑ j∈I0 Pr( j | i,R(i))v j, i ∈ I0 \{s}

0, i = s,
(1.4)

where s is an arbitrary chosen state and I0 denote the set of states at the founder level. For an

HMDP the rewards r(i,R(i)), transition probabilities Pr( j | i,R(i)), and stage length u(i,R(i))

at the founder process are not given explicitly. However, they can be calculated as observed

above. As a result, the optimal policy of the HMDP (i.e. the founder process) can be found

using a modified policy iteration algorithm which updates the current policy based on the relative

values vi using a value iteration approach (see observations above), and afterwards solving the

equations in (1.4) given the new updated policy. These steps are repeated until the policy cannot

be improved.

Since the number of states at the founder level is generally lower compared to modeling the

problem as a semi-MDP, larger models can be solved because we do not have to solve such a

large system of equations as if used policy iteration on the semi-MDP. For more details about the

optimization technique, the interested reader can refer to Kristensen and Jørgensen (2000).

1.2.2 Approximate dynamic programming

Approximate dynamic programming (ADP) is a solution procedure for solving large Markov

decision models. That is, ADP is used as a solution procedure to find an approximate optimal

policy of a Markov decision process (MDP) with large state and action spaces (an MDP is a

semi-MDP with equal stage lengths).

Consider an infinite-horizon MDP under the discounted reward criterion with stationary state

and action spaces (see e.g. Puterman, 2005, Chap. 6). Here the maximum expected discounted

reward can be found using the value function ν(i) satisfying the following optimality equations

(Puterman, 2005, Sec. 6.2)

ν(i) = max
a∈A(i)

( r(i,a)+ γE(ν( j)) ), ∀i ∈ I, (1.5)

where γ is the discount factor, and the next random state j is obtained using the probabilistic

transition function φ(i,a,ω) given action a ∈ A(i) and random information ω received between
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the current and next decision epoch. In order to find optimal actions, the optimality equations

in (1.5) should be solved for all states i ∈ I. However, the calculation of the value function ν(i)

for all states may not always be easy. First, the size of the state and action space I and A(i) may

be too large, i.e. computation of ν(i) for every possible state is impossible. Second, due to the

large number of states and possible outcomes of random information ω, an exact computation of

the expected value in (1.5) may be prohibitive. Finally, due to the expected value operator, the

maximization problem in (1.5) is not deterministic and hence it may be difficult to be solved.

These computational challenges are known as the three curses of dimensionality (Powell, 2007,

Section 4.1) and prevent us from applying regular solution procedures of MDPs (e.g. value

iteration) to solve the model.

ADP is an efficient method to deal with these computational problems and to find an ap-

proximate solution instead. The main idea is to approximate the value function ν(i) using a

parametric function and use simulation to find the states that are most likely observed in the

system. Based on the current estimation of the value function, a deterministic version of (1.5) is

solved using e.g. linear or integer programming. This procedure is repeated until the parameters

of the approximated value function are converged to a fixed set of values. For more details about

ADP algorithms, the interested reader may refer to Powell (2007).

1.2.3 State space models

In animal production, time-series of data from online monitoring are often available. Online

monitoring is a relevant method to obtain data for tracking changes and can be done regularly by

sensors placed in the production unit.

A state space model (SSM) is a statistical model which may be used to transform large datasets

obtained using online sensors into information about the production (West and Harrison, 1997).

An SSM consists of a set of latent variables and a set of observed variables. At a specified point

in time, the conditional distribution of the observed variables is a function of the latent variables

specified via the observation equations. The latent variables change over time as described via

the system equations. The observations are conditionally independent given the latent variables.

Thus the value of the latent variables at a time point may be considered as the state of the system,

and the SSM framework makes it possible to predict the latent variables/state of the system via

the observed variables, both the current state and the future development in the state variables. In

an SSM, when normality and linearity conditions of variables and equations are valid, Bayesian
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updating can be used to update the posterior distribution of the latent variables. That is, we use

the Kalman filter to update our forecast when new data arrives (West and Harrison, 1997, page

103). Examples of SSMs applied to agricultural problems can be found in Cornou et al. (2008)

and Bono et al. (2012, 2013).

In this dissertation, SSMs are applied to time-series of weight and feed intake data from the

herd and market prices to describe the uncertainty of weight and price information in the models.

These SSMs are categorized into different groups based on the dynamic nature of the considered

system and the probability distribution assumed for the initial data. More precisely, two kinds

of SSMs are considered and later embedded into the (H)MDPs. In the first type, the probability

distribution of the observations, related to the weight and price data, is Gaussian and in the second

type, these observations come from a non-Gaussian distribution. In both models, the dynamics of

the system is modeled by linear equations.

1.3 Structure and contributions of the dissertation

The dissertation consists of three self-contained chapters, each one is presented as a journal paper.

Each paper addresses the challenges mentioned in Section 1.1 from different points of view. In all

papers, (H)MDPs with an infinite time horizon are the main modeling technique used to model

marketing and feeding decisions. Moreover, SSMs based on Bayesian updating are the main

statistical technique to describe the uncertainty of weight and price information in the models. A

short description of each paper is given below.

Paper one focuses on combining marketing and feeding decisions at pen level. A three-level

HMDP is formulated to represent the decision process. The model considers online measurements

of pig weight and feed intake from a set of sensors in the pen. A Bayesian approach is used to

update the state of the system such that it contains the relevant information based on the previous

measurements. More precisely, two types of SSMs known as a Gaussian state space model

(GSSM) and a non-Gaussian state space model (nGSSM) are applied to model weight, growth,

and the inhomogeneity of the pigs in the pen. These models are embedded into the HMDP, i.e.

transition probabilities of state variables in the three-level HMDP are calculated using Bayesian

updating of the GSSM and nGSSM. A computational study is performed to show how the optimal

policy adapts to different conditions at pen level. Moreover, a small sensitivity analysis is carried

out to show the importance of the length of the growing period and the feed-mix cost.

Paper two focusses on fluctuating pork, feed, and piglet prices and shows how price fluctua-



12 Introduction

tions can affect the marketing decisions of finishing pigs. A two-level HMDP is used to model

marketing decisions under price fluctuations of pork, feed, and piglet. Using available time-series

of prices, three SSMs use Bayesian updating to forecast future prices in the model according to

previous market prices. Moreover, we exploit a random regression model to model the evolution

of pig weight during the growing period in the pen. Three scenarios with different patterns of

price fluctuations are described to illustrate how marketing decisions are different when there is

an increasing/decreasing trend in pork, feed, and piglet market prices. Furthermore, we calculate

the value of including price information into the model by comparing the optimal policy of the

two-level HMDP under both fluctuating and fixed prices.

Paper three considers marketing decisions at herd level and evaluates the effect of cross-level

constraints (termination and transportation constraints) on the marketing policy at herd level.

Marketing decisions are modeled using a discounted infinite-horizon MDP, and SSMs from the

first paper are exploited to describe the uncertainty of weight information in the pens. Due to

the curse of dimensionality, ADP is applied to solve the MDP model and find an approximate

marketing policy at herd level. More precisely, we use the structure of the value function at pen

level (found in the first paper) to approximate a parametric function for the value function at

herd level. Parameters of the approximated value function are estimated using an approximate

value iteration algorithm exploiting simulation and integer programming techniques. In order

to validate the quality of the solution found by ADP, we first compare the ADP solution with

the solution found using value iteration at pen level. We also provide an example at herd level

to show how ADP finds the best marketing decisions under different conditions and why early

termination and transportation costs are important at herd level. Finally, the marketing policy

obtained using ADP is compared with other well-known marketing policies often applied at herd

level.

The contributions of the three papers are significant. The first paper is the first published paper

considering a sequential decision model taking both feeding and marketing decisions into account

simultaneously at pen level. The SSMs developed in this paper consider the inhomogeneity of

animals as regards growth and feed intake, which result in a more realistic estimation of weight

information compared to other papers in the literature. The presented model can be used as a

part of a decision support system with online data where the system state can be identified using

Bayesian updating and the optimal policy of the HMDP can be used to execute the best feeding

and marketing decision at pen level. One may argue that the model also has some limitations.

For instance, possible constraints at section and herd levels are ignored (e.g. constraints on the
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transportation of culled pigs to the abattoir) and the price fluctuations of pork, feed, and piglet

are not considered in the model. These limitations are covered in the second and third papers.

The second paper uses a novel method to embed price information into an optimization model

using Bayesian updating, i.e. the price parameters are dynamically updated based on historical

data. According to the related literature, this is the first paper taking into account fluctuations of

pork, feed and piglet prices when considering marketing decisions given a high range of possible

price values.

The third paper contributes significantly to the literature by considering sequential marketing

decisions at herd level and to the best of my knowledge it is the first paper to simultaneously

take into account decisions and constraints at pen, section, and herd levels. Due to the curse of

dimensionality this problem has not be solved before. However the high-dimensional MDP can

be addressed and solved by using ADP, i.e. approximating the value function.

The models developed in this dissertation can be extended to handle decisions about diseases

by incorporating state variables related to the health of pigs. Moreover, factors such as the

mortality rate of pigs and labor costs (if not considered fixed) can be modeled by modifying the

transition probabilities and reward of an action.
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A hierarchical Markov decision process modeling feeding and
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Aarhus V, Denmark.

Anders Ringgaard Kristensen

HERD, Department of Large Animal Sciences, University of Copenhagen, Grønnegårdsvej 2, DK-1870 Frederiks-
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Abstract: Feeding is the most important cost in the production of growing pigs and has a direct

impact on the marketing decisions, growth and the final quality of the meat. In this paper, we

address the sequential decision problem of when to change the feed-mix within a finisher pig pen

and when to pick pigs for marketing. We formulate a hierarchical Markov decision process with

three levels representing the decision process. The model considers decisions related to feeding

and marketing and finds the optimal decision given the current state of the pen. The state of the

system is based on information from on-line repeated measurements of pig weights and feeding

and is updated using a Bayesian approach. Numerical examples are given to illustrate the features

of the proposed optimization model.

Keywords: OR in agriculture; stochastic programming; hierarchical Markov decision process;

herd management; Bayesian updating.

2.1 Introduction

In production systems of growing pigs, feeding is the most important operation and has a direct

influence on the cost and the quality of the meat. Another important operation is the timing of

marketing. It refers to a sequence of culling decisions until the production unit is empty. As a

result the profit of the production unit is highly dependent on the feeding cost and on good timing

of marketing, i.e. decisions about feeding and marketing have a direct impact on profit.

In a production system of growing/finishing pigs (Danish standards), the animals may be



Introduction 19

considered at different levels: herd, section, pen, or animal. The herd is a group of sections,

a section includes some pens, and a finisher pen involves some animals (usually 15-20). New

piglets are transferred to a weaner unit approx. four weeks after birth, and they stay for approx.

eight weeks until they weigh approx. 30 kg. The pigs are then moved to a finisher pen where they

grow until marketing (9-12 weeks). In the finisher pen, the farmer should determine which pigs

should be selected for slaughter (individual marketing). The reward of marketing a pig depends

on the unit meat price of the carcass weight and the leanness of the pig. The meat price is highest

if the carcass weight of the pig lies in a specific interval. Next, after a sequence of individual

marketings, the farmer must decide when to terminate (empty) the rest of the pen. Terminating a

pen means that the remaining pigs in the pen are sent to the slaughterhouse (in one delivery) and

after cleaning the pen, another group of piglets (each weighing approx. 30 kg) is inserted into the

pen and the production cycle is repeated. That is, the farmer must time the marketing decisions

while simultaneously considering the carcass weight in relation to the best interval, the leanness,

and the length of the production cycle. For an extended overview over pig production of growing

pigs, see Pourmoayed and Nielsen (2014a).

The growth and leanness of the pigs will be highly dependent on the feed given. Phase feeding

is a common method used in the production of the growing pigs. In the finisher pen the growing

period typically includes 3 or 4 phases and each phase involves a predefined feed-mix which is a

mixture of different ingredients (barley, soy, maize, etc.). A relevant decision is when to change

the current feed-mix (transition to a new phase) and what type of feed-mix to use in the next

phase.

Since the choice of feed-mix affects the pigs’ growth, a specific feeding strategy has an impact

on the marketing strategy. That is, the economic optimization of feeding and marketing decisions

is interrelated and requires a simultaneous analysis. Consequently, a sequential decision model

is needed that considers both feeding and marketing decisions. To the best of our knowledge,

there are only a few studies that take into account these decisions simultaneously (Niemi, 2006;

Sirisatien et al., 2009). However, these studies consider the problem at animal level and do not

take into account the inhomogeneity of animals in growth and feed intake. The aim of this paper

is to close this gap and consider the problem at pen level instead.

In this paper we formulate a hierarchical Markov decision process which takes into account

decisions related to feeding and marketing of growing pigs at pen level. We assume that the

production is cyclic, i.e. when the pen is emptied, not only a regular state transition takes place,

but rather the process (the current batch of pigs) is restarted.
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The model considers time series of pig weights and feeding obtained from online monitoring,

e.g. from a set of sensors in the pen. A Bayesian approach is used to update the state of the

system such that it contains the relevant information based on the previous measurements. More

precisely, two state space models for Bayesian forecasting (West and Harrison, 1997) are used to

update the estimates of live weights and feed intake on a weekly basis.

The structure of the paper is as follows. First, Section 2.2 gives a short literature review.

Second, a detailed description of the optimization model is given in Section 2.3. Next, Section 2.4

presents the statistical models which are embedded into the model. In Section 2.5, numerical

examples are considered to show the functionality of the proposed optimization model. Finally,

conclusions and directions for further research are given in Section 2.6.

2.2 Literature review

Due to the dynamic nature of the production environment of growing pigs, the marketing and

feeding decisions are sequential, complex and hard to optimize. Various models have been

considered to deal with this complexity.

Some studies consider only the marketing decisions. Chavas et al. (1985) applied the concepts

of optimal control theory to find the optimal time of marketing of individual animals. Jørgensen

(1993) used a dynamic programming approach to optimize a given heuristic framework for

delivering the pigs to the slaughterhouse. Boland et al. (1993) considered the optimal slaughter

pig marketing problem under different pricing models and for each pricing system, they found

the optimal slaughter weight. Kure (1997) considered the problem at batch level and used the

replacement theory concepts and a recursive dynamic programming method to determine the

optimal time of marketing the pigs. Toft et al. (2005) optimized both marketing and treatment

decisions (e.g. regarding vaccination for disease problems) using a hierarchical Markov decision

process (HMDP). Boys et al. (2007) implemented a simulation approach to determine the best

marketing strategy to utilize full truck capacity for delivering the pigs to the packers. In the study

by Ohlmann and Jones (2008), a mixed integer programming model was proposed to find the best

marketing strategy under an annual profit criterion. Kristensen et al. (2012) suggested a two-level

HMDP to find the best marketing strategy according to the data from an online monitoring

system.

Other studies focus on sequential feeding decisions, i.e. finding the best strategy for choosing

the appropriate feed-mix during the growing period of animals. One example is Glen (1983)
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who proposed a dynamic programming approach to determine the sequence of feed-mixes in the

production unit. In the study by Boland et al. (1999), a linear programming approach was used to

specify the optimal time of changing the feed-mix and also the optimal nutrient ingredients of

the feed-mix. A genetic algorithm was applied by Alexander et al. (2006) to find the best nutrient

components of each feed-mix.

Only a few studies take both marketing and feeding decisions into account. Niemi (2006) used

a mechanistic function to model the animal growth trend during the growing period. Niemi (2006)

further applied a stochastic dynamic programming method to find the best nutrient ingredients

and also the best time of marketing. In the study by Sirisatien et al. (2009), a genetic algorithm

was used. Each iteration resulted in a set of feeding schedules followed by the optimal values

of the nutrient ingredients and feeding period. Both studies considered the problem at animal

level and did not take into account the inhomogeneity of animals with respect to growth and feed

conversion rate.

Markov decision models are a well-known modeling technique within animal science used

to model livestock systems. See for instance Rodriguez et al. (2011) and Nielsen et al. (2010).

For a recent survey see Nielsen and Kristensen (2014), which cites more than 100 papers using

(hierarchical) Markov decision processes to model and optimize livestock systems. An HMDP

is an extension of a semi Markov decision process (semi-MDP) where a series of finite-horizon

semi-MDPs are combined into one process at the founder level called the main process (Kris-

tensen, 1988; Kristensen and Jørgensen, 2000). As a result the state space at the founder level

can be reduced and larger models can be solved using a modified policy iteration algorithm

under different criteria (Nielsen and Kristensen, 2014). Modeling the problem using an HMDP

compared to a semi-MDP contributes to reducing the curse of dimensionality, since the total

number of state variables can be decreased. Moreover, the total number of states at the founder

level is lower (i.e. the matrix which must be inverted in the modified policy iteration algorithm is

much smaller).

A state space model (SSM) (West and Harrison, 1997) is a statistical model which may be

used to transform large datasets obtained using online sensors into the required information about

the production process. An SSM consists of a set of latent variables and a set of observed variables.

At a specified point in time the conditional distribution of the observed variables is a function of

the latent variables specified via the observation equations. The latent variables change over time

as described via the system equations. The observations are conditionally independent given the

latent variables. Thus the estimated value of the latent variables at a time point may be considered
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as the state of the system, and with Bayesian forecasting (the Kalman filter) we can estimate the

latent variables/real state of the system via the observed variables. Examples of SSMs applied

to agricultural problems are Cornou et al. (2008); Bono et al. (2012) and Bono et al. (2013).

Moreover, an SSM can be discretized and embedded into an HMDP (Nielsen et al., 2011).

2.3 Model description

Our pig marketing and feeding problem is modeled using a hierarchical Markov decision process

(HMDP) with three levels. A short introduction to HMDPs is given below. As techniques from

both statistical forecasting and operations research are used, consistent notation can be hard to

specify. To assist the reader, Appendix 2.A provides an overview.

An HMDP is an extension of a semi-MDP where a series of finite-horizon semi-MDPs are

combined into one infinite time-horizon process at the founder level called the founder process

(Kristensen and Jørgensen, 2000). The idea is to expand the stages of a process to so-called child

processes, which again may expand stages further to new child processes leading to multiple

levels. At the lowest level the HMDP consists of a set of finite-horizon semi-MDPs (see e.g.

Tijms, 2003, Chap. 7). All processes are linked together using jump actions (see Figure 2.1).

A finite-horizon semi-MDP considers a sequential decision problem over N stages. Let

In denote the finite set of system states at stage n. When state i ∈ In is observed, an action a

from the finite set of allowable actions An(i) must be chosen, and this decision generates reward

rn(i,a). Moreover, let un(i,a) denote the stage length of action a, i.e. the expected time until the

next decision epoch (stage n+1) given action a and state i. Finally, let Pr( j | n, i,a) denote the

transition probability of obtaining state j ∈ In+1 at stage n+1 given that action a is chosen in

state i at stage n.

An HMDP with three levels is illustrated in Figure 2.1 using a state-expanded hypergraph

(Nielsen and Kristensen, 2006). At the first level, a single founder process p0 is defined. Index

0 indicates that the process has no ancestral processes. We assume that p0 is running over an

infinite number of stages and that all stages have identical state and action spaces and hence just a

single stage is illustrated in Figure 2.1. Let pl+1 denote a child process at level l+1. Process pl+1

is uniquely defined by a given stage nl , state il and action al of parent process pl . For instance,

the semi-MDP p2 in Figure 2.1 is defined at stage n1 = 2, state i1 and action a1 of the process

p1 symbolized by the notation p2 = (p1 ‖ (n1, i1,a1) ). Each process is connected to its parent

and child processes using jump actions which can be divided into two groups, namely, a child
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Figure 2.1: An illustration of a stage in an HMDP. At the founder level (Level 0) we have a single
infinite-horizon founder process p0. A child process, such as p1 at Level 1 (oval box), is uniquely
defined by a given stage, state (node), and action (hyperarc) of its parent process and linked with
the parent process using its initial probability distribution (solid lines) and its terminating actions
(dashed lines). Each process at level 2 is a semi-MDP. Note that only a subset of the actions is
drawn.

jump action that represents an initial probability distribution of transitions to a child process or a

parent jump action that represents a terminating probability distribution of transitions to a parent

process. This is illustrated in Figure 2.1 for process p1 where child jump action a1 (illustrated

using a solid hyperarc) represents a transition to the child process p2 and parent jump action a2

(illustrated using a dashed hyperarc) represents termination of the process p2. Like traditional

actions, jump actions are associated with an expected reward, action length, and a set of transition

probabilities. Each node in Figure 2.1 at a given stage n of a process pl corresponds to a state in

Il
n . For example, there are 3 states at stage 1 in process p2. Similarly each hyperarc corresponds

to an action, e.g. action a (gray hyperarc) results in a transition to either state j1 or j2.

A policy is a decision rule/function that assigns to each state in a process a (jump) action. That

is, choosing a policy corresponds to choosing a single hyperarc out of each node in Figure 2.1.

Given a policy, the reward at a stage of a parent process equals the total expected rewards of the

corresponding child processes. For instance, in Figure 2.1, the reward of choosing action a1 in

state i1 at stage n1 = 2 in process p1 equals the total expected reward of process p2. A similar

approach can be used to calculate the transition probabilities and the stage length of an action at
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a stage of a parent process.

Different optimality criteria may be considered. In this paper, our optimality criterion is

to maximize the expected reward per time unit and the optimal policy of the HMDP can be

found using a modified policy iteration algorithm. For a detailed description of the algorithm, the

interested reader may consult Nielsen and Kristensen (2014).

2.3.1 Assumptions

Consider the problem of optimizing feeding and marketing decisions in a finisher pig pen. The

problem can be modeled as a three-level semi-HMDP under the following assumptions:

- qmax pigs are inserted into the finisher pen;

- a finite set of feed-mixes F is available and feed-mix f ∈ F cannot be changed before it has

been used for at least tmin
f weeks (for simplicity, tmin

f is the same for all feed-mixes);

- at most bmax feeding phases can be used;

- marketing of pigs is started in week tmin at the earliest;

- the pen is terminated in week tmax at the latest, i.e. the maximum life time of a pig in the

pen is tmax;

- the growth of a pig is independent of the other pigs in the pen, i.e. the growth is not

dependent on the number of pigs in the pen;

- weekly deliveries to the abattoir in the marketing period are based on a cooperative agree-

ment where culled pigs from each pen are grouped in one transportation delivery at a fixed

time each week, i.e. the transportation cost is fixed.

To give a complete description of the three-level HMDP with feeding and marketing decisions,

each semi-MDP must be specified at all levels, i.e. stages, states, and (jump) actions including

the corresponding rewards, stage lengths (measured in weeks), and transition probabilities.

2.3.2 Stages, states and actions

As illustrated in Figure 2.1, the founder process of the HMDP is an infinite time-horizon process

where a stage represents a life of qmax pigs inserted into the pen (until termination). A stage of

the process at the second level corresponds to a feeding phase in which the pigs are fed a specific

feed-mix f . Finally, a stage at the third level is a week of the current production cycle in the pen

under the specific feed-mix. The length, stage, states, and (jump) actions of each process at the
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different levels are described below. Whenever, the level is clear from the context, the superscript

indicating the current level under consideration will be left out to avoid heavy notation.

Level 0 - Founder process p0

Stage: A production cycle of qmax pigs, i.e. from inserting the piglets into the pen until terminat-

ing the pen.

Time horizon: Infinite (since the number of filling and emptying a pen is infinite).

States: A single state representing the start of a production cycle (I = {i0}).

Actions: One child jump action a0 representing insertion of a new group of piglets (A(i0) =

{a0}).

Level 1 - Parent process p1 = (p0 ‖ (n0, i0,a0) )

Stage: A feeding phase with a given feed-mix.

Time horizon: Given a maximum of bmax feeding phases, the maximum number of stages in

process p1 is N = bmax +1 since a dummy stage is added at the end.

States: First, consider stage/feeding phase 2≤ n ≤ bmax. A state i is defined using the following

state variables:

fn: previous feed-mix (feed-mix in stage/phase n−1);

tn: starting time of phase (week);

qn: number of pigs in the pen at the beginning of stage/phase n;

wn: model information related to the weight of the pigs, obtained using Bayesian updating

(wn ∈Wn). Section 2.4 provides details on the way the information is obtained.

Furthermore, at this level, a dummy state ĩ is added to represent pen termination. Note

that due to the model assumptions, the earliest starting time of phase n is (n−1)tmin
f +1.

Moreover, if tn ≤ tmin then qn = qmax. Hence the set of states becomes

In = {i = ( fn, tn,qn,wn) | fn ∈ F, tn ∈ {(n−1)tmin
f +1, . . . , tmax−1},

qn ∈ {qmaxI{tn≤tmin}+ I{tn>tmin}, . . . ,q
max},wn ∈Wn}∪{ĩ},

where I{·} denotes the indicator function.
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Next, consider stage n = 1. Here the number of states to In =Wn can be reduced, since

tn = 1, qn = qmax, and there is no previous feed-mix.

Finally, at the dummy stage (n = N 1), only the dummy state ĩ representing pen termi-

nation is defined.

Actions: At stage n = 1, it is possible to choose a feed-mix f ∈ F at state i =wn, i.e. the set

of child jump actions is An(i) = {a f | f ∈ F}. At the subsequent stages (1 < n < N 1),

possible child jump actions at state i = ( fn, tn,qn,wn) are An(i) = {a f | f ∈ F\{ fn}}. The

length of all child jump actions choosing a feed-mix is zero. In the dummy state ĩ a single

dummy parent jump action ã with length zero is considered which represents that the pen

has been terminated.

Level 2 - MDP p2 = (p1 ‖ (n1, i1,a1))

At the lowest level a semi-MDP is defined for each stage/feeding phase n1, parent state i1 =

( fn1, tn1,qn1 ,wn1), and action a1 = a f corresponding to choosing feed-mix f .

Stage: A week in the current feeding phase.

Time horizon: A stage is defined for each week tn1, . . . , tmax and hence the time horizon becomes

N = tmax− tn1 + 1. That is, stage n = 1, . . . ,N corresponds to week tn1 + n− 1 (n− 1

weeks since the feed-mix was changed).

States: Given stage n, a state i consists of the following state variables:

qn: number of pigs in the pen at the beginning of the week;

wn: model information related to the weight of the pigs, obtained using Bayesian updating

(wn ∈Wn);

gn: model information related to the growth of the pigs, obtained using Bayesian updating

(gn ∈Gn). Further details on how gn and wn are obtained, are given in Section 2.4.

A dummy state ĩ is also added to represent pen termination. Therefore the set of states

becomes:

In = {i = (qn,wn,gn) | qn ∈ {qmaxI{tn1+n−1≤tmin}+ I{tn1+n−1>tmin}, . . . ,q
max},

wn ∈Wn,gn ∈Gn}∪{ĩ}.

Actions: Consider state i = (qn,wn,gn) at stage n. If marketing is not possible at this stage

(since tn1 +n−1 < tmin), then the production process continues for another week with the
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current feed-mix using action acont. If marketing is possible (tn1 +n−1≥ tmin,n < N 1),

then the set of actions can be expanded to the parent jump action aterm where the pen is

terminated and actions aq, which implies that the q heaviest pigs are culled (individual

marketing). If n > tmin
f the current feed-mix can be changed, which corresponds to parent

jump action anewMix. Finally, at the last stage n = N , the pen must be terminated. Hence

the set of actions becomes

An(i) =



{acont}, tn1 +n−1 < tmin,n≤ tmin
f ,

{acont,anewMix}, tn1 +n−1 < tmin, tmin
f < n < N ,

{acont,aterm}∪{aq | 1≤ q < qn}, tn1 +n−1≥ tmin,n ≤ tmin
f ,

{acont,anewMix,aterm}∪{aq | 1≤ q < qn}, tn1 +n−1≥ tmin, tmin
f < n < N ,

{aterm}, n = N .

The lengths of actions acont and aq are one week while the lengths of actions aterm and

anewMix are zero. State ĩ has a single dummy parent jump action ã of length zero.

2.3.3 Transition probabilities

To complete the formulation of the HMDP, transition probabilities must be specified for all (jump)

actions.

Level 0 - Founder process p0

Given state i0 and child jump action a0 (insertion of a new group of piglets), a transition to state

i1 =w1 at the first stage (n1 = 1) of process p1 happens with probability Pr
(
i1 | i0,a0)= Pr0(w1),

where Pr0(w1) denotes the initial probability of weight information w1.

Level 1 - Parent process p1

Consider state i = ( fn, tn,qn ,wn) and child jump action a = a f that corresponds to choosing a

specific feed-mix f ∈ F. A transition to state i2 = (q̃1,w̃1, g̃1) at the first stage (n2 = 1) of process

p2 happens with probability

Pr
(
i2 | n, i,a

)
=

Pr0(g̃1 | f ), q̃1 = qn , w̃1 =wn ,

0, otherwise,
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where Pr0(g̃1 | f ) denotes the initial probability of growth information for state g̃1 given feed-mix

f . For dummy state ĩ and parent jump action ã, a deterministic transition to state i0 happens.

Level 2 - Semi-MDP p2 = (p1 ‖ (n1, i1,a1))

First, consider state i = (qn,wn,gn) in process p2 starting at week tn1 , given a1 = a f , i.e. the

process uses feed-mix f . At Level 2, two parent jump actions are considered. If the feed-mix is

changed (a = anewMix), then the process terminates and makes a deterministic transition to state

i1 = ( f , tn1 +n−1,qn,wn) at stage n1 +1. If the process is terminated using parent jump action

aterm, then the system makes a deterministic transition to state i1 = ĩ in Level 1.

Next, consider states i = (qn,wn,gn) at stage n and j = (qn+1,wn+1,gn+1) at stage n + 1.

Two types of actions are possible. If the current feed-mix is not changed, the transition probability

equals

Pr( j | i,acont) =

Pr(wn+1,gn+1 |wn,gn) , qn+1 = qn ,

0, otherwise.
(2.1)

and if q pigs are culled, the transition probability equals:

Pr
(

j | i,aq
)
=

Pr(wn+1,gn+1 |wn,gn) , qn+1 = qn−q,

0, otherwise.
(2.2)

The probability Pr(wn+1,gn+1 |wn,gn) depends on the statistical models used for Bayesian

forecasting and will be given in Section 2.4.

Finally, if the dummy parent action in state ĩ is considered, a deterministic transition to state

i1 = ĩ in process p1 occurs.

2.3.4 Expected rewards

To finalize the description of the model, the expected reward of each (jump) action must be

specified.

Level 0 - Founder process p0

Action a0 represents the insertion of qmax piglets and hence the reward equals r(i0,a0) =

−cpigqmax, where cpig denotes the unit cost of a piglet.
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Level 1 - Parent process p1

The reward of child jump action a f (choose feed-mix f ) is zero since the cost of reconfiguring

the feeding system is added in Level 2. The same holds for the parent jump action ã where the

reward is assumed to be zero.

Level 2 - MDP p2 = (p1 ‖ (n1, i1,a1))

The reward of choosing a new feed-mix (parent jump action anewMix) is −cnewMix where cnewMix

denotes the fixed cost of changing from one feed-mix to another. The reward of the dummy parent

jump action ã is zero.

For the remaining actions (acont,aterm,aq) the expected reward equals the expected revenue

from selling the pigs minus the expected cost of feeding the pigs conditioned on the values of

the state variables and the action. Let (w(1),z(1)), . . . ,(w(qn),z(qn)) denote the weight and weekly

feed intake of the pigs ordered such that w(k) ≤ w(k+1). That is, w(k) is the weight of kth pig, i.e.

the kth order statistics. If the q heaviest pigs are culled, the revenue becomes

qn

∑
j=qn−q+1

w̃( j) · p(w̃( j), w̆( j)), (2.3)

where w̃( j) and w̆( j) denote the carcass weight (kg) and the leanness (non-fat percentage) of the

jth pig in the pen, respectively. Price function p(·) is the unit price of the meat. Similarly, the

cost of feeding the qn−q lightest pigs is

qn−q

∑
j=1

z( j) · c f , (2.4)

where c f denotes the unit cost of feed-mix f . The expected reward rn(i,aq) can now be found as

the difference between the expected value of Equations (2.3) and (2.4). Actions acont and aterm

may be considered as extreme culling decisions (q = 0 and q = qn), i.e. rn(i,acont) equals the

expectation of (2.4) with q = 0 and rn(i,aterm) equals the expectation of (2.3) with q = qn.

To evaluate the expected reward of (2.3) and (2.4), statistical models are needed to transform

the repeated measurements of weight and feed intake into relevant information about weight and

growth using Bayesian forecasting. This will be the focus in the next section.
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2.4 Bayesian updating of weight and growth

In animal production, online monitoring is a relevant method to obtain data for tracking the

changes and can be done regularly by sensors placed in the production units. Two types of

online sensors are considered in the finisher pen which provide data about live weight and feed

intake, respectively. To transform these data into information about weight and growth, we need

a statistical model. In this paper state space models (SSMs) are used to estimate the mean weight

µt and growth gt of the pigs in the pen at time t. The same holds for the standard deviation σt of

the pig weights in the pen.

The set Wn in the HMDP will therefore contain discretized estimates of the mean weight and

standard deviation and the set Gn will include discretized estimates of the mean growth.

SSMs can be categorized into different groups based on the dynamic nature of the considered

system and the probability distribution assumed. Two kinds of SSMs are considered and later

embedded into the HMDP. In the first model, the probability distribution of the observations,

related to the online sensors, is Gaussian (GSSM) and in the second model, these observations

come from a non-Gaussian distribution (nGSSM). The dynamics of the system is modeled by

linear equations in both models.

The next sections, first provide a description of the two models and afterwards use the models

to calculate the reward and transition probabilities of the HMDP. For a short introduction to SSMs

and the theorems used for Bayesian updating see Appendix 2.B.

2.4.1 A GSSM for average weight and growth estimations

Let (ŵ1, . . . , ŵd)t denote d weight estimates obtained by an online weighting method (e.g. image

processing) at time t. That is, an estimate of the average weight at time t is w̄t = ∑
d
k=1 ŵk/d.

Moreover, assume that the average feed intake per pig z̄t , given feed-mix f , is measured using an

automatic feeding system. The following GSSM is used to model mean weight and growth:

system equation (θt = Gθt−1 +ωt) :

(
µt

gt

)
=

(
1 1

0 1

)(
µt−1

gt−1

)
+

(
ω1t

ω2t

)
, (2.5)

observation equation (yt = F ′t θt +νt) :

(
w̄t

z̄t

)
=

(
1 0

k1t k2

)(
µt

gt

)
+

(
ν1t

ν2t

)
, (2.6)

The system equation (2.5) models the relation between the latent variables θt = (µt ,gt)
′ where

the first equation in (2.5) states that the mean weight µt in the pen at time t equals the mean
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weight at time t−1 plus the mean growth and some noise. The second equation states that the

mean growth gt in the pen follows a random process. The system noise is ωt ∼ N(0,W) and the

prior distribution is θ0 ∼ N(m0, f ,C0, f ) given a fixed feed-mix f .

The observation equation (2.6) illustrates the relation between the observed variables yt =

(w̄t , z̄t)
′ and the latent variables. That is, in the first equation, the observed average weight equals

the mean weight plus the measurement error of the weighing method, and in the second equation,

the observed average feed intake equals

z̄t = k1t µt + k2gt +ν2t ,

where k1t and k2 are two known parameters. This relation is based on a linear approximation of

the relation between feed intake and growth stated in Jørgensen (1993) where k1t is a dynamic

parameter to cover the non-linearity of the weight term. The observation error is assumed to be

νt ∼ N(0,V).

Let Dt = (y1, ...,yt ,m0, f ,C0, f ) denote the information available up to time t. When new values

of the observable variable yt = (w̄t , z̄t)
′ are received, Bayesian updating (Theorem 1 in Appendix

2.B) can be used to update the posterior (θt |Dt)∼N(mt ,Ct) at time t. That is, the posterior mean

and covariance given the current feed-mix f become

mt =

(
µ̂t

ĝt

)
, Ct =

(
Ct,1 Ct,12

Ct,12 Ct,2

)
.

The estimated means (µ̂t , ĝt)
′ are the best estimate of the latent variables (µt ,gt)

′. The starting

time of the GSSM is when the pigs are inserted into the pen, i.e. the prior mean of the latent

variable is m0, f = (µ̂0, ĝ0, f ) where µ̂0 denotes the average weight of the piglets at insertion and

ĝ0, f is the estimated growth rate given feed-mix f (prior to receiving sensor data). The initial

covariance C0, f contains the initial covariance components of live weight and growth rate at the

time of insertion given feed-mix f .

If the feed-mix is changed at time t to a new feed-mix f , this change is interpreted as a system

intervention (Kristensen et al., 2010, Section 8.2.5) and the posterior mean and covariance are

modified to

mt =

(
µ̂t

ĝ0, f

)
, Ct =

(
Ct,1 C0, f ,12

C0, f ,12 C0, f ,2

)
,

where ĝ0, f denotes the initial estimate of the growth rate of the new feed-mix (prior to receiving

sensor data for feed-mix f ) and C0, f ,· denotes the initial covariances for the feed-mix f .
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2.4.2 An nGSSM to estimate the variance of weights in the pen

Assuming d weight estimates (ŵ1, . . . , ŵd)t at time t, the unbiased sample variance at time t is

s2
t = ∑

d
k=1(ŵk− w̄t)

2/(d−1). It is well known that if s2
t is based on observations from a normal

distribution with true variance (σt)
2, then (d−1)s2

t /(σt)
2 follows a chi-square distribution with

d−1 degrees of freedom (Wackerly et al., 2008, p357). Hence the sample variance s2
t follows a

gamma distribution with shape at and scale bt given as

at =
d−1

2
, bt =

2(σt)
2

d−1
.

Note that since d is constant, at is constant and known for all t > 1.

An nGSSM can now be defined with observation yt = s2
t and latent variable θt =(σt)

2 at time t

where yt follows a gamma distribution with shape at and scale bt . The natural parameter becomes

ηt =−1/(σt)
2 and the impact on the latent variable (g(ηt) = F ′t θt) is defined as g(ηt) = (σt)

2,

i.e. g(ηt) =−1/ηt ,F ′t = 1 (see Appendix 2.B). The system equation is:

(σt)
2 = Gt(σt−1)

2,

where Gt = ( t
t−1)

2 for t > 1 (G1 = 1). That is, it is assumed that the true variance in the pen

increases by coefficient ( t
t−1)

2 (Kristensen et al., 2012).

It should be noted that the conjugate prior distribution of (σt)
2 is an inverse-gamma distri-

bution (Gelman et al., 2004, p50). Hence, when the piglets are inserted into the pen (t = 0), the

initial (prior) distribution of the variance is

θ0 ∼ Inv-Gamma
(
c0 =

d−1
2

,d0 =
(d−1)s2

0
2

)
, (2.7)

with shape c0 and scale d0 where s2
0 is the initial estimated sample variance of the live weight with

sample size d. Given the nGSSM and the initial distribution (2.7), the estimate of the variance

can now be updated when a new observation s2
t is obtained from the pen by using Theorem 3 and

Corollary 1 in Appendix 2.B.

2.4.3 Embedding the SSMs into the HMDP

The two SSMs described in the previous sections provide information about the mean weight and

growth (µt ,gt) and the standard deviation σt of the weights in the pen. To embed this information

into the HMDP these values have to be discretized (Nielsen et al., 2011).
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Let Uxn = {Π1, . . . ,Π|Uxn |} be a set of disjoint intervals representing the partitioning of

possible values of the continuous state variable x at stage n (e.g. x = µ̂n). Moreover, given interval

Π, let centre point π denote the centre of the interval. The set of possible values of the state

variables in the HMDP related to information about weight is Wn = Uµ̂n ×Uσ̂n and hence a state

wn corresponds to area Πµ̂n ×Πσ̂n and is represented using the centre point wn = (πµ̂n ,πσ̂n ).

Similarly the corresponding set of possible values of the state variable related to information

about growth is Gn = Uĝn .

Transition probabilities

It is now possible to compute the transition probability Pr(wn+1,gn+1 |wn,gn) used in (2.1)

and (2.2). Since the mean and variance estimations are treated separately in different SSMs, this

transition probability can be split into two parts:

Pr(wn+1,gn+1 |wn ,gn) =Pr
(
mn+1 = (µ̂n+1, ĝn+1) ∈Πµ̂n+1×Πĝn+1 | mn = (πµ̂n ,πĝn )

)
·Pr
(
m′n+1 = σ̂n+1 ∈Πσ̂n+1 | m

′
n = πσ̂n

)
.

The first part can be calculated using the GSSM as

Pr
(
mn+1 ∈Πµ̂n+1×Πĝn+1 | mn

)
=
∫

Πµ̂n+1

∫
Πĝn+1

f(mn+1|mn)(x,y)dydx,

where the distribution of (mn+1 |mn) can be found using Theorem 2 in Appendix 2.B. The second

part can be calculated using the nGSSM as

Pr
(
m′n+1 ∈Πσ̂n+1 | m

′
n
)
=
∫

Πσ̂n+1

f(m′n+1|m′n)(x)dx,

where the distribution of (m′n+1 | m′n) can be found using Theorem 4 in Appendix 2.B.

Expected rewards

The expected reward given stage n and state (qn ,wn,gn) = (qn,(πµ̂n,πσ̂n),πĝn) in process p2 can

be calculated as the expected value of (2.3) minus the expected value of (2.4). The expected

revenue of (2.3) can be written as

qn

∑
k=qn−q+1

E
(
w̃(k) · p(w̃(k), w̆(k))

)
, (2.8)
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where w̃(k) and w̆(k) denote the carcass weight and leanness of the jth pig (based on the order

statistics w(k), see Section 2.3.4). The carcass weight, w̃(k), of the jth pig is a fraction of live

weight (Andersen et al., 1999):

w̃(k) = 0.84w(k)−5.89+ ε, (2.9)

where ε ∼ N(0,σ2
ε ) is a random error. Furthermore, Kristensen et al. (2012) proposed a rule of

thumb for use in production units, which is used to compute the lean meat percentage w̆(k) at

marketing:

w̆(k) =
−30(ḡ(k)− ḡ)

4
+ ¯̆w,

where ḡ(k) denotes the average daily growth/gain of the kth pig until marketing, ḡ is the average

daily growth in the herd, and ¯̆w is the average herd leanness percentage at marketing. The average

daily growth t days after insertion into the pen is ḡ(k) = (w(k)− µ̂0)/t, where µ̂0 denotes the

average weight at time of insertion into the pen.

The expected cost of (2.4) is:

c f

qn−q

∑
k=1

E
(
z(k)
)
. (2.10)

and from (2.6), the ordered random variable z(k) equals:

z(k) = k1tw(k)+ k2g(k).

Note that the evaluation of (2.8) and (2.10) is rather complex since it involves calculating the

mean of a piecewise reward function and the truncated normal distribution. However, the values

of (2.8) and (2.10) can be simulated using a simple sorting procedure and given the fact that

w∼ N(πµ̂ ,πσ̂) where w denotes the weight of a pig randomly selected in the pen at the current

stage.

2.5 Numerical example

To illustrate the functionality of the proposed optimization model, the HMDP is applied on

three pens with different properties (average weekly gain). The average weekly gain of Pen 2 is

assumed to be “normal” (an initial growth of 5.8 kg/week using Feed-mix 1), and Pens 1 and

3 grow 20 percent slower and faster, respectively, than Pen 2. Moreover, to initialize the three
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pens with the same conditions, the pigs are fed by the same feed-mix (Feed-mix 1) at the time of

insertion into the pen.

2.5.1 Model parameters and observation data

To obtain time series of observations (w̄t , z̄t) and s2
t used by the GSSM and nGSSM a simulation

model was developed. The model is based on the biological growth formulas in Jørgensen

(1993). The simulation model and the generated data are available online for reproducibility (see

Pourmoayed and Nielsen (2014b)).

An example is given in Figure 2.2 that shows the observed values of average live weight w̄t ,

average feed intake z̄t , and the standard deviation st (resulted from the simulation). It also gives

the estimated information of live weight and growth (calculated using Bayesian updating with

the GSSM and nGSSM) in the three pens. These values together with the other state variables are

used to identify the current state in the HMDP. Note that the simulation is started with Feed-mix

1 and each time the feed-mix is changed, we continue the simulation using the new feed-mix.

The parameters used for the HMDP are given in Table 2.1. The parameter values have been

obtained using information about finisher pig production (Danish conditions) and related literature

(see the footnotes in Table 2.1).

Table 2.2 contains parameter values related to the GSSM and nGSSM. The values have been

estimated with time series generated using the simulation model. More specifically, we used the

expectation-maximization algorithm (Dethlefsen, 2001) to find V and W, and the initial posterior

parameters m0,1 and C0,1 were estimated using the weight data at the time of inserting the piglets

into the pen. For the nGSSM, the initial sample variance s2
0 was calculated using the time series

data and d = 35 is used as the number of weight estimates per day. Finally, note that each feed-

mix implies a special growth rate in the pen (ĝ0, f ) and that feed-mixes with higher growth rates

are more expensive in comparison with other feed-mixes (c f ).

To calculate the revenue of marketing in (2.3), the unit price function p(w̃( j), w̆( j)) should

be specified, which under Danish conditions is the sum of two piecewise linear functions p̃(w̃)

and p̆(w̆) related to the price of carcass and a bonus for the leanness percentage per kg meat,

respectively. We define p̃(w̃) and p̆(w̆) based on the meat prices used in Kristensen et al. (2012)1

as

1For current prices see http://www.danishcrown.dk/Ejer/Noteringer/
Aktuel-svinenotering.aspx

http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx
http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx
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Table 2.1: Parameter values (HMDP).

Parameter Value Description

qmax 15 Number of pigs inserted into the pen.a

bmax 4 Maximum number of feeding phases.a

|F| 3 Number of available feed-mixes.a

tmin
f 3 Minimum number of weeks using feed-mix f .a

tmax 12 Maximum number of weeks in a growing period.a

tmin 9 First possible week of marketing decisions.a

cnewMix 0 Cost of changing the feed-mix (DKK).a

cpig 375 Cost of a piglet (DKK).bc

c f {1.8, 1.88, 1.96} Unit cost of feed-mix f = 1, . . . ,3 (DKK/FEsv).ad

g 6 Average weekly gain (kg) in the herd.c

¯̆w 61 Average leanness percentage in the herd.c

σε 1.4 Standard deviation of ε .c

a Value based on discussions with experts in Danish pig production. b Time series of Danish prices can be seen
at http://www.notering.dk/WebFrontend/. c Value taken from Kristensen et al. (2012). d FEsv is the
energy unit used for feeding the pigs in Denmark. One FEsv is equivalent to 7.72 MJ.

p̃(w̃) =



0 w̃ < 50

0.2w̃−2.7 50≤ w̃ < 60

0.1w̃+3.3 60≤ w̃ < 70

10.3 70≤ w̃ < 86

−0.1w̃+18.9 86≤ w̃ < 95

9.3 95≤ w̃ < 100

9.1 w̃ ≥ 100,

(2.11)

and

p̆(w̆) = 0.1(w̆−61).

A plot of the two functions is given in Figure 2.3.

Finally, in order to initialize the HMDP, possible values of the state variables should be

determined for each stage. For the discrete state variables (qn, tn, fn), the possible values are set

according to the set of states defined in Section 2.3.2. Moreover, based on the discretization

method in the beginning of Section 2.4.3, the continuous state variables (µ̂n, σ̂n, ĝn) are divided

http://www.notering.dk/WebFrontend/
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Figure 2.2: Observed and estimated information of live weight and growth rate in the three pens.
Observed information are average live weight w̄t , average feed intake z̄t and standard deviation
of live weight st per week (resulted from simulation). Estimated information are estimated means
of live weight and growth rate, µ̂t and ĝt (computed using the GSSM), and estimated standard
deviation of live weight σ̂t (computed using the nGSSM). Bars show the number of pigs qn in
the pen before the optimal action is carried out. The vertical dotted and solid lines show the
times when the marketing and feeding decisions occur in the system based on the optimal policy,
respectively.

into the 11, 7 and 5 intervals, respectively. The centre points of these intervals are specified such

that they represent the possible values of the weight and growth information in the system. An

overview over the values of each state variable is given in Table 2.3.

2.5.2 Model results

The HMDP was coded using C++ (gcc compiler) and R (R Core Team, 2015). The source code

is available online (Pourmoayed and Nielsen, 2014b). After the model was built, the optimal

policy was calculated with the modified policy iteration algorithm using the R package “MDP”
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Figure 2.3: Price functions (DKK/kg) given carcass weight ( p̃(w̃) = 0 for w̃ < 50) and leanness
percentage.
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1 4
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1 2 3 4 5 6 7 8 9 10 11 12

Pen 3 (high)

3 3

Figure 2.4: The optimal feeding and marketing decisions for the three pens. Upper part of each
plot illustrates the optimal feed-mix (solid line) and the lower part shows the optimal marketing
decision. Numbers close to cull actions (aq) are the number of pigs culled.



Numerical example 39

Table 2.2: Parameter values (GSSM and nGSSM).

Parameter Value Explanation

GSSM

V
(

0.066 0.027
0.027 0.012

)
Observation variance.a

W
(

2.1 −0.124
−0.124 0.112

)
System variance.a

m0,1

(
26.49

5.8

)
Initial prior mean weight and growth m0,1 = (µ̂0, ĝ0,1) for Feed-mix 1.a

C0,1

(
4.26 0.32
0.32 0.53

)
Initial prior covariance matrix for Feed-mix 1.a

k1t

{0.134 − 0.004i +
0.0001i2 :
i = 1, . . . ,12}

Energy requirements (FEsv) per kg live weight.b

k2 1.549 Energy requirement (FEsv) per kg gain.c

ĝ0, f {5.8,6.3,6.8} Initial growth rate estimate of feed-mix f = 1, . . . ,3.d

nGSSM
s2

0 7.65 Initial sample variance (kg2).a

d 35 Sample size (observations per day).e

a Estimated based on time series generated using the simulation model. b Based on a linear approximation of the
relation between feed intake and growth stated in Jørgensen (1993). c Value taken from Jørgensen (1993). d Value
based on discussions with experts in Danish pig production. e Value used in the simulation model.

Table 2.3: Possible values of the state variables and the range of the centre points in the HMDP.

State / Week (n) 1 2 3 4 5 6 7 8 9 10 11 12

qn 15 15 15 15 15 15 15 15 1-15 1-15 1-15 1-15
tn (week) 1 1 1 1, 4 1, 4-5 1, 4-6 1, 4-7 1, 4-8 1, 4-9 1, 4-10 1, 4-11 1, 4-11
fn 1 1 1 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3 1-3
πµ̂n (kg)a 7-47 14-54 20-61 28-68 35-75 42-82 49-88 56-96 63-103 70-110 77-116 84-124
πσ̂n (kg)a 1.6-6.4 2.1-6.9 2.6-7.4 3.1-7.9 3.6-8.4 4.1-8.9 4.6-9.4 5.1-9.9 5.6-10.4 6.1-10.9 6.6-11.4 7.1-11.9
πĝn (kg)a 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2

a Variables µ̂n, σ̂n, ĝn are discretized into 11, 7, and 5 intervals, respectively. Rows πµ̂n ,πσ̂n , and πĝn show the range of the

possible values of µ̂n, σ̂n and ĝn.

(Nielsen, 2009). The resulting model consists of 802581 states and 5050446 actions (one stage

of the founder process including states and actions of sub-processes).

The CPU time for building and solving the model was 268 and 94 seconds, respectively

(Fujitsu laptop with i7-4800MQ CPU and 32 GB of memory running on a Windows 7, 64 bit

OS). Note that the model has only to be resolved when the model parameters change, e.g. a new

estimation of V and W which might be re-estimated monthly. Therefore, a fast solution time is

not the primary focus.
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The information from each pen, i.e. the values qn, tn, fn, µ̂n, σ̂n and ĝn, is used to find the

relevant state in the HMDP. Next, the optimal action is found using the calculated optimal policy.

The resulting optimal feeding and marketing decisions (i.e. the sample path of the MDP) are

illustrated in Figures 2.2 and 2.4 for each pen. In Figure 2.2 the vertical dotted and solid lines

show weeks where marketing and feeding decisions are taken in the system. The bars show the

number of pigs left in the pen before a (possible) marketing decision. For instance, in week

9, three pigs in Pen 3 are marketed. A detailed overview of the optimal decisions is given in

Figure 2.4. Here the plot of each pen is separated into two parts. The solid line in the upper part

shows the optimal feed-mix. A jump indicates that the optimal decision is to change the current

feed-mix. In the lower part of each plot the optimal marketing decision is illustrated by means of

symbols. For instance, the black dots indicate a culling action.

A closer look at Figure 2.4 shows that all pens start with Feed-mix 1. After 3 weeks, the

feed-mix in Pen 1 (with the lowest weekly gain) changes to Feed-mix 2, resulting in a better

growth rate compared to Feed-mix 1. Pen 1 (low growth) uses this feed-mix until week 8 and

after that Feed-mix 3 is chosen for the remaining weeks because a higher growth is obtained

(compared to using Feed-mix 2), and hence the appropriate live weight is reached at the end of

the growing period. In Pen 2 (normal growth), we change the feed-mix in week 4 from Feed-mix

1 to Feed-mix 2 and until week 12 this feed-mix is used in the pen. In this pen, the average growth

rate is appropriate and there is no need to use a more expensive feed-mix (Feed-mix 3) with a

faster expected growth rate. Finally, in Pen 3 (high growth), the feed-mix remains unchanged

since the pigs genetically grow fast in this pen using the cheapest feed-mix (Feed-mix 1) and they

will have an appropriate live weight in the last weeks of the growing period.

The length of the growing period, i.e. the number of weeks before terminating the pen, differs

between pens. Pens 1 and 2 are terminated at the maximum growth length (week 12) since a good

slaughter weight is reached for the remaining pigs. However, Pen 3 is terminated in week 11.

Due to the high growth rate in this pen, the average weight in week 11 is appropriate and the pen

is terminated such that a new batch of piglets can be inserted into the pen earlier (new production

cycle).

Individual marketing decisions are made in all pens to select the heaviest pigs for marketing.

Usually pigs grow with different growth values in the pen and hence in the last weeks of the

growing period (from week 9 to 12) they obtain different live weights. Hence, these decisions

are made in order to market the pigs that are in the best slaughter weight interval (with a live

weight approximately between 89 and 109 kg due to (2.9) and (2.11)). For instance, in Pen 2, the
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Table 2.4: Three groups of scenarios to show the impact of changing model parameters. The basic
scenario is based on the parameters in Tables 2.1 and 2.2 where tmin = 9 and tmax = 12 weeks.

Scenario group Parameter change Gross margin per week (DKK)

Basic none 71.349

Group 1 - starting time of marketing period
tmin = 8 71.355
tmin = 10 71.249
tmin = 11 70.428

Group 2 - maximum length of marketing period

tmax = 11 34.155
tmax = 13 92.618
tmax = 14 104.644
tmax = 15 110.884

Group 3 - feed-mix unit cost 10% increase 27.444
10% decrease 116.064

4 heaviest pigs are culled in week 11. As a result, these individual marketing decisions lead to

a decrease in the inhomogeneity between the remaining pigs in the pen, which implies a more

consistent growth among the remaining pigs.

Changing the parameters of the model influences on the optimal policy. To make a small

sensitivity analysis, three groups of scenarios are considered and compared with the basic scenario

based on the parameters in Tables 2.1 and 2.2. In the first group of scenarios the starting time of

the marketing period is changed by considering different values of tmin under a fixed growing

period (tmax = 12). In the second group, the maximum length of the marketing period is altered

by changing tmax under a fixed starting time for marketing decisions (tmin = 9) and in the third

group different feed-mix unit costs are taken into account. Under each scenario, the optimal

policy of the HMDP and the gross margin per week are calculated for comparison.

The results are shown in Table 2.4. In Group 1, a change in the starting time of possible

marketing decisions (tmin) has a small impact on the gross margin while in Group 2 the maximum

length of the marketing period (tmax) has a much higher impact on the gross margin per week.

Therefore, it is better to increase the marketing length by extending the growing period tmax

compared to lowering tmin. This illustrates the importance of the length of the growing period in

the pen. Finally, in Group 3, a decrease/increase in the feed-mix unit cost gives a higher/lower

gross margin. The effect is relatively high which shows that the profit of the production unit is

extremely dependent on the feeding costs.
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2.6 Conclusions and further research

In the production of growing pigs, the decision maker must consider feeding and marketing

decisions simultaneously. In this paper, we presented a three-level HMDP which considers both

feeding and marketing decisions at pen level.

We used a Bayesian approach to update the state of the system such that it contains the

updated information based on previous measurements. More specifically, a GSSM is used to

forecast mean weight and growth information based on online measurements and an nGSSM is

used to forecast the weight variance within the pen. By embedding the SSMs into the HMDP, the

model takes into account new online measurements. Both SSMs are embedded into the HMDP

using a general discretization method.

A numerical example shows that the optimal policy adapts to different pen conditions (we used

three pens with different genetic properties) and chooses actions which maximize the expected

reward per time unit. Furthermore, a marginal sensitivity analysis illustrated the importance of

the length of the growing period and feed-mix cost.

The model presented in this paper can be used as a part of a decision support system with

online data such that the system state can be found using Bayesian updating and the optimal

policy of the HMDP can determine the best feeding and marketing decisions at pen level. For

simplicity we have assumed that the three alternative feed mixes available for the pigs are the

same throughout the production period. In practice it would be natural to adjust the feed mixes

to the various growth phases so that the alternatives taken into account depend on the age of the

pigs. It would be straightforward to implement such a more realistic setup so it is not a limitation

for a practical use. Moreover, in practice there is a risk of death in the pen such that about 4%

of the pigs die during the growing period in the finisher unit (Vinther, 2011). The mortality rate

can easily be considered in the model by adding a fixed probability of death to the transition

probabilities of an action. There are, however, some other limitations of the model that require

more thorough consideration.

First, the model considers feeding and marketing decisions at pen level and ignores possible

constraints at section or herd level. For instance, limitations in the feeding management system

and the transportation strategy to the abattoir are currently ignored. That is, we assume weekly

deliveries to the abattoir in the marketing period based on a cooperative agreement where culled

pigs from each pen are grouped in one delivery. Hence, the transportation cost is fixed and can

be ignored. This is the situation in many Danish herds since the majority of farmers in Denmark
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use a single abattoir which also handles the transport. To handle constraints and decisions about

transportation costs (e.g. truck capacity), we need to extend the model from pen level to section or

herd level. Given the current modeling framework, this extension may be difficult due to the curse

of dimensionality since the number of states will grow dramatically. As a result there is a need

for an approximation method to approximate the value function of the HMDP and find the best

marketing policy in the herd. This can be done by using an approximate dynamic programming

approach (Powell, 2007) and is a possible direction of future research.

Second, we may have weekly variations in the carcass price (2.11) and piglet cost in practice.

This fact may have an influence on the marketing decisions but has been ignored in this study

and in previous papers using HMDP models (Nielsen and Kristensen, 2014). Considering price

variations in a model with marketing and feeding decisions is difficult since state variables related

to price information have to be introduced into the model which will result in an exponential

increase in the number of state variables. Two directions are possible. Either approximate dynamic

programming methods are applied or other state variables are excluded from the model. Price

variations can be analyzed using an SSM and Bayesian updating and embedded into an HMDP

which is a subject of future research.

Finally, the model may be extended to handle information and decisions about diseases such

as diarrhea and tail biting.
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2.A Notations

Since the paper uses techniques from both statistical forecasting and operations research, we had

to make some choices with respect to notation. In general, we use capital letters for matrices and

let A′ denote the transpose of A. Capital blackboard bold letters are used for sets (e.g. Wn and

F). Subscript indices indicate e.g. stage, week, and feed-mix and are separated using a comma.

Superscript is only used to indicate the level in the HMDP except when lower and upper limits on

ranges (e.g. tmin
f and tmax) are considered. Greek letters are used for some stochastic variables and

their mean and variance such as θt and µt . Finally, accent x̂ (hat) is used to denote an estimate of x

and accent x̄ (bar) the average of a group of x-variables. A description of the notation introduced

in Section 2.3 and Section 2.4 is given in Tables 2.5 and 2.6, respectively.
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Table 2.5: Notation - HMDP model (Section 2.3). Given in approx. the order introduced.

Symbol Description

In Set of states at stage n.
An(i) Set of actions given stage n and state i.
rn(i,a) Reward at stage n given state i and action a.
un(i,a) Expected length until the next decision epoch at stage n given state i and action a.
Pr( j | n, i,a) Transition probability from state i at stage n to state j at the next stage under action a.
Pr0(i) Initial probability of state i.
pl A process at level l (superscript is used to indicate level).
N l Time horizon of process pl at level l.
nl , il ,al A stage, state, and action in process pl .
qmax Number of pigs inserted into the pen.
bmax Maximum number of feeding phases.
tmax Latest week of pen termination.
tmin

f Minimum number of weeks for using feed-mix f .
tmin First possible week of marketing decisions.

fn Previous feed-mix used at stage/phase n−1, fn ∈ F (set of possible feed-mixes).
tn Starting time of phase/stage n (week number), 1≤ tn ≤ tmax−1.
qn Remaining pigs in the pen at stage n, 1≤ qn ≤ qmax.
wn Model information related to the weight of the pigs,wn ∈Wn (set of possible weight information).
gn Model information related to the growth of the pigs, gn ∈Gn (set of possible growth information).
a f Child jump action for choosing feed-mix f ∈ F.
anewMix Parent jump action related to changing the current feed-mix.
aterm Parent jump action related to terminating a pen.
acont Action related to continuing the production process without any marketing.
aq Action related to marketing the q heaviest pigs in the pen (1≤ q < qn).
cpig Unit cost of a piglet (DKK).
cnewMix Fixed cost of changing the feed-mix (DKK).
c f Unit cost of feed-mix f (DKK/FEsv).
w(k) Weight of the kth pig in the pen (kg).
z(k) Weekly feed intake of the kth pig in the pen (FEsv).
w̃(k) Carcass weight of the kth pig in the pen (kg).
w̆(k) Lean meat percentage of the kth pig in the pen (%).
p̃(w̃) Unit price of carcass meat (DKK/kg).
p̆(w̆) Leanness bonus for 1 kg meat (DKK/kg).
p(w̃, w̆) Unit price of meat, p(w̃, w̆) = p̃(w̃)+ p̆(w̆) (DKK/kg).
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Table 2.6: Notation - GSSM and nGSSM models (Section 2.4). Given in approx. the order
introduced.

Symbol Description

GSSM (Section 2.4.1)
µt Mean weight in the pen at time t.
gt Mean growth in the pen at time t.
w̄t Average weight estimate at time t, w̄t = ∑

d
k=1 ŵk/d where ŵk denotes the kth weight estimate and d is

the number of weight observations per time unit (sample size).
z̄t Average feed intake per pig at time t.
θt Latent/unobservable variable(s).
yt Observable variable(s).
G Design matrix of system equation.
Ft Design matrix of observation equation.
ωt System noise, ωt ∼ N(0,W) where W denotes the system covariance matrix.
νt Observation error, νt ∼ N(0,V) where V denotes the observation covariance matrix.
(m0,C0) Mean and covariance matrix of prior given feed-mix f , θ0 ∼ N(m0,C0 .
Dt Set of information available up to time t in the system, Dt = (y1, ...,yt ,m0,C0).
(mt ,Ct) Mean and covariance matrix of posterior at time t, (θt | Dt)∼ N(mt ,Ct).
k1t Energy requirement per kg live weight (FEsv/kg).
k2 Energy requirement per kg gain (FEsv/kg).

nGSSM (Section 2.4.2)
σt Standard deviation of the weights in the pen at time t.
s2

t Sample variance of weights in the pen at time t, s2
t = ∑

d
j=1(ŵ j− w̄t)

2/(d−1).
ηt Natural parameter of the exponential family distribution.
(at ,bt) Shape and scale parameter of the Gamma distribution, s2

t ∼ Gamma(at ,bt).
(ct ,dt) Shape and scale parameter of the inverse-Gamma distribution, (σ0)

2 ∼ Inv-Gamma(ct ,dt).

Embedding into the HMDP (Section 2.4.3)
Uxn Set of disjoint intervals representing the partitioning of possible values of estimate x at stage n,

Uxn = {Π1, . . . ,Π|Uxn |} where Πk denotes interval k.
πk Centre point of Πk.
ε Random error in estimation of carcass weight given live weight, ε ∼ N(0,σ2

ε ) where σε denotes the
standard deviation.

g Average weekly gain (kg) in the herd.
ḡ(k) Average daily growth/gain of the kth pig until marketing.
¯̆w Average leanness percentage in the herd.
µ̂0 Initial average weight (kg) at insertion time into the pen.
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2.B Statistical models for Bayesian updating

Gaussian state space model (GSSM)

A GSSM includes a set of observable and latent/unobservable continuous variables. The set of

latent variables θ{t=0,1,...} evolves over time using system equation (written using matrix notation)

θt = Gtθt−1 +ωt ,

where ωt ∼ N (0,Wt) is a random term and Gt is a matrix of known values. We assume that the

prior θ0∼N(m0,C0) is given. Moreover, we have a set of observable variables y{t=1,2,...} (the data

acquired from the online sensors) which are dependent on the latent variable using observation

equation

yt = F ′t θt +νt ,

with νt ∼ N (0,Vt). Here F is the design matrix of system equations with known values and F ′

denotes the transpose to matrix F .

The error sequences ωt and νt are internally and mutually independent. Hence given θt we

have that yt is independent of all other observations and in general the past and the future are

independent given the present.

Let Dt−1 = (y1, ...,yt−1,m0,C0) denote the information available up to time t−1. Given the

posterior of the latent variable at time t−1, we can use Bayesian updating (the Kalman filter) to

update the distributions at time t (West and Harrison, 1997, Theorem 4.1).

Theorem 1 Suppose that at time t−1 we have

(θt−1 | Dt−1)∼ N (mt−1,Ct−1) , (posterior at time t−1).

then

(θt | Dt−1)∼ N (bt ,Rt) , (prior at time t)

(yt | Dt−1)∼ N ( ft ,Qt) , (one-step forecast at time t−1)

(θt | Dt)∼ N (mt ,Ct) , (posterior at time t)
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where

bt = Gtmt−1, Rt = GtCt−1G′t +Wt

ft = F ′t bt , Qt = F ′t RtFt +Vt

et = yt− ft , Bt = RtFtQ−1
t

mt = bt +Btet , Ct = Rt−BtQtB′t .

Note that the one-step forecast mean ft only depends on mt−1, i.e. we only need to keep the most

recent conditional mean of θt−1 to forecast the next value. Hence when making a prediction based

on Dt−1, we need only to store mt−1. Similarly, the variance Qt only depends on the number of

observations made, i.e. we can calculate a sequence Q1, ...,Qt without knowing the observations

y1, ...,yt .

The distribution of (mt+1 | mt) can also be found (Nielsen et al., 2011, page 303).

Theorem 2 The conditional random variable (mt+1 |mt) follows a multivariate normal distribu-

tion

(mt+1 | mt)∼ N(Gt+1mt ,Bt+1Qt+1B′t+1).

Non-Gaussian state space model (nGSSM)

An nGSSM relaxes the Gaussian assumption of the observed values, i.e. observations are not

conditional Gaussian given the values of the latent variable θt . Instead the probability distribution

of the observable variable yt belongs to the exponential family, i.e. the density function is:

f (yt |ηt ,ut) = exp
(

x(yt)ηt−a(ηt)

ut

)
q(yt ,ut), (2.12)

with natural parameter ηt and scale parameter ut . Functions a(ηt), x(yt), and q(yt ,ut) are

assumed known. The equation

g(ηt) = Ftθt , (2.13)

defines the impact of the latent variable θt on the natural parameter ηt . Here, g(ηt) is a known

function. Finally, to specify the full nGSSM model, a system equation has to be specified:

θt = Gtθt−1 +κt ,

with κt ∼ [0,Ht ], meaning that κt has zero mean and a covariance matrix Ht . There is no as-

sumption about a normal distribution. In other words, the distribution is only partially specified

through its mean and variance (we use the notation κt ∼ [mt ,Ht ]).
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As for the GSSM, the purpose of Bayesian updating is to estimate the latent variable θt using

previous information Dt−1 = (y1, ...,yt−1,m0,C0) available up to time t − 1. However, due to

(2.13) we also estimate the parameter ηt . An updating procedure was presented by Kristensen

et al. (2010, Section 8.5.4). Since there is no normality assumption, only an approximate analysis

can be conducted. Moreover, the conjugate family of ηt must be known.

In our application a gamma distribution with shape parameter at and scale parameter bt is

used, i.e. ηt =−1/atbt , Vt = 1/at , a(ηt) = ln(−1
ηt
), x(yt) = yt and q(yt ,at) = yat−1

t aat
t /Γ(at) and

the density becomes

f (yt |at ,bt) =
exp(−yt/bt)y

at−1
t

bat
t Γ(at)

. (2.14)

Moreover, the conjugate prior of g(ηt) is an Inverse-Gamma distribution. As a result, the updating

procedure (Kristensen et al., 2010, Section 8.5.4) reduces to the theorem below.

Theorem 3 Suppose that at time t−1 we have

(θt−1 | Dt−1)∼ [mt−1,Ct−1] (posterior at time t−1),

Moreover, assume that g(ηt)∼ Inv-Gamma(ct ,dt), g(ηt)=−1/ηt , and that the density f (yt |at ,bt)

equals (2.14). Then

(θt | Dt−1)∼ [bt ,Rt ] (prior at time t),

(g(ηt) | Dt−1)∼ [ ft ,Qt ] (prior of g(ηt) at time t),

(θt | Dt)∼ [mt ,Ct ] (posterior at time t),

where

bt = Gtmt−1, Rt = GtCt−1G′t +Ht ,

ft = F ′t bt , Qt = F ′t RtFt ,

mt = bt +RtFt( f ∗t − ft)/Qt , Ct = Rt−RtFtF ′t Rt(1−Q∗t /Qt)/Qt ,

f ∗t =
α∗t
β ∗t

, Q∗t =
α∗2t

(β ∗t )2(β ∗t −1)

α
∗
t = αt +atyt , β

∗
t = βt +at ,

αt =
f 3
t

Qt
+ ft , βt =

f 2
t

Qt
+1.

PROOF Consider the updating procedure by Kristensen et al. (2010, Section 8.5.4) which consists

of seven steps. The first three steps are the same, but repeated below for readability.
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a) Posterior information for θt−1 at time t−1:

(θt−1 | Dt−1)∼ [mt−1,Ct−1],

b) Prior for θt at time t:

(θt | Dt−1)∼ [bt ,Rt ], bt = Gtmt−1, Rt = GtCt−1G′t +Ht .

c) Prior for g(ηt) at time t:

(g(ηt) | Dt−1)∼ [ ft ,Qt ], ft = F ′t bt , Qt = F ′t RtFt .

d) Approximate full prior for ηt at time t: According to our assumptions we have that (g(ηt) |
Dt−1) ∼ Inv-Gamma(ct ,dt) where ct and dt are the shape and scale parameters, g(ηt) =

−1/ηt , and that the density of yt is (2.14).

In this step we need to identify the conjugate prior of ηt =−1/g(ηt) using the general

form of the conjugate prior with two parameters αt and βt (Kristensen et al., 2010):

f (ηt |Dt−1) = c(αt ,βt)exp(αtηt−βta(ηt)),

where c(αt ,βt) is a known function and a(ηt) = ln(−1/ηt) as defined in (2.12). If we

suppose y = ηt and x = g(ηt), i.e. y = h(x) = −1
x , then by applying the transformation rule,

the density function of ηt is

f (ηt |Dt−1) = fx(h−1(y)|Dt−1)
∂h−1(y)

∂y

=
dct

t

Γ(ct)
(−1/ηt)

−ct−1 exp
(
− dt

−1/ηt

)
1

η2
t

=
dct

t

Γ(ct)
(−ηt)

ct−1 exp(dtηt)

=
dct

t

Γ(ct)
exp(dtηt− (ct−1) ln(

−1
ηt

)).

Hence the parameters αt and βt in the conjugate prior of ηt become:

αt = dt , βt = ct−1. (2.15)

Finally, we fit αt and βt such that

E(g(ηt) | Dt−1) =
dt

ct−1
=

αt

βt
= ft , (2.16)

Var(g(ηt) | Dt−1) =
d2

t
(ct−1)2(ct−2)

=
α2

t
(βt)2(βt−1)

= Qt ,
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implying that

αt =
f 3
t

Qt
+ ft , βt =

f 2
t

Qt
+1.

e) One step forecast of yt : In this step we need to find the forecast distribution f (yt |Dt−1).

According to the concepts of the nGSSM models, the general form of this distribution with

two parameters αt and βt is (Kristensen et al., 2010):

f (yt |Dt−1) =
c(αt ,βt)q(yt ,ut)

c(αt +φtx(yt),βt +φt)
,

where q(yt ,ut) and x(yt) have been defined in (2.12) and φt =
1
ut

. Using the values of αt

and βt found in Step d, the forecast distribution f (yt |Dt−1) equals

f (yt |Dt−1) =
1

B(at ,ct)
· 1
dt/at

·
(

yt−0
dt/at

)at−1

·
(

1+
yt−0
dt/at

)−at−ct

,

where B(at ,ct) =
Γ(at)Γ(ct)
Γ(at+ct)

. That is a generalized beta prime distribution denoted by β ′

(Crooks, 2013, page 50) and hence

(yt |Dt−1)∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5), (2.17)

with parameters: ψ1 = 0 (location); ψ2 = dt/at (scale); ψ3 = at (first shape); ψ4 = ct

(second shape); and ψ5 = 1 (Weibull power parameter).

f) Posterior distributions for ηt and g(ηt) at time t: The general form of posterior density

function of ηt is:

f (ηt |Dt) = c(α∗t ,β
∗
t )exp(α∗t ηt−β

∗
t a(ηt)),

with

α
∗
t = αt +φtyt = αt +atyt , β

∗
t = βt +φt = βt +at . (2.18)

The last relation follows from φt =
1
ut
= at . If we suppose x = ηt and y = g(ηt) then, based

on relation g(ηt) =−1/ηt , we have y = h(x) = −1
x and using the transformation rule, the
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posterior distribution of g(ηt) is:

fg(ηt)(g(ηt)|Dt) = fx(h−1(y)|Dt)
∂h−1(y)

∂y

=
(α∗t )

β ∗t +1

Γ(β ∗t +1)
exp(

−α∗t
g(ηt)

−β
∗
t ln(g(ηt)))

1
g(ηt)2

=
(α∗t )

β ∗t +1

Γ(β ∗t +1)
(g(ηt))

−(β ∗t +1)−1 exp(− α∗t
g(ηt)

). (2.19)

It follows from (2.19) that (g(ηt) | Dt)∼ Inv-Gamma(c∗t ,d
∗
t ) with

c∗t = β
∗
t +1, d∗t = α

∗
t .

Next, we fit α∗t and β ∗t such that

f ∗t = E(g(ηt) | Dt) =
d∗t

c∗t −1
=

α∗t
β ∗t

,

Q∗t = Var(g(ηt) | Dt) =
(d∗t )

2

(c∗t −1)2(c∗t −2)
=

(α∗t )
2

(β ∗t )2(β ∗t −1)
,

g) Posterior of θt at t: The posterior parameters mt and Ct are

mt = bt +RtFt( f ∗t − ft)/Qt , Ct = Rt−RtFtF ′t Rt(1−Q∗t /Qt)/Qt .

Since the above steps calculate the values stated in Theorem 3, this finishes the proof.

Corollary 1 Given Theorem 3 and Ft = 1 we have that

ft = bt , Qt = Rt ,

mt = f ∗t , Ct = Q∗t .

Finally, the probability distribution of (mt+1 | mt) can be found.

Theorem 4 Under Theorem 3 and Corollary 1 and assuming Ht = 0, the conditional random

variable (mt+1 | mt) follows a generalized beta prime distribution. That is,

(mt+1 | mt)∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5),

with parameters: ψ1 =Gt+1mtβ
∗
t /(β

∗
t +at+1) (location), ψ2 =ψ1 (scale), ψ3 = at+1 (first shape),

ψ4 = β ∗t +1 (second shape), and ψ5 = 1 (Weibull power) where at+1 is the shape parameter of

the exponential family distribution of yt+1.
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PROOF Assume that Theorem 3 and Corollary 1 hold. Then

(mt+1 | mt) = ( f ∗t+1 | mt) = (
α∗t+1

β ∗t+1
| mt) = At+1 +Bt+1(yt+1|Dt),

since based on (2.18) we have that

α∗t+1

β ∗t+1
= At+1 +Bt+1yt+1,

where

At+1 =
αt+1

βt+1 +at+1
, Bt+1 =

at+1

βt+1 +at+1
.

From (2.16) and since Ht = 0, we have that

βt+1 =
αt+1

ft+1
=

f 2
t+1

Qt+1
+1 =

(Gt+1 f ∗t )
2

Gt+1Q∗t G′t+1
+1 =

f ∗2t
Q∗t

+1 =

(
α∗t
β ∗t

)2
α∗2t

β ∗2t (β ∗t −1)
+1 = β

∗
t ,

which implies that

αt+1 = ft+1βt+1 = ft+1β
∗
t = Gt+1mtβ

∗
t .

As a result we can compute At+1 and Bt+1 as

At+1 =
Gt+1mtβ

∗
t

β ∗t +at+1
, Bt+1 =

at+1

β ∗t +at+1
,

which are two scalars given mt (since parameters at+1 and β ∗t are known values given t).

Recall from (2.17), we have that (yt+1 |Dt)∼ β ′(ψ̌1, ψ̌2, ψ̌3, ψ̌4, ψ̌5), with parameters: ψ̌1 = 0

(location), ψ̌2 = dt+1/at+1 (scale), ψ̌3 = at+1 (first shape), ψ̌4 = ct+1 (second shape), and ψ̌5 = 1

(Weibull power parameter). Hence we have that

(mt+1 | mt)∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5),

with parameters: ψ1 = At+1, ψ2 = Bt+1dt+1/at+1, ψ3 = at+1, ψ4 = ct+1, and ψ5 = 1. Here we

have used the property that if

X ∼ β
′(ψ1,ψ2,ψ3,ψ4,ψ5),

then (based on the transformation rule)

a+bX ∼ β
′(a+ψ1,bψ2,ψ3,ψ4,ψ5).
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Note that due to (2.15), we have that

ψ2 = Bt+1dt+1/at+1 =
dt+1

β ∗t +at+1
=

αt+1

β ∗t +at+1
= At+1,

and

ψ4 = ct+1 = βt+1 +1 = β
∗
t +1,

which finishes the proof.
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Slaughter pig marketing under price fluctuations

Reza Pourmoayed and Lars Relund Nielsen

CORAL, Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210

Aarhus V, Denmark.

Abstract: In the production of fattening pigs, pig marketing refers to a sequence of culling

decisions until the production unit is empty. The profit of a production unit is highly dependent

on the price of pork, the cost of feeding and the cost of buying piglets. Price fluctuations in the

market consequently influence the profit, and the optimal marketing decisions may change under

different price conditions. In this paper we formulate a hierarchical Markov decision process

with two levels which model sequential marketing decisions under price fluctuations in a pig pen.

The state of the system is based on information about pork, piglet and feed prices. Moreover, the

information is updated using a Bayesian approach and embedded into the hierarchical Markov

decision process. The optimal policy is analyzed under different patterns of price fluctuations.

We also assess the value of including price information into the model.

Keywords: OR in agriculture; Markov decision process; herd management; Bayesian updating;

price fluctuations.

3.1 Introduction

In the production of fattening pigs, one of the main managerial decisions is pig marketing (Kure,

1997). It refers to a sequence of culling decisions until the production unit is empty. The profit at

marketing depends on endogenous factors such as growth, housing conditions and management

policy as well as exogenous factors such as market prices. Prices of pork, piglets and feed may

fluctuate in the market on a weekly basis and hence the farmer should take into account the

influence of price fluctuations when he decides when to send animals to the abattoir.

In a production system of growing/finishing pigs (Danish standards), animals may be consid-

ered at different levels: herd, section, pen, or animal. The herd is a group of sections, a section

includes some pens, and a pen involves some animals (usually 15-20). When the production

process of growing/finishing (fattening) pigs is started, the farmer either buys piglets on the
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market or transfers them from another production unit when they weigh approx. 30 kg. The

piglets are inserted into a finisher pen where they grow until marketing (9-15 weeks). Since pigs

in general grow with different growth rates, they obtain their slaughter weight at different times in

the last weeks of the growing period. At the end of the growing period the farmer should therefore

determine which pigs should be selected for slaughter (individual marketing). The reward of

marketing a pig depends on the pork price of the carcass weight, the cost of buying the piglet on

the market, i.e. the piglet price and the cost of feeding which is dependent on the feed price at

the time when the feed stock is bought (e.g. at the start of the production cycle). Next, after a

sequence of individual marketings, the farmer must decide when to terminate (empty) the rest of

the pen. Terminating a pen means that the remaining pigs in the pen are sent to the slaughterhouse

(in one delivery) and after cleaning the pen, another group of piglets (each weighing approx. 30

kg) is inserted into the pen and the production cycle is repeated. That is, the farmer must time

the marketing decisions while simultaneously considering the carcass weight, the length of the

production cycle and exogenous price conditions. For an extended overview over pig production

of growing pigs, see Pourmoayed and Nielsen (2014).

Various studies have considered pig marketing (see e.g. Ohlmann and Jones (2008); Kris-

tensen et al. (2012), and Khamjan et al. (2013)). However, in these studies, the marketing policy

has been investigated under constant price conditions. Only a few studies take price fluctuations

into account. Broekmans (1992) analyzed the effect of price fluctuations on the marketing policy

of fattening pigs by using a two-level hierarchical Markov decision process. He analysed price

fluctuations by a first order autoregressive model proposed by Jørgensen (1992). Due to the curse

of dimensionality, in this study a limited range of possible price values was considered in the

problem such that the state variables related to the price information were divided into a limited

number of groups. Moreover, learning aspects of price parameters from the historical data were

not taken into account in this research. In the study by Roemen and de Klein (2000), only a

fluctuating pork price was considered and the piglet price was modeled as a constant factor of the

pork price. They used a Markov decision process to model the sequential marketing decisions

under pork price fluctuations but no numerical example was given to show the efficiency of the

proposed model.

In order to close this gap in the literature, we consider pig marketing at pen level under

three price fluctuations, namely, the pork, piglet and feed prices. A hierarchical Markov decision

process (HMDP) with two levels is used to model the sequential decisions of marketing at pen

level. The state of the system is based on information about pork, piglet and feed prices. The
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model considers time series of pork, piglet and feed prices obtained from the market and a

learning approach based on Bayesian updating is applied to update price information using the

historical data which is embedded into the HMDP. More precisely, we use three state space

models for Bayesian forecasting (West and Harrison, 1997) to update the future estimates of pork,

piglet and feed prices on a weekly basis. Numerical examples are given to analyze the optimal

decisions under different patterns of price fluctuations and to evaluate the value of including price

information into the model.

The paper is organized as follows. First, Section 3.2 gives a short literature review. In Sec-

tion 3.3, the optimization model is explained in detail. Section 3.4 gives an overview on how

Bayesian updating is used to update price information and describes a procedure for embedding

the statistical models into the HMDP. Next, in Section 3.5 we test the model under different

scenarios and evaluate the value of including price information into the HMDP, and finally in

Section 3.6, we conclude the paper.

3.2 Literature review

The problem of finding the optimal pig marketing policy, i.e. an optimal sequence of culling

decisions until the production unit is empty, has been studied by a variety of researchers under

different conditions.

Jørgensen (1993) proposed a stochastic dynamic programming model with a probabilistic

growth function to find the best marketing policy of fattening pigs and examined the value of

weighing precision and its relation with the marketing decisions. Chavas et al. (1985) showed the

importance of the animal growth on the marketing decisions by using the concepts of optimal

control theory. Kure (1997) applied the principles of replacement theory to find the best timing

of marketing decisions in a batch of animals. Toft et al. (2005) used a multi-level hierarchical

Markov decision process to optimize the delivery strategy of pigs to the abattoir and to control

epidemic diseases simultaneously. Boys et al. (2007) determined the best marketing policy of

pigs using a simulation approach to utilize the maximum capacity of trucks for delivering the pigs

to the abattoir. Ohlmann and Jones (2008) considered the effect of stocking space and shipping

on the problem and found the best timing of delivery to the packers using a mixed-integer linear

programming model. Kristensen et al. (2012) proposed a two-level hierarchical Markov decision

process and a state space model to optimize the marketing policy of the farm under online

information acquired from sensor data. In the study by Plà-Aragonés et al. (2013), the optimal
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marketing policy was found by a mixed integer linear programming method under an all-in all-out

strategy. Khamjan et al. (2013) considered a two level supply chain of fattening units (as supplier)

and slaughterhouse (as buyer) to find the best procurement plan of buying the pigs from a zone

of farms. They formulated the problem by a mathematical programming model and solved their

model using a heuristic approach under different pig size distributions and pig growth rates.

The above mentioned studies investigated the marketing policy under constant price condi-

tions. Only a few studies take price fluctuations into account. Broekmans (1992) analyzed the

effect of price fluctuations on the marketing policy of fattening pigs using a first order autore-

gressive model proposed by Jørgensen (1992) with a limited range of possible price values. In

the study by Roemen and de Klein (2000), a Markov model with fluctuating pork prices was

suggested.

Few studies take both marketing and feeding decisions into account. Niemi (2006) used a

mechanistic function to model the animal growth trend during the growing period. Niemi (2006)

further applied a stochastic dynamic programming method to find the best nutrient ingredients and

also the best time of marketing. In the study by Sirisatien et al. (2009), a genetic algorithm was

used to find a set of feeding schedules followed by the optimal values of the nutrient ingredients

and feeding period. Both studies considered the problem at animal level and did not take into

account the inhomogeneity of animals with respect to growth and feed conversion rate. In a recent

study, Pourmoayed et al. (2016) have considered optimal marketing and feeding strategies in a

finisher pen.

Markov decision models are a well-known modeling technique within animal science used

to model livestock systems. See for instance Rodriguez et al. (2011) and Nielsen et al. (2010).

For a recent survey see Nielsen and Kristensen (2014), which cites more than 100 papers using

(hierarchical) Markov decision processes to model and optimize livestock systems. An HMDP

is an extension of a semi Markov decision process (semi-MDP) where a series of finite-horizon

semi-MDPs are combined into one process at the founder level called the main/founder process

(Kristensen, 1988; Kristensen and Jørgensen, 2000). As a result, the state space at the founder

level can be reduced, and larger models can be solved using a modified policy iteration algorithm

under different criteria (Nielsen and Kristensen, 2014).

In this paper we will model price fluctuations using a state space model (SSM) (West and

Harrison, 1997). An SSM is a statistical model which may be used to transform time-series

obtained from the market or via online sensors into the required information needed by e.g. the

HMDP. Applications of SSMs in time-series analysis of e.g. price data can be found in Durbin
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Figure 3.1: An illustration of a stage in an HMDP. At the founder level (Level 0) there is a single
infinite-horizon founder process p0. A child process, such as p1 at Level 1 (oval box), is uniquely
defined by a given stage, state (node), and action (hyperarc) of its parent process and linked with
the parent process using its initial probability distribution (solid lines) and its terminating actions
(dashed lines). Each process at level 2 is a semi-MDP. Note that only a subset of the actions have
been shown in the figure.

and Koopman (2012). Examples of SSMs applied to agricultural problems are Bono et al. (2012);

Cornou et al. (2008) and Bono et al. (2013). Moreover, an SSM can be discretized and embedded

into an HMDP (Nielsen et al., 2011).

3.3 Optimization model

In this study, sequential pig marketing decisions are modeled using a hierarchical Markov

decision process (HMDP). A short introduction to HMDPs is given below. Since techniques from

both statistical forecasting and operations research are used, a consistent notation can be hard to

specify. To assist the reader, Appendix 3.A provides an overview over the notation.

An HMDP is an extension of a semi-Markov decision process (semi-MDP) where a series

of finite-horizon semi-MDPs are combined into one infinite time-horizon process at the founder

level called the founder process (Kristensen and Jørgensen, 2000). The idea is to expand stages

of a process to so-called child processes, which again may expand stages further to new child

processes leading to multiple levels. At the lowest level, the HMDP consists of a set of finite-

horizon semi-MDPs (see e.g. Tijms, 2003, Chap. 7). All processes are linked together using jump

actions (see Figure 3.1).
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In order to have a frame of reference, we exploit the notation used for a semi-MDP and

extend it to an HMDP. A finite-horizon semi-MDP models a sequential decision problem over N

stages. Let In denote the finite set of system states at stage n. Given system state i ∈ In at stage

n, an action a from the finite set of allowable actions An(i) is chosen generating two outcomes:

an immediate reward rn(i,a) and a probabilistic transition to state j ∈ In+1 at stage n+1 with

transition probability Pr( j | n, i,a). Moreover, let un(i,a) denote the stage length of action a, i.e.

the expected time until the next decision epoch (stage n+1) given action a and state i.

An HMDP with two levels is illustrated in Figure 3.1 using a state-expanded hypergraph

(Nielsen and Kristensen, 2006). At the first level, a single founder process p0 is defined. Index

0 indicates that the process has no ancestral processes. Process p0 is running over an infinite

number of stages and all stages have identical state and action spaces and hence just a single

stage is illustrated in Figure 3.1. Let pl+1 denote a child process at level l +1. Process pl+1 is

uniquely defined by a given stage nl , state il and action al of parent process pl . For instance, the

semi-MDP p1 in Figure 3.1 is defined at stage n0, state i0 and action a0 of the founder process p0

symbolized by the notation p1 = (p0 ‖ (n0, i0,a0) ). Each process is connected to its parent and

child processes using jump actions which can be divided into two groups, namely, a child jump

action that represents an initial probability distribution of transitions to a child process or a parent

jump action that represents a terminating probability distribution of transitions to a parent process.

This is illustrated in Figure 3.1 where child jump action a0 (illustrated using a solid hyperarc)

represents a transition to the child process p1 and parent jump action a1 (illustrated using a dashed

hyperarc) represents termination of the process p1. Jump actions are like the traditional actions

associated with an expected reward, action length, and a set of transition probabilities. Each node

in Figure 3.1 at a given stage n of a process pl corresponds to a state in In . For example, there are

three states at stage 3 in process p1. Similarly, each gray hyperarc corresponds to an action, e.g.

action a results in a transition from state i1 to either state j1, j2 or j3.

A policy is a decision rule/function that assigns to each state in a process a (jump) action. That

is, choosing a policy corresponds to choosing a single hyperarc out of each node in Figure 3.1.

Given a policy, the reward at a stage of a parent process equals the total expected rewards of

the corresponding child process. For instance, in Figure 3.1, the reward of choosing action a0 in

state i0 at stage n0 in process p0 equals the total expected reward of process p1. With a similar

approach, the transition probabilities and the stage length of an action can be calculated at a stage

of a parent process.

Different optimality criteria may be considered. In this paper, our optimality criterion is to
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maximize the expected reward per time unit and the optimal policy of the HMDP is found using

a modified policy iteration algorithm. For a detailed description of the algorithm, the interested

reader may consult Kristensen and Jørgensen (2000) and Nielsen and Kristensen (2014).

3.3.1 Assumptions

The HMDP which models marketing decisions in a finisher pen is formulated under the following

assumptions:

1. The fixed number of pigs inserted into the pen at the beginning of each production cycle is

qmax.

2. Marketing of pigs is started in week tmin at the earliest;

3. The pen is terminated in week tmax at the latest, i.e. the maximum life time of a pig in the

pen is tmax.

4. The sequence of feed-mixes used during the production cycle (feeding strategy) is known

and fixed.

5. When a marketing decision happens, the preparation time for delivering the pigs to the

abattoir is b.

6. Weekly deliveries to the abattoir in the marketing period are based on a cooperative agree-

ment where culled pigs from each pen are grouped into one delivery, i.e. the transportation

cost is fixed.

7. Marketing decisions are taken on a weekly basis, and a decision must be taken b days

before each delivery.

8. After terminating the pen, the length of the period for cleaning the pen is h.

9. A new batch of piglets and the required feed stock are bought using market prices at the

start of each production cycle.

10. The growth of a pig is independent of the other pigs in the pen, i.e. the growth does not

depend on the number of pigs in the pen.

11. Pigs are sold to the abattoir using the market pork price.

To give a complete description of the two-level HMDP with marketing decisions, the char-

acteristics of each semi-MDP should be specified at all levels, i.e. stages, states, and (jump)

actions including the corresponding rewards, stage lengths (measured in weeks), and transition

probabilities.
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3.3.2 Stages, states and actions

As illustrated in Figure 3.1, the founder process of the HMDP is an infinite time-horizon process

where a stage represents a lifetime of qmax pigs inserted into the pen (until termination). A stage

of a process at the second level corresponds to either the period from insertion of the piglets until

the marketing starts or a week in the marketing period (weeks tmin to tmax). The length, stage,

states, and (jump) actions of each process at levels 0 and 1 are described below. To avoid heavy

notation, the superscript indicating the current level under consideration is left out whenever the

level is clear from the context.

Level 0 - Founder process p0

Stage: A production cycle of qmax pigs, i.e. from inserting the piglets into the pen until terminat-

ing the pen.

Time horizon: Infinite (the pen is filled and emptied an infinite number of times).

States: Due to the infinite time horizon, the state space is homogeneous and hence the stage

index can be ignored when a state is defined at the founder process. A state i0 = p ∈ P
represents our information about the pork, piglet and feed prices (i.e. I = P). The price

information is obtained from the market. Definition of p is given in Section 3.4.

Actions: For each state, a single child jump action a0 (insertion of the piglets into the pen) is

defined representing the initial probability distribution of transitions to the child process.

The length of this action is zero.

Since the stage index can be ignored and there is only a single action, a child process is uniquely

defined for each state i0 = p. That is, child process p1 = (p0||n0, i0,a0) is equivalent to p1 =

(p0||p).

Level 1 - Child process p1 = (p0||n0, i0,a0)

Stage: The first stage (n = 1) represents the period from insertion of the piglets (week 1) until

the start of marketing decisions (week tmin). The remaining stages (n > 1) represent a week

in the marketing period (weeks tmin to tmax). That is, stage n = 1 corresponds to the start

of week 1 and stage n > 1 the start of week n+ tmin−2.
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Time horizon: Due to the definition of stages, the maximum number of stages is N = tmax−
tmin +2.

States: Given stage n, state i is defined using state variables:

dn: information related to the deviations from the pork, piglet and feed price information

given in state i0, acquired using Bayesian updating (dn ∈ Dn). This information is

obtained using the SSMs explained in Section 3.4;

qn: number of pigs in the pen at the beginning of stage n.

Note that if n ≤ 2 then qn = qmax. Hence the set of states becomes

In =
{

i = (dn ,qn) | dn ∈Dn,qn ∈ {1 · I{n>2}+qmax · I{n≤2}, . . . ,q
max}

}
,

where I{·} denotes the indicator function.

Actions: Consider state i = (dn,qn) at stage n. If n = 1, then marketing is not possible and the

production process continues using action acont. If 1 < n < N , then the set of actions are

acont, the parent jump action aterm showing the pen is terminated, and actions aq implying

that the q heaviest pigs are culled (individual marketing). Finally, at the last stage n = N ,

the pen must be terminated (aterm). Hence the set of actions becomes:

An(i) =


{acont} n = 1

{aterm,acont}∪{aq | 1≤ q < qn} 1 < n < N ,

{aterm} n = N .

(3.1)

The length of action acont at stage 1 is tmin−1 weeks while for stage n > 1 the lengths of

actions acont and aq are one week. For action aterm the length is h+b days.

3.3.3 Transition probabilities

Founder process p0

Given stage n0 and state i0 = p, a single child jump action a0 was defined with a transition

between the levels of the HMDP from state i0 to state j1 = (d1,q1) at the first stage of process

p1 (n1 = 1). Since q1 = qmax, the transition probability becomes

Pr
(

j1 | n0, i0,a0)= Pr(d1 | p) , (3.2)
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where Pr(d1 | p) is the initial probability of price deviations d1 given price information p. The

probability Pr(d1 | p) depends on the statistical models used for Bayesian updating of the price

information and will be explained in Section 3.4.

Child process p1 = (p0||n0, i0,a0)

As described in (3.1), for a given state i = (dn,qn) at stage n of process p1, there are three

possible actions acont, aq and aterm.

Given actions acont or aq, a transition occurs to state j = (dn+1,qn+1) at the next stage of

process p1. If the process continues without marketing decisions (action acont), the only change

of the system is related to the state variable describing price deviations. Hence, the transition

probability is

Pr( j | n, i,acont) =

Pr(dn+1 | dn) qn+1 = qn ,

0 otherwise.
(3.3)

If the q heaviest pigs are culled from the pen (action aq), the transition probability becomes

Pr
(

j | n, i,aq
)
=

Pr(dn+1 | dn) qn+1 = qn−q,

0 otherwise.
(3.4)

If the pen is terminated (action aterm), a new production cycle is started with a transition to state

j0 = p̃ at the next stage in process p0. Hence, the transition probability becomes

Pr
(

j0 | n, i,aterm
)
= Pr(p̃ | dn) , (3.5)

where Pr(p̃ | dn) denotes the terminating probability of parent jump action aterm.

Probabilities Pr(dn+1 | dn) and Pr(p̃ | dn) depend on the statistical models used for Bayesian

updating and will be described in Section 3.4.

3.3.4 Expected rewards

Founder process p0

At the beginning of a production cycle, qmax piglets are inserted into the pen, i.e. the reward

equals the cost of buying new piglets. That is, given state i =p and action a0, the expected reward

becomes

rn(i,a0) =−E
(

ppigletqmax) , (3.6)

where ppiglet is the price of one piglet at the beginning of the current production cycle.
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Child process p1 = (p0||n0, i0,a0)

At this level, the expected reward equals the expected revenue from selling the pigs minus the

expected cost of feeding the remaining pigs conditioned on the values of the state variables and

actions.

Consider state i = (dn ,qn) at stage n and let (w(1), ..w(k), ..,w(qn))n denote the weight distri-

bution of the pigs in the pen such that w(1), w(k), and w(qn) are ordered random variables (order

statistics) related to the weight of the lightest, kth and the heaviest pigs in the pen at stage n,

respectively.

If the process continues without marketing decisions, the reward equals the expected feeding

cost of qn pigs until the next decision epoch

rn(i,acont) =−E

(
pfeed

qn

∑
k=1

f feed
(k),n(t)

)
, (3.7)

where pfeed is the feed price of one feed unit (FEsv1) at the beginning of the current production

cycle and f feed
(k),n(t) denotes the expected feed intake of the kth pig from the start of stage n and

the next t days ahead. Note that when n = 1 and n > 1, t will be equal to 7(tmin− 1) and 7,

respectively (see Section 3.3.2).

If the q heaviest pigs are culled and the remaining qn−q pigs are kept in the pen, the expected

reward of action aq becomes

rn(i,aq) = E

(
qn

∑
k=qn−q+1

w̃(k) · p
pork
(k),n(w̃(k), w̆(k))

)
−E

(
pfeed

qn

∑
k=qn−q+1

f feed
(k),n(b)

)

−E

(
pfeed

qn−q

∑
k=1

f feed
(k),n(7)

)
, (3.8)

where w̃(k) and w̆(k) denote the carcass weight (kg) and the leanness (non-fat percentage) of the

kth pig in the pen at delivery, respectively. The price function ppork
(k),n(·) is the settlement pork price

of one kg of meat at delivery to the abattoir. This price may be different than the market pork

price which is the price given if the pigs are in perfect conditions. In (3.8), the first term is the

reward of culling the pigs, the second term is the feeding cost of the culled pigs until they are

sent to the abattoir, and the last term is the feeding cost of the remaining pigs.

1Danish pig feed unit (1 FEsv = 7.72 MJ)
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Finally, if the pen is terminated, the expected reward becomes

rn(i,aterm) = E

(
qn

∑
k=1

w̃(k) · p
pork
(k),n(w̃(k), w̆(k))

)
−E

(
pfeed

qn

∑
k=1

f feed
(k),n(b)

)
. (3.9)

To calculate the expected values in equations (3.6) to (3.9), more information is needed: the

order statistics of the weights in the pen; transformation of weight to carcass weight and leanness;

the feed intake and settlement pork price functions; the pork, feed and piglet prices. A random

regression model is used to estimate the mean and standard deviation of weight in the pen at

a given week and hence the probability distribution of the ordered weights can be found using

well-known formulas. The carcass weight and leanness of a pig can be calculated using biological

formulas from the literature. The feed intake function is based on biological relations between

weight, growth and feed intake, while the settlement pork price function is a piecewise linear

function depending on the carcass weight, leanness and the market pork price. Due to the limited

space, further details are given in Appendix 3.B. Finally, information about the pork, feed and

piglet prices is embedded into the HMDP using state space models based on Bayesian updating.

The state space models are described in the next section.

3.4 Bayesian updating of prices

The revenue of the pigs in a production cycle depends on the pork, piglet, and feed prices which

fluctuate on the market every week. Figure 3.2 shows weekly changes of these prices in Denmark

in the period of 2006 to the end of 20142.

To transform these price data into the information for the HMDP, we need a statistical model

for time-series analysis. In our case, due to the non-stationary behavior of price data, we use a

state space model (SSM) (West and Harrison, 1997). An SSM consists of a set of latent variables

and a set of observed variables. At a specified point in time the conditional distribution of the

observed variables is a function of the latent variables specified via the observation equations.

The latent variables change over time as described via the system equations. The observations

are conditionally independent given the latent variables. Thus the estimated value of the latent

variables at a time point may be considered as the state of the system, and Bayesian updating (the

Kalman filter) can be applied to estimate the latent variables/state of the system via the observed

2Time series of pig, piglet and feed prices in Denmark can be found on http://www.notering.dk/
WebFrontend/. Pork and feed prices are for finisher pigs, and the piglet price is the “30 kg basic” price.

http://www.notering.dk/WebFrontend/
http://www.notering.dk/WebFrontend/
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Figure 3.2: Weekly price data of pork, piglet and feed prices in Denmark (years 2006-2014) in
DKK. The pork price is the price of the carcass at the abattoir per kilogram when the total carcass
weight is between 70 and 95 kg. The piglet price is the price of one piglet with a weight of approx.
30 kg. The feed price is the price per feed unit (FEsv - equivalent to 7.72 MJ).

variables. SSMs can be categorized into different groups based on the dynamic nature of the

considered system and the probability distribution assumed for the observed data. In this paper,

the probability distribution of the prices is Gaussian and the dynamics of the system is modeled by

linear equations. For a short introduction to SSMs and the theorems used for Bayesian updating,

see Appendix 3.C.

In the next subsections, we first give a description of the SSMs and afterwards explain how

they can be embedded into the HMDP.

3.4.1 SSMs for price prediction

We formulate three SSMs for the pork, piglet and feed prices to be embedded into the HMDP in

Section 3.4.2.
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Pork price

In order to estimate weekly price deviations and to forecast future pork prices, a local linear

trend SSM (Durbin and Koopman, 2012, Sec. 3.2.1) is used:

Observation equation (yt = F ′θt +νt) : ppork
t =

(
1 0

)(
µ

pork
t

λ
pork
t

)
, (3.10)

System equation (θt = Gθt−1 +ωt) :

(
µ

pork
t

λ
pork
t

)
=

(
1 1

0 1

)(
µ

pork
t−1

λ
pork
t−1

)
+

(
0

ω
pork
t

)
,

where ppork
t is the observed pork price at time t, the latent variable λ

pork
t represents the deviation

of pork price at time t from the price at time t−1, µ
pork
t = ppork

t is a supplementary latent variable,

and ω
pork
t ∼ N(0,W pork) is a random term. The initial prior distribution is θ0 ∼ N(mpork

0 ,Cpork
0 ).

Feed price

A local level SSM (Durbin and Koopman, 2012, Pages 9-10) is used to model the feed price:

Observation equation (yt = F ′θt +νt) : pfeed
t − pfeed =λ

feed
t +ν

feed
t , (3.11)

System equation (θt = Gθt−1 +ωt) : λ
feed
t =λ

feed
t−1 +ω

feed
t ,

where the observed variable yt = pfeed
t − pfeed at time t denotes the difference between the current

feed price pfeed
t and the observed feed price pfeed at the start of the current production cycle.

The latent variable λ feed
t shows the deviation of feed price from pfeed. ωfeed

t ∼ N(0,W feed) and

νfeed
t ∼ N(0,V feed) are two random terms. The initial prior distribution is θ0 ∼ N(mfeed

0 ,Cfeed
0 ).

Piglet price

According to Figure 3.2, when the pork price is high, the piglet price ppiglet
t is also high

and generally they follow each other (e.g. during year 2014 their correlation is 93%). This is

a known relation, see e.g. Roemen and de Klein (2000) and Broekmans (1992). Hence, the

fraction ppiglet
t /ppork

t is approximately constant given t. Therefore, the piglet price can be

estimated given the pork price. However, to increase our precision, we may apply a logarithmic

transformation and update the deviation between the logarithms of piglet and pig prices using a

local level SSM:

Observation equation (yt = F ′t θt +νt) : dpiglet
t =λ

piglet
t +ν

piglet
t , (3.12)

System equation (θt = Gtθt−1 +ωt) : λ
piglet
t =λ

piglet
t−1 +ω

piglet
t ,
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where dpiglet
t = log(ppiglet

t )− log(ppork
t ) is the log transformed observed piglet price ratio, and

λ
piglet
t is a latent variable for the deviation between these logarithms. ω

piglet
t ∼ N(0,W piglet)

and ν
piglet
t ∼ N(0,V piglet) are two random terms. The initial prior is θ0 ∼ N(mpiglet

0 ,Cpiglet
0 ).

3.4.2 Embedding the SSMs into the HMDP

The three SSMs described in the previous section provide information about the current prices.

Given one of the SSMs, let Dt−1 = (y1, ...,yt−1,m0,C0) denote the information available up to

time t−1. Each time new information is received about a price, Bayesian updating (Theorem 5

in Appendix 3.C) can be used to update the posterior distribution (θt | Dt)∼ N(mt ,Ct) at time t.

That is, mt is our best estimate of the latent variable, i.e. our best estimate of price deviations in

addition to the observed market prices.

Hence, in order to embed this information into the HMDP, the state variables p and dn are

defined to represent price information at Levels 0 and 1 as

p =
(

ppork, pfeed,dpiglet) , (3.13)

dn =
(
mpork

n ,mfeed
n ,mpiglet

n
)
=
(
(µ̂pork

n , λ̂ pork
n ), λ̂ feed

n , λ̂ piglet
n

)
, (3.14)

where ppork and pfeed denote the observed pork and feed prices at the start of a production cycle

and dpiglet is the log transformed observed piglet price ratio. Similarly, (µ̂pork
n , λ̂

pork
n ), λ̂ feed

n

and λ̂
piglet
n denote the posterior mean values of the latent variables in the SSMs for pork, feed

and piglet prices, respectively.

States p and dn are used to calculate our expected rewards in Section 3.3.4. The piglet

price used in (3.6) is ppiglet = ppork exp(dpiglet), the feed price used in (3.7) is pfeed, and the

settlement pork price function (3.23) used in (3.8) is based on the market pork price µ̂
pork
n .

Moreover, we need states p and dn for the calculation of transition probabilities in the HMDP.

Before calculating the transition probabilities, a discretization approach should be specified for

the continuous state variables in (3.13) and (3.14) since states in an HMDP must be discrete

(Nielsen et al., 2011). Let Uxn = {Π1, . . . ,Π|Uxn |} is a set of disjoint intervals that represent the

partitioning of possible values for the continuous state variable xn at stage n (e.g. xn = µ̂
pork
n ).

Moreover, given interval Π, let centre point π denote the centre of the interval. That is, a possible

value of state variable xn can be represented by centre point πxn in interval Πxn . As a result, the
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state sets at Levels 0 and 1 (see Section 3.3.2) become

P = Uppork×Upfeed×Udpiglet,

Dn = U
µ̂

pork
n
×U

λ̂
pork
n
×U

λ̂feed
n
×U

λ̂
piglet
n

.

Now the transition probabilities (3.2)-(3.5) in Section 3.3.3 can be calculated. First, consider

child jump probability (3.2) with a transition to stage 1 at Level 1. This transition is deterministic

Pr(d1 | p) =

1 d1 = ((ppork,0),0,dpiglet),

0 otherwise,

since µ̂
pork
1 = ppork due to (3.10), λ̂

pork
1 is assumed zero, λ̂ feed

1 = 0 due to (3.11) and λ̂
piglet
1 =

dpiglet due to (3.12).

Next, consider the transition probability Pr(dn+1 | dn) for the actions acont and aq used in

(3.3) and (3.4). Since dn includes state variables related to the three independent SSMs of pork,

feed, and piglet prices, this probability equals to

Pr(dn+1 | dn) =Pr
(

mpork
n+1 | m

pork
n

)
·Pr
(
mfeed

n+1 | mfeed
n

)
·Pr
(

mpiglet
n+1 | mpiglet

n

)
=Pr

(
(µ

pork
n+1 ,λ

pork
n+1 ) ∈Π

µ
pork
n+1
×Π

λ
pork
n+1
| (π

µ
pork
n

,π
λ

pork
n

)

)
·Pr
(

λ
feed
n+1 ∈Π

λfeed
n+1
| π

λfeed
n

)
·Pr
(

λ
piglet
n+1 ∈Π

λ
piglet
n+1

| π
λ

piglet
n

)
.

Notice that due to our discretization approach, the probabilities are calculated over intervals given

previous centre points. Moreover, the probability distribution of (mn+1|mn) can be obtained using

the k-step posterior mean distribution defined in Theorem 6 in Appendix 3.C where k denotes

the length of the current stage.

Finally, for parent jump probability (3.5) to state p̃= (ppork, pfeed,dpiglet) used under action

aterm, the probability becomes

Pr(p̃ | dn) =Pr
(

ppork | mpork
n

)
·Pr
(

pfeed | mfeed
n

)
·Pr
(
dpiglet | mpiglet

n
)

=Pr
(

ppork ∈Πppork | (π
µ

pork
n

,π
λ

pork
n

)
)

·Pr
(

pfeed ∈Πpfeed | πλfeed
n

)
·Pr
(

dpiglet ∈Πdpiglet | π
λ

piglet
n

)
.

Note that the conditional distribution of (p|mn) can be obtained using the k-step forecast dis-

tribution defined in Theorem 6 in Appendix 3.C where k is the expected length of action aterm

(k = h+b days).
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3.5 Optimal policy and value of information

In this section, we calculate the optimal policy of the HMDP to investigate the influence of price

fluctuations on the marketing decisions. We consider three scenarios with different patterns of

price fluctuations and comment on the optimal marketing decisions. Moreover, we compare the

optimal marketing decisions in a model with and without price fluctuations and calculate the

value of price information.

3.5.1 Model parameters

In order to initialize the model, we need the parameter values of the HMDP and the statistical

models embedded into the HMDP. The parameter values are given in Table 3.1. They have been

obtained using historical pork, piglet and feed market prices, information about finisher pig

production (Danish conditions) and related literature (see the footnotes in Table 3.1).

More precisely, the parameter values of the HMDP were set based on discussions with Danish

experts in pig production, standard Danish herd conditions and related literature. The system

and observational variances of each SSM modeling the pork, piglet and feed market prices were

estimated using maximum likelihood estimation (MLE) applied to historical prices in Denmark

from 2006-2014. To calculate the expected revenue of each state and action in the HMDP, we

need to specify the settlement pork price ppork(w̃, w̆) which is a piecewise linear function under

current Danish conditions and is specified in Appendix 3.B. Moreover, to estimate parameters in

the random regression model (RRM) for finding the weight distribution in the pen, we used the

restricted maximum likelihood method (RMLE) applied to a set of weight data acquired from a

standard Danish herd. Finally, in order to formulate the HMDP, we need to specify possible values

of the discrete state variable and the range of centre points for the continuous state variables

in the HMDP. Possible values for the discrete state variable qn are 1 to qmax and, based on our

discretization method in Section 3.4.2, possible values of the continuous state variables ppork,

pfeed, dpiglet, µ̂
pork
n , λ̂

pork
n , λ̂ feed

n , and λ̂
piglet
n are divided into intervals with given centre

points. An overview over the values of each state variable is given in Table 3.2.

3.5.2 Optimal marketing decisions under different scenarios

To see the behavior of the optimal policy under different patterns of price fluctuations we consider

three scenarios, illustrated in Figure 3.3, over a period of 15 weeks assuming that the production
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Table 3.1: Parameter values.

Parameter Value Explanation

HMDP (Section 3.3)

qmax 15 Number of pigs inserted into the pen.a

tmax 14 Maximum number of weeks in a production cycle.a

tmin 9 First possible week of marketing decisions.a

h 4 Days used for cleaning the pen after termination.a

b 3 Days before delivery to abattoir after a marketing decision.a

SSMs (Section 3.4.1)

W pork
(

0 0
0 0.1732

)
System variance (pork price).b

W feed 0.0442 System variance (feed price).b

W piglet 0.01082 System variance (piglet price).b

V feed 0 Observation variance (feed price).b

V piglet 0 Observation variance (piglet price).b

mpork
0

(
9.85 0

)
Prior mean (pork price).b

Cpork
0

(
0 0
0 0.1392

)
Prior variance (pork price).b

mfeed
0 0 Prior mean (feed price).b

Cfeed
0 0.3362 Prior variance (feed price).b

mpiglet
0 3.55 Prior mean (piglet price).b

Cpiglet
0 0.0572 Prior variance (piglet price).b

Calculation of expected reward (Appendix 3.B)

β
(
21.767 4.914 0.149

)′ Fixed parameters (RRM).c

V

2.072 0.828 0.01
0.828 1.753 −0.142
0.01 −0.142 0.015

 Covariance matrix for α j (RRM).c

R 2.04 Standard deviation of residual error (RRM).c

ḡ 6 Average weekly gain (kg) in the herd.d

¯̆w 61 Average leanness percentage in the herd.d

σ2
c 1.4 Standard deviation of conversion rate cs.d

k2 0.044 Energy requirements (FEsv) per kg metabolic weight.d

k1 1.549 Energy requirement (FEsv) per kg gain.d

a Value based on discussions with experts in Danish pig production. b Estimated based on time series of pig, feed
and piglet prices that can be found on http://www.notering.dk/WebFrontend/. c Estimated using the
weight data in a standard Danish herd. d Value taken from Kristensen et al. (2012).

http://www.notering.dk/WebFrontend/
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Table 3.2: Cardinality of the discrete state variable and range of the center points for the continu-
ous state variables.

Process level 0 1a

State variable ppork pfeed dpiglet qn µ̂
pork
n λ̂

pork
n λ̂ feed

n λ̂
piglet
n

Intervals/cardinality 16 15 5 15 16 5 5 5
Range of centre points 9.2-

12.2
1.5-2.2 3.4-3.6 1-15 9.2-

12.2
-0.4-0.4 -0.1-0.1 3.5-3.7

a At stage n = 1 the only possible values are qn = 15 and λ̂
pork
n = λ̂ feed

n = 0.

cycle starts at week one and ends at the start of week 15 at the latest:

Scenario 1: Favorable trend of pork price and unfavorable trends of feed and piglet prices. Pork

price increases from 10.3 to 11.3 DKK, feed price increases from 1.79 to 1.92 DKK and

piglet price increases from 336 to 396 DKK. This scenario is based on the historical data

from weeks 11-25 in 2012.

Scenario 2: Favorable trends of pork and feed prices and unfavorable trend of piglet price. Pork

price increases from 10.3 to 11.3 DKK, feed price decreases from 1.79 to 1.66 DKK and

piglet price increases from 336 to 396 DKK.

Scenario 3: Unfavorable trends of pork and feed prices and favorable trend of piglet price. Pork

price decreases from 10.3 to 9.3 DKK, feed price increases from 1.79 to 1.92 DKK and

piglet price decreases from 362 to 328 DKK.

During the 15 weeks period, the average weight in the pen increases from 26.8 to 128.9 kg with

a standard deviation increasing from 3 to 15.4 kg (see Equation (3.18)). Notice that the growth

of the pigs is the same in the three scenarios and hence the only factor affecting the marketing

policy is the price information.

To find the optimal policy of the HMDP, the model was coded using the C++ programming

language (gcc compiler) and R (R Core Team, 2015), and the optimal policy of the HMDP

was calculated using the modified policy iteration algorithm3 using the R package "MDP"

(Nielsen, 2009). The source code is available on-line (Pourmoayed and Nielsen, 2015). Given

the parameters in Table 3.1 and the discretization of state variables in Table 3.2, the number of

states and actions at the founder level are both 1,200. Moreover, each child process at Level 1

3Using shared and external processes, i.e. the memory used for child processes may be shared and loaded when
needed. For further information see the documentation in Nielsen (2009).
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Figure 3.3: Price fluctuations in the three scenarios. In Scenario 1, the trends of feed and piglet
prices are unfavorable and the trend of pork price is favorable. In Scenario 2, the trends of pork
and feed prices are favorable and the trend of piglet price is unfavorable. In Scenario 3, the trends
of pork and feed prices are unfavorable and the trend of piglet price is favorable.

contains 194,080 states and 1,412,080 actions. That is, the total numbers of states and actions of

the model are 232,897,200 and 1,694,497,200, respectively.

For each scenario we use the SSMs to find the values of the state variables related to the

price information in the HMDP. That is, for each scenario we identify the relevant state and the

corresponding optimal action. The results for each scenario are illustrated in Figure 3.4 which

include estimations of posterior mean parameters in the SSMs and the number of remaining pigs

in the pen in each week (bars). The optimal decision a∗ is shown just above the x-axis where the

numbers denote the number of the heaviest pigs culled from the pen (aq), the letter “T” indicates

the termination decision (aterm), and the letter “C” corresponds to continuing the production

process without marketing decisions (acont).

In Scenarios 1 and 2, fluctuations of pork and piglet prices are the same while fluctuations of
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Figure 3.4: Estimated means of posterior parameters in the SSMs and the optimal decisions of
the HMDP for the three scenarios. λ̂

pork
t , λ̂ feed

t , and λ̂
piglet
t are the mean estimates of pork,

feed and piglet price deviations, respectively, and µ̂
pork
t is the estimated mean of pork price. The

optimal decision is shown just above the x-axis where the numbers denote the number of the
heaviest pigs culled from the pen (aq), the letter “T” indicates the termination decision (aterm),
and the letter “C” corresponds to continuing the production process without marketing decisions
(acont). The bars show the number of remaining pigs in the pen before making a decision. In the
plot, the values of λ̂

pork
t and λ̂ feed

t have been scaled with factors 2 and 5, respectively.

feed price are different. By comparing the two scenarios, we observe that the different trends of

feed price have a significant impact on the optimal policy. In Scenario 2, a decreasing feed price

leads to an earlier termination (at week 11) compared to Scenario 1 with an increasing feed price

(termination at week 15). Note that due to Assumption 9 on page 66, when the pen is terminated,

a low feed price affects the feeding cost of the next production cycle and hence when the feed

price is low, it may be beneficial to terminate the pen earlier and start a new production cycle. On

the other hand, an increasing feed price in Scenario 1 during the marketing period (an increase

from 1.83 to 1.92 in weeks 9-15) results in a longer production cycle and individual marketings
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in weeks 11 to 14.

In Scenario 3, we have an increasing trend in feed price (similar to Scenario 1) but unlike

Scenarios 1 and 2, the trends of pork and piglet prices are decreasing in this scenario (see

Figure 3.3). Here a decreasing piglet price does not result in an earlier termination as we had

in Scenario 2. Like in Scenario 1, the termination occurs at week tmax = 15 in this scenario too,

which is due to the increasing trend of feed price. That is, the feed price compared to the piglet

price has a higher impact on the optimal policy and reward. This observation was also supported

in Pourmoayed et al. (2016). We also see that in Scenario 3 the fraction of remaining pigs in

the pen in every week of the marketing period is lower than Scenario 1. This is because of the

increasing trend of pork price in Scenario 1 that makes it more beneficial to keep more pigs in the

pen and sell them in the next weeks while in Scenario 3 it is better to sell the pigs earlier since

the pork price decreases in the next weeks.

3.5.3 Value of price information

Is it relevant to embed a statistical model with fluctuating prices into the HMDP? To answer this

question, we compare the optimal policy of the HMDP against the policy considering marketing

decisions under fixed prices, i.e. the decision maker has no information about the market prices

and the price deviations and therefore follows a policy taking the actions specified by the state

corresponding to the fixed prices. The extra reward per time unit gained by using fluctuating

prices compared to fixed prices may then be considered as the value of information about prices.

To be more specific, consider a fixed price setting, i.e. a specific state at the founder level:

p̃ =
(

p̃pork, p̃feed, d̃piglet)
According to the structure of the HMDP in Section 3.3.2, having no information about the price

deviations in the child process p̃1 = (p0||p̃), implies to use state variable d̃n in p̃1 equal to

d̃n =
(
(µ̂pork

n , λ̂ pork
n ), λ̂ feed

n , λ̂ piglet
n

)
=
(
(p̃pork,0),0,mpiglet

0

)
,

where mpiglet
0 is the predefined prior mean of λ̂

piglet
n defined in Table 3.1. Moreover, define

action a∗n(p̃, d̃n,qn) as the optimal action to state (d̃n ,qn) =
(
(p̃pork

n ,0),0,mpiglet
0 ,qn

)
at stage

n of process p̃1. Now, the no information policy is defined such that for each child process

p1 = (p0||p) and state i = (dn ,qn) at stage n, we use action

a(i) = an(dn,qn) = a∗n(p̃, d̃n,qn).
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Table 3.3: VOI values for comparing the optimal policy of the HMDP (under price fluctuations)
with the policies considering marketing decisions under fixed prices in 5 different price settings.
In the first group of price settings, price values are related to the average prices of pork, feed, and
piglet in the period of 2011 to the end of 2014 in Denmark. Other groups are defined by changing
the price values of the first group to make a small sensitivity analysis on VOI.

Price setting (PS) Pork price Feed price Piglet price VOI (DKK)

1 10.8 1.85 376 41.07
2 10.8 1.55 376 41.29
3 10.8 2.15 376 43.91
4 9.4 1.85 327 41.26
5 12 1.85 418 40.25
6 12 2.15 418 43.75
7 9.4 1.55 327 55.21

That is, the actions used under the no information policy are the optimal actions related to the

fixed price setting p̃.

Under the expected reward per time unit criterion and a given price setting p̃, the value of

information (VOI) is defined as the difference between the expected reward per time unit under

the optimal policy and under the no information policy. That is, VOI is the extra reward per time

unit gained by embedding the SSMs into the HMDP for predicting the future market prices.

To evaluate the benefit of price information under fluctuating prices, we consider five different

price settings (PS) and calculate VOI for each setting. The results are given in Table 3.3. Under

PS 1, the price values equal the average prices of pork, feed and piglet in the period of 2011 to

the end of 2014 in Denmark. VOI in this group represents the average expected loss per week by

assuming average prices instead of using a model with fluctuating prices. The other price settings

are defined with the purpose of making a small sensitivity analysis on VOI for different price

settings. Under PS 2 and PS 3, feed prices are low (1.55 DKK/FEsv) and high (2.15 DKK/FEsv),

respectively, and pork and piglet prices equal PS 1. Similarly, in PS 4 and PS 5, pork and piglet

prices are low and high and the feed prices are similar to PS 1. In PS 6 and PS 7, all prices are

different from PS 1 and are set to high and low values, respectively.

In PS 2 to PS 6, the values of VOI are not considerably different than the value of VOI in PS 1.

However, it seems that assuming a high fixed feed price (PS 3 and PS 6 ) has a higher impact on

VOI. Moreover, the effect of assuming a high pork price (PS 5) is lower compared to the average

prices (PS 1). Finally, in PS 7 where all prices are assumed low, VOI is higher. This shows that
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assuming combined low pork, feed and piglet prices has a higher impact on VOI compared to,

for instance, a low feed price only.

3.6 Conclusions

In the production of fattening pigs, price fluctuations in the market have an effect on market-

ing decisions. In this paper we used a two-level HMDP to model marketing decisions under

fluctuating pork, piglet and feed prices.

We used a Bayesian approach to update the state of the system such that it contains updated

information based on previous market prices. That is, three SSMs were formulated to forecast

future prices and each SSM was embedded into the HMDP such that the model takes into account

new market prices using a general discretization method.

Numerical examples show that price fluctuations have an impact on marketing decisions; the

effect of a fluctuating feed price was especially noticeable. Moreover, we analyzed the value of

including information about fluctuating prices into the HMDP compared to using fixed prices.

The results showed that the long-term average reward per time unit of the production unit can be

improved by including price fluctuations into the model.
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3.A Notation

Since the paper uses techniques from both statistical forecasting and operations research, we have

to make some choices with respect to notation. In general, we use capital letters for matrices and

let A′ denote the transpose of A. Capital blackboard bold letters are used for sets (e.g. P and Dn).

Finally, accent x̂ (hat) is used to denote an estimate of x. A description of the notation introduced

in Section 3.3 and Section 3.4 is given in Tables 3.4 and 3.5, respectively.

Table 3.4: Notation - HMDP model (Section 3.3).

Symbol Description

In Set of states at stage n.
An(i) Set of actions given stage n and state i.
rn(i,a) Reward at stage n given state i and action a.
un(i,a) Expected length until the next decision epoch at stage n given state i and action a.
Pr( j | n, i,a) Transition probability from state i at stage n to state j at the next stage under action a.
pl A process at level l (superscript is used to indicate level).
N l Time horizon of process pl at level l.
nl , il ,al A stage, state, and action in process pl .
qmax Number of pigs inserted into the pen.
tmax Latest possible week of pen termination.
tmin First possible week of marketing decisions.
h Number of days for cleaning the pen after termination.
b Number of days of preparation for delivery to the abattoir.
qn Remaining pigs in the pen at stage n, 1≤ qn≤qmax.
p Model information related to the price information in the first level of HMDP, p ∈P.
dn Model information related to the price deviations in the second level of HMDP, dn ∈Dn .
aterm Action related to pen termination.

acont Action related to continuing the production process without marketing.
aq Action related to marketing the q heaviest pigs in the pen (1≤ q < qn ).
pfeed Market feed price at the beginning of a production cycle (DKK).
ppiglet Market piglet price at the beginning of a production cycle (DKK).
w(k) Weight of the kth pig in the pen (kg).
f feed
(k),n(t) Expected feed intake of the kth pig from the start of stage n and the next t days ahead (FEsv).

w̃(k) Carcass weight of the kth pig at delivery to the abattoir (kg).
w̆(k) Leanness (non-fat percentage) of the kth pig at delivery to the abattoir.
ppork
(k),n(·) Settlement pork price of the kth pig of one kg of meat at delivery to the abattoir.
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Table 3.5: Notation - Bayesian updating of prices (Section 3.4).

Symbol Description

θt Latent/unobservable variable(s).
yt Observable variable(s).
Gt Design matrix of system equation.
Ft Design matrix of observation equation.
ωt System noise, ωt ∼ N(0,Wt) where Wt denotes the system covariance matrix.
νt Observation error, νt ∼ N(0,Vt) where Vt denotes the observation covariance matrix.
Dt Set of information available up to time t in the system.
(m0,C0) Mean and covariance matrix of the prior, θ0 ∼ N(m0,C0).
(mt ,Ct) Mean and covariance matrix of the posterior at time t, (θt |Dt)∼ N(mt ,Ct).
ppork

t Observed market pork price at time t (DKK).
µ

pork
t A supplementary latent variable in the SSM of pork price (µpork

t = ppork
t ).

λ
pork
t Price deviation related to pork price at time t.

pfeed
t Observed market feed price at time t (DKK).

λ feed
t Price deviation related to feed price at time t.

ppiglet
t Observed market piglet price at time t (DKK).

dpiglet
t Log transformed observed piglet ratio.

λ
piglet
t Price deviation related to piglet price at time t.

Uxn Set of disjoint intervals representing the partitioning of state variable xn at stage n, Uxn =
{Π1, ..,Πk, ..,Π|Uxn |} where Πk denotes interval k.

πk Centre point of interval Πk.
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3.B Calculating expected reward

Modeling weights in the pen

During the growing period in the pen, pigs grow with different growth rates; that is, given a

certain week in the production cycle, there is a variation between the weights of the individual

animals in the pen. Moreover, as the pigs grow, this variation increases and our uncertainty about

the average weight of the pen increases.

Let (w(1), ..w(k), ..,w(q))t denote the weight distribution of the q pigs in the pen at week t such

that w(1), w(k), and w(q) are ordered random variables (order statistics) related to the weight of

the lightest, kth and the heaviest pig in the pen at week t, respectively. To find the probability

distribution of the ordered random variable w(k), first the weight distribution of a randomly

selected pig should be determined in the pen. To specify this distribution, a random regression

model (RRM) is used that is usually applied in the animal breeding models (Schaeffer, 2004).

Let w j,t denotes the weight of pig j at week t, randomly selected in the pen. w j,t can be

described using an RRM:

w j,t = Xtβ+Ztα j + ε j,t , (3.15)

where Xt and Zt are time covariate vectors, β is the vector of fixed parameters, α j is the vector

of random parameters and ε j,t is a residual error. In this RRM, Xtβ is the fixed effect of the

model representing the average weight of the pen and Ztα j is the random effect showing a

deviation between the weight of pig j and the average weight of the pen. A quadratic RRM is

used suggested by Cai et al. (2011) where Xt = Zt =
(

1 t t2
)

, α j =
(

α0 j α1 j α2 j

)′
and

β =
(

β0 β1 β2

)′
:

w j,t = β0 +β1t +β2t2 +α0 j +α1 jt +α2 jt2 + ε j,t . (3.16)

Random parameter α j follows a normal distribution with parameters

α j =


α0 j

α1 j

α2 j

∼ N(0,V =


σ2

0 σ01 σ02

σ01 σ2
1 σ12

σ02 σ12 σ2
2

), (3.17)

where V is independent of pig j and time t. Moreover, the residual errors ε j,t ∼ N(0,R) are

independent random variables. Since (3.15) is linear with respect to random parameters α j and
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ε j,t , we can conclude

w j,t ∼ N(µt = Xtβ,σ
2
t = ZtV Z′t +R). (3.18)

The parameters β, V and R can be estimated using the restricted maximum likelihood (REML)

method (Patterson and Thompson, 1971).

Since the probability distribution of w j,t is independent of pig j, the weight distribution of all

q pigs in the pen are i.i.d at time t. Hence, the probability density function of the ordered random

variable w(k) becomes (Pitmand, 1993, page 326)

φ(k)(w) =
q!

(k−1)!(q− k)!
Φ

k−1(w)[1−Φ(w)]q−k
φ(w),

where Φ(w) and φ(w) are the cumulative and density functions of the normal distribution defined

in (3.18).

Carcass weight, leanness, feed intake and growth

Consider the kth ordered pig at stage n with weight w and daily growth g. The carcass weight w̃

can be approximated as (Andersen et al., 1999)

w̃ = csw−5.89+ ec, (3.19)

where ec ∼ N(0,σ2
c ) is a normal distributed term. The relation between growth rate, leanness

(lean meat percentage) and feed conversion ratio varies widely between herds. Hence, these

formulas must be herd specific. The leanness w̆ can be found as (Kristensen et al., 2012)

w̆ =
−30(g− ḡ)

4
+ ¯̆w, (3.20)

where, ḡ is the average daily growth in the herd, ¯̆w is the average herd leanness percentage.

The feed intake (energy intake) is modelled as the sum of feed for maintenance and feed

for growth. The basic relation between daily feed intake f (FEsv), live weight and daily gain is

(Jørgensen, 2003)

f = k1g+ k2w0.75, (3.21)

where k1 and k2 are constants describing the use of feed per kg gain and per kg metabolic weight,
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respectively. As a result the expected feed intake of a pig over the next t̂ days equals

f feed
(k),n(t̂) = E

(
t̂

∑
t=1

ft

)
= E

(
t̂

∑
t=1

(
k1g+ k2(w+(t−1)g)0.75

))
=

E

(
t̂k1g+ k2

t̂

∑
t=1

(w+(t−1)g)0.75

)
, (3.22)

where ft denote the feed intake at day t calculated recursively using (3.21).

Settlement pork price

Consider the kth ordered pig at stage n with carcass weight w̃ and leanness w̆ at delivery. The

settlement pork price, under Danish conditions, is the sum of two linear piecewise functions

related to the price of the carcass and a bonus of the leanness:

ppork
(k),n(w̃, w̆) = p̃(w̃, ppork)+ p̆(w̆), (3.23)

where ppork is the current pork price at the market. Functions p̃(w̃, ppork) and p̆(w̆) correspond

to the unit price of carcass and the bonus of leanness for 1 kg meat, respectively. A plot of each

function is given in Figure 3.5.

Given the price structure, based on the Danish slaughter pig market4, the unit price of 1 kg

carcass is

p̃(w̃, ppork) =



0 w̃ < 50
1

9.9
(w̃−50)+ ppork−4 50≤ w̃ < 60

1.85
9.9

(w̃−60)+ ppork−2 60≤ w̃ < 70

ppork 70≤ w̃ < 95

ppork−0.2 95≤ w̃ < 96

ppork−0.6 96≤ w̃ < 97

ppork−0.9 97≤ w̃ < 98

ppork−1.2 98≤ w̃ < 100

ppork−2.5 w̃ ≥ 100.

4http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx (October
2015)

http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx
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(b) Leanness.

Figure 3.5: Price functions (DKK/kg) given carcass weight and leanness.

That is, the market pork price ppork may be interpreted as the maximum price of 1 kg carcass

that can be obtained (when the carcass weight lies between 70 and 95 kg).

The bonus of leanness is calculated as

p̆(w̆) =



−2.2 w̆ < 50

0.2(w̆−61) 50≤ w̆ < 57

0.1(w̆−61) 57≤ w̆ < 65

0.4 w̆ ≥ 65.

Calculation of expected values

The calculations of the expected values (3.6)-(3.9) is rather complex due to the ordered random

variables and the non-continuous functions p̃(w̃, ppork) and p̆(w̆). However, the expectations can

be calculated using simulation with a simple sorting procedure as described below.

Step 0 For each pig j = 1, . . .qmax, use (3.17) and draw a sample of random vector α j ∼ N(0,V ).

Step 1 For each week t and pig j, according to the RRM model in (3.15) and (3.16), draw a
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sample of random residual ε j,t ∼ N(0,R) and find weight

w j,t = Xtβ+Ztα j + ε j,t .

Moreover, use the weights to find the daily growth g during a week.

Step 2 For each week t and pig j, use (3.19) and (3.20) to find the carcass weight and leanness

(b days ahead), respectively. Moreover, use (3.21) to find the feed intake for the next t = 7

and b days, i.e. (3.22) is calculated.

Step 3 For each week t, pig j and possible centre point of pork price, calculate the settlement

pork price (3.23).

Step 4 For each week t, sort the obtained values of feed intake and settlement pork price in

non-decreasing order of weight.

We run the simulation 10000 times to calculate average values of the feed intake and settle-

ment pork price and next use the values to calculate the expected values (3.6)-(3.9).

3.C Bayesian updating of SSMs

An SSM includes a set of observable and latent/unobservable continuous variables. The set of

latent variables θ{t=0,1,...} evolves over time using system equation (written using matrix notation)

θt = Gtθt−1 +ωt , (3.24)

where ωt ∼ N (0,Wt) is a random term and Gt is a matrix of known values. We assume that

the prior θ0 ∼ N(m0,C0) is given. Moreover, we have a set of observable variables y{t=1,2,...}

(time-series data of prices) which are dependent on the latent variable using observation equation

yt = F ′t θt +νt , (3.25)

with νt ∼ N (0,Vt). Here Ft is the design matrix of system equations with known values and F ′

denote the transpose of matrix F . The error sequences ωt and νt are internally and mutually

independent. Hence given θt we have that yt is independent of all other observations and in

general the past and the future are independent given the present.

Let Dt−1 = (y1, ...,yt−1,m0,C0) denote the information available up to time t−1. Given the

posterior of the latent variable at time t−1, we can use Bayesian updating (the Kalman filter) to

update the distributions at time t (West and Harrison, 1997, Thm 4.1).
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Theorem 5 Suppose that at time t−1 we have

(θt−1 | Dt−1)∼ N (mt−1,Ct−1) , (posterior at time t−1).

then

(θt | Dt−1)∼ N (at ,Rt) , (one-step state distribution )

(yt | Dt−1)∼ N ( ft ,Qt) , (one-step forecast distribution)

(θt | Dt)∼ N (mt ,Ct) , (posterior at time t)

where

at = Gtmt−1, Rt = GtCt−1G′t +Wt

ft = F ′t at , Qt = F ′t RtFt +Vt

et = yt− ft , At = RtFtQ−1
t

mt = at +Atet , Ct = Rt−AtQtA′t .

Note that the mean of the one-step state or forecast distribution, at or ft , only depends on mt−1.

Moreover variance Ct only depends on the number of observations made, i.e. we can calculate it

without knowing the observations y1, ...,yt . Similarly, we can find k-step conditional distributions.

Theorem 6 Suppose that at time t we have

(θt | Dt)∼ N (mt ,Ct) , (posterior at time t).

then

(yt+k|mt) = (yt+k | Dt)∼ N ( ft(k),Qt(k)) , (k-step forecast distribution)

(mt+k|mt) = (mt+k|Dt)∼ N
(
at(k),At(k)Qt(k)A′t(k)

)
, (k-step posterior mean distribution)

where ft(k) = F ′t+kat(k), Qt(k) = F ′t+kRt(k)Ft+k +Vt+k and At(k) = Rt(k)Ft+kQt(k)−1 which can

be recursively calculated using

at(k) = Gt+kat(k−1),

Rt(k) = Gt+kRt(k−1)G′t+k +Wt+k,

with starting values at(0) = mt and Rt(0) =Ct .
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PROOF First, note that the probability distribution of (yt+k|Dt) and the related proof have been

given in (West and Harrison, 1997, Thm 4.2). Moreover, since ft(k) is a function of mt , we have

that (yt+k | Dt) = (yt+k|mt).

Next, to fine the probability distribution of (mt+k|Dt), we use the similar procedure given

in the proof of Theorem 4.2 in (West and Harrison, 1997, page 107-108). According to the

repeated application of system equation in an SSM (West and Harrison, 1997, page 107), the

k-step evolution of latent variable θt can be formulated as

θt+k = Gt+k(k)θt +
k

∑
r=1

Gt+k(k− r)ωt+r, (3.26)

where Gt+k(r) = Gt+kGt+k−1...Gt+k−r+1 for r < k, with Gt+k(0) = I. Now, using (3.24), (3.25)

and (3.26), we can generate an SSM modelling the k-step evolution of θt :

Observation equation: yt+k = F ′t+kθt+k +νt+k

System equation: θt+k = Gt+k(k)θt +
k

∑
r=1

Gt+k(k− r)ωt+r.

For this SSM we can use the general properties of Theorem 5 with t−1, t, Gt and ωt replaced

with t, t + k, Gt+k(k) and ∑
k
r=1 Gt+k(k− r)ωt+r, respectively. Hence

mt+k = at(k)+At(k)et(k),

where

at(k) = Gt+k(k)mt , et(k) = yt+k− ft(k).

Based on these equations and (yt+k|mt)∼ N( ft(k),Qt(k)), we have that

(mt+k|mt)∼ N(at(k),At(k)Qt(k)At(k)′),

where based on the recursive equation for Gt+k(r) and Theorem 5, we have that

at(k) = Gt+k(k)mt = Gt+kat(k−1),

Rt(k) = Gt+k(k)CtG′t+k +
k

∑
r=1

Gt+k(k− r)Wt+rGt+k(k− r)′

= Gt+kRt(k−1)G′t+k +Wt+k,

At(k) = Rt(k)Ft+kQt(k)−1,

Qt(k) = F ′t+kRt(k)Ft+k +Vt+k,

which finishes the proof.
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Abstract:
One of the most important operations in the production of growing/finishing pigs is the marketing

of pigs for slaughter. The production may be considered at different levels such as animal, pen,

section, and herd imposed by sectioning the production facility. Moreover, cross-level constraints

may have an impact on the optimal marketing policy. As a result, it is beneficial to optimize all

levels simultaneously at herd level. In this paper, we consider sequential marketing decisions at

herd level taking into account other levels. A high-dimensional infinite-horizon Markov decision

process (MDP) is formulated which, due to the curse of dimensionality, cannot be solved using

standard MDP optimization techniques. Instead approximate dynamic programming (ADP) is ap-

plied to solve the model and find the best marketing policy at herd level. Under the total expected

discounted reward criterion, the proposed ADP approach is first compared with a standard solu-

tion algorithm of MDP at pen level (where the optimal policy can be found) to show the accuracy

of the solution procedure. Next, numerical experiments at herd level are given to confirm how the

marketing policy adapts itself to different costs and cross-level constraints (e.g. transportation

cost). Finally, the marketing policy found by ADP is compared with other well-known marketing

polices, often applied at herd level.

Keywords: Approximate dynamic programming; Markov decision process; herd management.

4.1 Introduction

One of the most important operations in the production of growing/finishing pigs is the marketing

of pigs for slaughter. Each week, the farm manager should decide which pigs should be delivered

to the abattoir and when the pen (or section) should be emptied (Kure, 1997). In the production
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system, animals may be considered at different levels: herd, section, pen, or animal. The herd is a

group of sections, a section includes a number of pens, and a pen involves some animals (usually

15-20 animals). Marketing decisions can be considered at different levels, e.g. animal (Glen,

1983) or pen (Kristensen et al., 2012; Kure, 1997). The complexity of the marketing decisions

depends on the number of levels that are taken into account simultaneously and on how decisions

at different levels are linked together. In other words, cross-level constraints between pen, section,

and herd level can affect marketing decisions and they should be considered in the problem. In

this paper, we focus on marketing decisions at herd level. In the following, different aspects of

the problem are described.

The production process of growing/finishing pigs is started by buying piglets on the market or

transferring them from another production unit when they weigh approx. 30 kg. Next, the piglets

are moved to the sections of a finisher unit where they grow until marketing (9-12 weeks). In the

finisher unit, pigs in general grow at different growth rates and hence they obtain their slaughter

weight at different times in the last weeks of the growing period. At the end of the growing

period, the decision maker should therefore determine which pigs should be selected for slaughter

(individual marketing) in each pen. After a sequence of individual marketings at pen level, the

decision maker must decide when to terminate (empty) each section. Terminating a section means

that the remaining pigs in the section are sent to the slaughterhouse (in one delivery) and when

the section has been cleaned, another group of piglets (with a weight of approx. 30 kg) is inserted

into the pens of the section and the production is repeated in the section.

During the marketing period, marketed pigs from the pens are grouped in one weekly delivery

and are transported to the abattoir by means of a number of trucks. Depending on the number

of marketed pigs at herd level and the capacity of each truck, the decision maker should also

determine the number of trucks needed to transport the pigs to the abattoir. That is, transportation

costs may have an effect on the marketing policy of the fattening pigs. In most Danish herds,

transportation of culled pigs is handled by a single abattoir and hence the cost of transportation

is fixed in the system. Notice that the reward of marketing depends on the price of the carcass

weight in the abattoir, the cost of buying the piglets, feeding the pigs in the production system,

and the cost of transporting the culled pigs to the abattoir. The best meat price is obtained if

the carcass weight lies within a specific interval. Therefore, the farmer must time the marketing

decisions while simultaneously considering the carcass weight in relation to the best interval, the

transportation cost of trucks, and the length of the production cycle for feeding the rest of the

pigs. For an extended overview over pig production of growing/finishing pigs, see Pourmoayed
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and Nielsen (2014).

Marketing decisions have been studied by a number of researchers. Kure (1997) proposed a

recursive dynamic programming method and used replacement theory concepts to find the best

marketing strategy. In the study by Jørgensen (1993), a hierarchical Markov decision process

(HMDP) was applied to analyze the precision of the weighing methods on the marketing policy

of fattening pigs. Toft et al. (2005) combined decisions related to the delivery strategy of pigs to

the abattoir and epidemic diseases using a multi-level HMDP. In the study by Kristensen et al.

(2012) an HMDP was employed to model marketing decisions under online weight information

and the focus was on the definition of the state space of the HMDP acquired by dynamic linear

models and Bayesian updating. In the study by Plà-Aragonés et al. (2013), the optimal marketing

policy was found by a mixed integer linear programming method under an all-in all-out strategy.

They formulated the problem by a mathematical programming model and solved their model

using a heuristic approach under different pig size distributions and pig growth rates. Niemi

(2006) applied a stochastic dynamic programming method to find the best time of marketing for

an individual pig and the best nutrient ingredients in the feed-mix, simultaneously. In a recent

study, Pourmoayed et al. (2016) have considered optimal marketing and feeding strategies at pen

level.

To the best of our knowledge, there are few studies considering the problem at herd level and

taking into account the effect of transportation costs on marketing decisions (Ohlmann and Jones,

2008; Boys et al., 2007). Ohlmann and Jones (2008) used a mixed integer programming model

to find the best marketing strategy in a barn of pigs. Boys et al. (2007) analyzed the effect of

single and multiple shipping decisions on the marketing strategy of a heterogeneous herd using

a simulation method. In both studies marketing decisions are examined under an annual profit

criterion and the impact of physical sectioning of the production facility with respect to the pen,

section and herd levels is not considered in the models. Moreover, in these studies termination

decisions are not considered in the models and therefore they do not take into account the effect of

terminating the production cycle at an earlier point in time, even though such earlier termination

would increase the number of production cycles and possibly lead to higher profits.

In this paper we consider marketing decisions in a herd composed of sections and pens.

We formulate the sequential marketing decisions using a discounted infinite-horizon Markov

decision process (MDP) and assume that the production process is cyclic at section level, i.e.

when a section is terminated, a new batch of piglets is inserted into the pens of this section

and a new production cycle is started. The model is stochastic because of the uncertainty of the
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weight of pigs in the pens. This uncertainty is described by a stochastic process relying on the

state space models formulated in Pourmoayed et al. (2016). Due to the large number of states

and actions in the model, the curse of dimensionality becomes apparent and the usual solution

procedures of MDPs (e.g. policy iteration) can not be used to solve the model. Therefore, we

use an approximation strategy to give an approximate solution to the problem and find the best

approximate marketing policy at herd level. More precisely, we first use the properties of the value

function in a discounted infinite-horizon MDP at pen level to find an approximation architecture

for the value function at herd level, and next we apply an approximate dynamic programming

(ADP) approach with post-decision states to find the best marketing policy at herd level (Powell,

2007).

Examples of approximation strategies used to optimize livestock systems are Kristensen

(1992) and Ben-Ari and Gal (1986) that exploit a parameter iteration algorithm developed by Gal

(1989) to find the best replacement policy in a dairy herd. In these studies, however, the estimation

of transition probabilities and the calculation of expected value operators in the solution pro-

cedure are computationally challenging/require much computational effort, due to complicated

transition functions and large state and action spaces. In the present study, reformulating the

Bellman equations in the form of post-decision states can significantly improve the computational

efficiency of the solution procedure which is a novel approach for optimizing livestock systems

modeled by high-dimensional MDPs.

The rest of the paper is organized as follows. In Section 4.2, sequential marketing decisions are

modeled using a discounted infinite-horizon MDP model. Section 4.3 describes an approximate

dynamic programming approach for solving the MDP model. In Section 4.4, numerical examples

are given and the policy resulting from the ADP is compared with other marketing policies, and

finally in Section 4.5, we conclude the paper.

4.2 Model description

We use a discounted infinite-horizon MDP to model marketing decisions at herd level. A short

description of the model is given below.

A discounted infinite-horizon MDP models a sequential decision problem over an infinite

time horizon. Assume that a decision epoch is the first day of a week when marketing decisions

are made and let S denote the finite set of system states at an arbitrary decision epoch. Given

system state s ∈ S at the current decision epoch, an action a from the finite set of allowable
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actions A(s) is chosen resulting in an immediate reward r(s,a), and a probabilistic transition

to state s+ ∈ S at the next decision epoch. This transition is based on the transition function

φ(s,a,ω) where ω denotes random information received between the current and next decision

epochs. Random information ω might depend on a stochastic process affecting the system state.

We consider the following assumptions when modeling sequential marketing decisions at

herd level:

1. A herd consists of |I| sections and each section i ∈ I includes |J| pens.

2. Each pen j ∈ J involves a maximum of qmax pigs. In the beginning of the production cycle in

the section, each pen is filled with qmax pigs.

3. The marketing decisions are taken on a weekly basis and the culled pigs are transferred to the

abattoir after few days.

4. Individual marketing at pen level is started in week tmin at the earliest.

5. A section is terminated in week tmax at the latest, i.e. the maximum life time of a pig is tmax

weeks.

6. Weekly deliveries to the abattoir are based on a cooperative agreement where culled pigs from

each section in the herd are grouped and transferred to the abattoir by trucks. Transportation

of culled pigs is handled by the abattoir and hence the cost of transportation per truck is

fixed in the model. Variable costs of transportation, e.g. costs of loading a pig into the truck,

are not considered in the model of this paper.

7. When a section is terminated and cleaned, a new batch of piglets is inserted into the pens of this

section immediately, i.e. the piglets are always available. As a consequence, information

on the growth and weight of the piglets is known at insertion time.

8. The production process in a section is independent of other sections, i.e. the piglets can

be inserted into the sections at different times, and a section can be terminated earlier

compared to other sections.

9. The sequence of feed-mixes used during the production cycle (feeding strategy) is known and

fixed.

10. A new batch of piglets and the required feed stock are bought using known and fixed prices.

11. The pigs are sold to the abattoir using a known settlement pork price function.
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12. The growth of a pig is independent of the other pigs in the pen, i.e. the growth is not

dependent on the number of pigs in the pen.

Under these assumptions, we describe the state space, action space, transition function, reward,

and the optimality criterion of the discounted infinite-horizon MDP model in the following.

4.2.1 State space

In a given decision epoch, state s is defined using state variables:

ti week number in a production cycle of section i, ∀ i ∈ I;

qi j number of remaining pigs in pen j of section i, ∀ i ∈ I & j ∈ J;

wi j model information related to the weight of pigs in pen j of section i, ∀ i ∈ I & j ∈ J. wi j ∈
W is a vector of the three state variables µi j, σi j, and gi j corresponding to the mean

and standard deviation of weight and the average growth of pigs in pen j of section i,

respectively, i.e. wi j = (µi j,σi j,gi j). The values of these variables can be obtained from

repeated measurements of weight and feed intake data in the farm using state space models

based on Bayesian updating (see Pourmoayed et al. (2016)).

In general state s takes the form

s = (~t,~q,~w),

where

~t =(t1, .., ti, .., t|I|),

~q =(q11, ..,qi j, ..,q|I||J|),

~w =(w11, ..,wi j, ..,w|I||J|).

Hence the set of states becomes

S = {s = (~t,~q,~w) | i ∈ I, j ∈ J, ti ∈ {1, . . . , tmax},

qi j ∈ {0 · I{ti>tmin}+qmaxI{ti≤tmin}, . . . ,q
max},wi j ∈W},

where I{·} denotes the indicator function.
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4.2.2 Action space

Consider state s and assume that the pigs in pen j of section i are sorted in ascending order based

on their live weight such that index k denotes the kth heaviest pig in this pen. We consider the

following decision variables for defining action a:

xi jk a binary variable equal 1 if the kth pig in pen j of section i is culled, ∀ i ∈ I, j ∈ J, & k ∈
{1,2, . . . ,qi j};

yi a binary variable equal 1 if section i is terminated, ∀i ∈ I.

Using decision variables xi jk and yi, action a is defined as

a = (~x,~y),

where

~x =(x111, ..,xi, j,k, ..,x|I||J|q|I||J|),

~y =(y1, ..,y j, ..,y|I|).

Possible actions for state s must satisfy the following constraints:

xi jk ≤ xi jk+1, ∀ i ∈ I, j ∈ J, & k ∈ {1,2, . . . ,qi j−1}, (4.1)

∑
j∈J

qi j−∑
j∈J

qi j

∑
k=1

xi jk ≤M(1− yi), ∀ i ∈ I, (4.2)

∑
j∈J

qi j−∑
j∈J

qi j

∑
k=1

xi jk ≥ (1− yi), ∀ i ∈ I, (4.3)

∑
i∈I

∑
j∈J

qi j

∑
k=1

xi jk ≤ ktruckz, (4.4)

xi jk = 0, if 1≤ ti < tmin, ∀ i ∈ I, j ∈ J, & k ∈ {1,2, . . . ,qi j}, (4.5)

yi = 1, if ti = tmax, ∀ i ∈ I, (4.6)

xi jk, yi, binary, ∀ i ∈ I, j ∈ J, & k ∈ {1,2, . . . ,qi j}, z integer. (4.7)

Based on the order of the sorted pigs in the pen, constraint (4.1) enforces that a lighter pig cannot

be marketed earlier than the heavier pigs. When a termination happens in section i (yi = 1),

constraint (4.2) implies that all the remaining pigs in the pens of this section must be marketed. In

this constraint, M is a predefined large number. Moreover, when all pigs are marketed from section
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i, constraint (4.3) ensures that this section must be terminated. Constraint (4.4) expresses that the

total number of marketed pigs in the herd must be less than the capacity of the trucks called from

the abattoir. In this constraint, ktruck is the capacity of one truck and z is a supplementary integer

variable denoting the number of trucks needed to transport the marketed pigs to the abattoir. In

constraint (4.5), marketing is not allowed when 1 ≤ ti < tmin in a production cycle at section i.

Constraint (4.6) ensures that termination in section i occurs in the latest week of a production

cycle (ti = tmax). Finally, constraint (4.7) defines the type of decision variables xi jk,yi and z.

If Xs and Ys are the set of decision variables xi jk and yi satisfying the above constraints, then

the set of possible actions A(s) for the given state s is defined as

A(s) = {a = (~x,~y)|~x ∈ Xs,~y ∈ Ys}.

4.2.3 Rewards

The reward of action a ∈ A(s) is calculated as the revenue of selling the marketed pigs to the

abattoir minus the cost of feeding the pigs that we decide to keep in the pens until the next

decision epoch, the cost of transferring the marketed pigs to the abattoir by trucks, and the cost of

buying a new batch of piglets when a section has been terminated. Hence, the reward associated

with state s and action a is formulated as

r(s,a) =∑
i∈I

∑
j∈J

qi j

∑
k=1

ccull
k (wi j)xi jk−∑

i∈I
∑
j∈J

qi j

∑
k=1

cfeed
k (wi j)(1−xi jk)−ctruckz−∑

i∈I
cpiglet|J|qmaxyi,

(4.8)

where ccull
k (wi j) is the unit reward of selling the kth pig in pen j of section i to the abattoir given

weight information wi j. Similarly, cfeed
k (wi j) denotes the feeding cost of the kth pig in pen j of

section i kept in the herd until the next decision epoch. Note that when marketing decisions are

made, culled pigs are sent to the abattoir after few days and therefore the additional feeding

cost and reward, resulting from the weight gain of culled pigs in this period, are considered in

the calculation of ccull
k (wi j). We use a simulation method to calculate functions ccull

k (wi j) and

cfeed
k (wi j) given weight information wi j (see Appendix 4.B). The coefficient ctruck is the fixed

cost of a truck to transfer the culled pigs to the abattoir, and cpiglet is the cost of buying a new

piglet in the beginning of a production cycle.
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4.2.4 Transition function

Given state s = (~t,~q,~w) and action a, the transition function φ(s,a,ω) describes how the system

evolves from state s to state s+:

s+ = φ(s,a,ω) = (~t+,~q+,~w+), (4.9)

such that for every i ∈ I and j ∈ J:

ti+ = (1− yi)(ti +1)+ yi,

qi j+ = (1− yi)(qi j−
qi j

∑
k=1

xi jk)+ yiqmax,

wi j+ = (1− yi)Γ(wi j,ω)+ yiw0,

where w0 is the weight information at the start of a production cycle in the section and Γ(wi j,ω)

describes a stochastic transition between wi j and wi j+ given random information ω. In order to

describe this stochastic transition, we define a stochastic process relying on two state space models

with Bayesian updating suggested in Pourmoayed et al. (2016), i.e. given weight information

wi j = (µi j,σi j,gi j), the transition probabilities for the state variables µi j, σi j, and gi j are obtained

using state space models based on Bayesian updating. For more details about this stochastic

process see Appendix 4.A.

4.2.5 Optimality criterion

A policy π is a decision rule or function that assigns for each state s ∈ S an action a = π(s)∈A(s),

i.e. a policy prescribes which action to take whenever the system is observed in state s. Under the

optimality criterion maximization of total expected discounted reward, the objective of the model

is to find the best policy that maximizes the total expected discounted reward over an infinite

time horizon:

max
π∈Π

E

(
∞

∑
n=1

γ
n−1r(sn,π(sn))

)
, (4.10)

where γ is the discount factor used to calculate the present value of a future cash flow, subscript n

indicates stage number, and Π is the set of all deterministic stationary policies. In order to find the

optimal actions a∗ = π∗(s), the following optimality equations should be satisfied for all states

s ∈ S (Puterman, 2005, Section 6.2)

ν(s) = max
a∈A(s)

( r(s,a)+ γE
(
ν(s+)

)
), ∀s ∈ S, (4.11)
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where s+ = φ(s,a,ω), and the value function ν(s) denotes the maximum expected discounted

reward of being in state s to the end of the time horizon. Notice that when 0 < γ < 1, S and A(s)

are finite and r(s,a) is bounded, a unique solution to the optimality equations (4.11) will exist

and the resulting policy is a deterministic stationary optimal policy (Puterman, 2005, Theorems

6.2.5-6.2.10).

4.3 Approximate dynamic programming

In the calculation of the value function ν(s) for all states s ∈ S using the optimality equations

in (4.11), we face some computational obstacles. First, the size of the state and action spaces

in the model are tmaxqmax|W ||I||J| and 2qmax|I||J|+|I|, respectively, which means that reasonable

values of tmax,qmax, |W |, |I|, and |J| (e.g. 15, 18, 1134, 3, and 20, respectively) make computation

of ν(s) for every possible state unmanageable. Second, due to the large number of states and

possible outcomes for random information ω, an exact computation of expected value E
(
ν(s+)

)
is prohibitive. Finally, due to the expected value operator, the maximization problem in (4.11)

is not deterministic and hence it may be difficult to solve it and find the optimal actions. These

computational challenges are known as three curses of dimensionality (Powell, 2007, Section

4.1) that prevent us from applying the regular solution procedures of MDPs (e.g. policy and value

iteration methods) to solve the discounted infinite-horizon MDP model.

Approximate dynamic programming is an efficient way to deal with these computational

problems and to find an approximate solution for the high-dimensional MDPs. The main idea is

to approximate the value function ν(s) and find the best actions for the states that are most likely

observed in the system. The approximation architecture of the value function is often described

by a parametric function and there are well-known algorithms exploiting simulation and linear

programming techniques to estimate the parameters of the approximated value function (see e.g.

Powell (2010), Topaloglu and Powell (2006), Toriello et al. (2010), de Farias and Van Roy (2003),

and Patrick et al. (2008)). For more details about ADP algorithms, the interested reader may

refer to Powell (2007). Examples of approximation methods in optimizing livestock systems are

Kristensen (1992) and Ben-Ari and Gal (1986) that use the parameter iteration method suggested

by Gal (1989).

In this section, we apply the ADP approach and use post-decision states to give an approximate

solution to the discounted infinite-horizon MDP model. First, in Section 4.3.1, we design a

parametric approximation architecture for the value function ν(s) . Second, in Section 4.3.2,
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the optimality equations are reformulated in terms of post-decision states to find a deterministic

version of the maximization problem in (4.11), and finally in order to estimate the parameters

of the approximated value function, an approximate value iteration algorithm is employed and

presented in Section 4.3.3.

4.3.1 Approximation architecture of the value function

When the sizes of the state and action spaces are too large, it is often not possible to update

the value function for every possible state. An alternative option is to find an approximation

architecture for the value function ν(s). When choosing the approximation architecture, we

should consider a balance between the computational efficiency and the performance of the

resulting policy. For instance, a second or third polynomial approximation for the value function

ν(s) may change the maximization problem in (4.11) to a very difficult non-linear model. In this

study, we use the properties of the value function of the marketing decisions at pen level to find

an approximation architecture for the value function at herd level.

Based on the hierarchy structure of the marketing decisions at herd level, we will assume

that the value function at herd level is additive over the value functions at pen level and hence an

approximation of the value function ν(s) is given as:

ν(s)≈∑
i∈I

∑
j∈J

νi j(ti,qi j,wi j), (4.12)

where νi j(ti,qi j,wi j) is the value function related to pen j of section i with weight information wi j

including qi j pigs in week number ti. According to the form of the value function of marketing

decisions at pen level in Pourmoayed et al. (2016), we found that a good functional form of

νi j(ti,qi j,wi j) is

νi j(ti,qi j,wi j)≈ qi jb(ti,wi j), (4.13)

where b(ti,wi j) is a parameter describing the effect of weight information wi j and week number

ti on the marketing decisions at pen level. In other words, b(ti,wi j) is the value of having one pig

more in pen j of section i with weight information wi j at week number ti. We may infer that this

parameter is the gradient of the value function with respect to the number of remaining pigs, qi j,

and hence we name it a slope parameter in the approximation architecture.

By substituting (4.13) in (4.12), the final form of the approximation architecture for the value

function at herd level is as

ν(s)≈∑
i∈I

∑
j∈J

qi jb(ti,wi j). (4.14)
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s−...

sa
− s

sa s+

sa
+
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ϕ(s−,a)

ψ(sa
−,ω)

ϕ(s,a)

ψ(sa,ω)

ϕ(s+,a)

Figure 4.1: Relation between pre- and post-decision states in three decision epochs. ϕ(.) indicates
a deterministic transition from pre-decision to post-decision states, and ψ(.) shows a stochastic
transition from post-decision to pre-decision states. Subscripts ’-’ and ’+’ clarify a state in the
previous and the next decision epochs, respectively.

Now instead of updating the value function for every possible state, we only need to find a very

good estimation for the slope parameters b(ti,wi j) ( ti ∈ {1, ..., tmax} and wi j ∈W ). Note that the

number of slope parameters, tmax|W |, needed to be estimated is much lower than the number of

possible states, tmaxqmax|W ||I||J|, and therefore the computational effort of the solution procedure

is noticeably reduced. In section 4.3.3, we apply an approximate value iteration algorithm to

estimate the slope parameters.

4.3.2 Post-decision state

In the transition function φ(s,a,ω) defined in (4.9), we can separate the effect of action a and

the random information ω. Therefore, for a given state s = (~t,~q,~w) and action a, transition to

s+ = φ(s,a,ω) is divided into two steps:

sa =ϕ(s,a) = (~ta, ~qa, ~wa) (4.15)

s+ =ψ(sa ,ω) = (~t+,~q+,~w+)

where for every i ∈ I and j ∈ J:

ta
i = (1− yi)(ti +1)+ yi,

qa
i j = (1− yi)(qi j−

qi j

∑
k=1

xi jk)+ yiqmax,

wa
i j = (1− yi)wi j + yiw0.
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Here, sa is known as the post-decision state, and s+ as the pre-decision state (Powell, 2007).

ϕ(s,a) is a deterministic transition that only considers the effect of action a on the pre-decision

state s while ψ(sa,ω) is a stochastic transition taking into account the effect of random informa-

tion ω on the post-decision state sa . We may infer that the post-decision state sa is the state of

the system immediately after making a decision while the pre-decision state s refers to the state

of the system just before we make a decision. Figure 4.1 shows the relation between pre- and

post-decision states in three successive decision epochs.

Now suppose s ∈ S is the pre-decision state of the system at the current decision epoch.

Moreover, assume that sa ∈ S and sa
− ∈ S are two post-decision states in the current and the

previous decision epochs, receptively. According to the transition function ψ(sa
−,ω), the pre-

decision state s is the result of a stochastic transition from post-decision state sa
− (see Figure 4.1)

and hence we can conclude that

ν(sa
−) = E

(
ν(s)|sa

−
)
. (4.16)

Furthermore, by reformulating the optimality equations in (4.11), the value of being in pre-

decision state s can be obtained using ν(sa):

ν(s) = max
a∈A(s)

( r(s,a)+ γν(sa) ), (4.17)

where sa = ϕ(s,a). Now by substituting (4.17) in (4.16), the new optimality equation for the

value function in post-decision state sa
− will be

ν(sa
−) = E

(
max

a∈A(s)
( r(s,a)+ γν(sa))|sa

−

)
. (4.18)

Note that in (4.18), the expectation is now outside the max operator and the main benefit of using

this new form of optimality equation, compared to Equation (4.11), is that the optimization prob-

lem inside the expectation is deterministic and hence it can be solved by well-known optimization

techniques. However, to calculate ν(sa
−), the expectation in equation (4.18) must be computed.

Calculation of this expected value is often computationally intractable and is usually approxi-

mated using simulation techniques. For more details about post-decision states see (Powell, 2007,

Chapter 4).

4.3.3 Approximate value iteration algorithm

In this section, we present an approximate value iteration (AVI) algorithm, the purpose of

which is to estimate the value of the slope parameters in the approximation architecture of
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Algorithm 1 AVI
Initialization:

Estimate initial values of slope parameters b̂(ta
i ,w

a
i j) for every ta

i ∈ {1, ..., tmax}& wa
i j ∈W .

Set h=1 (iteration counter).
while h≤H or ||~bh−~bh−1|| ≤ λ do

Initialize s0 for iteration h and set s := s0 and~b− :=~b
for n = 1,2, ...,N do

Solve maximization problem:
a∗ = arg maxa∈A(s)(r(s,a)+ γν̃~b−

(sa)),

if n>1 then
Run Algorithm 2 given pre- and post-decision states s and sã and action a∗=(~x∗,~g∗)
to update the slope parameters.

end if
Set ã = a∗ and find the post-decision state:

sã = ϕ(s, ã).
Generate sample ω̂ and find the next pre-decision state:

s+ = ψ(sã, ω̂).
Set n := n+1 and s := s+

end for
h = h+1

end while
Return b̂(ta

i ,w
a
i j) for every ta

i ∈ {1, ..., tmax}& wa
i j ∈W .

the value function defined in (4.14). In this algorithm, the parametric approximation archi-

tecture ν̃~b
(.) : sa → R represents the value function in terms of post-decision states where

vector ~b shows the set of estimated slope parameters in the approximate value function, ~b =

(b̂(ta
1 ,w

a
11), .., b̂(t

a
i ,w

a
i j), .., b̂(t

a
|I|,w

a
|I||J|)). Algorithm 1 illustrates the pseudo code of the algorithm.

In this algorithm, first the slope parameters are initialized to known values, and then several state

trajectories are simulated in two loops (outer and interior loops) and the slope parameters are

updated. The main parts of the algorithm are described below.

Initialization. The algorithm is started by estimating the initial values for the slope parameters

b̂(ta
i ,w

a
i j) ( ta

i ∈ {1, ..., tmax} and wa
i j ∈W ). The initial values are estimated according to

the behavior of the value function of marketing decisions at pen level in Pourmoayed et al.

(2016).

Maximization problem. In each iteration of the algorithm, a maximization problem should be
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Algorithm 2 Updating of slope parameters

In state s = (~t,~q,~w), for every i ∈ I and j ∈ J such that ti >= tmin do:
if qi j < qmax then

q′i j = qi j +1 → s′ = (~t,~q′,~w),
∇̂ν = maxa∈A(s′)(r(s′,a)+ γν̃~b−

(s′a))−maxa∈A(s)(r(s,a)+ γν̃~b−
(sa)),

else
q′i j = qi j−1 → s′ = (~t,~q′,~w),
∇̂ν = maxa∈A(s)(r(s,a)+ γν̃~b−

(sa))−maxa∈A(s′)(r(s′,a)+ γν̃~b−
(s′a)),

end if

b̂(t ã
i ,w

ã
i j) = (1−αh)b̂(t ã

i ,w
ã
i j)−+αh∇̂ν .

In state s = (~t,~q,~w), for every i ∈ I if yi
∗ = 1 do:

ν̂ = ∑ j∈J qi jb̂(ti,wi j)− (∑ j∈J ∑
qi j
k=1 ccull

k (wi j)− cpigletqmax|J|),

b̂(ta
i ,w

a
i j) = b̂(1,w0) = (1−αh)b̂(ta

i ,w
a
i j)−+αh

ν̂

qmax|J|γ

solved. This maximization problem in a given pre-decision state s = (~t,~q,~w) is defined as

maxa∈A(s)(r(s,a)+ γν̃~b−
(sa)), (4.19)

where the reward function r(s,a) was given in (4.8) and the value function ν̃~b−
(sa) can

be obtained using the approximation architecture of the value function in (4.14) and the

deterministic transition of post-decision states defined in (4.15). Vector ~b− in the value

function includes the last estimates of the slope parameters obtained in the previous iteration

of the algorithm. Moreover, the set of possible actions A(s) is defined using constraints

(4.1), (4.2), (4.3), (4.6), (4.5), (4.4), and (4.7). Therefore the final form of the maximization

problem is defined as follows:

max
~x~g z

∑
i∈I

∑
j∈J

qi j

∑
k=1

ccull
k (wi j)xi jk−∑

i∈I
∑
j∈J

qi j

∑
k=1

cfeed
k (wi j)(1− xi jk)− ctruckz− (4.20)

∑
i∈I

cpiglet|J|qmaxyi + γ ∑
i∈I

∑
j∈J

( (qi j−
qi j

∑
k=1

xi jk)b̂(ta
i ,w

a
i j)−+ yiqmaxb̂(1,w0)− ),

s.t. (4.1) − (4.7).

This integer programming model is solved to find the best action a∗ = (~x∗,~g∗) for the

pre-decision state s that is used in the next steps of the algorithm for generating the post-

decision state of the system and for updating the slope parameters of the value function.
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Simulating the state trajectories. In the outer loop of the algorithm, in each iteration h, first an

initial state s0 is randomly selected and then from this state, a state trajectory is simulated

for decision epochs 1,2, . . . ,N using an interior loop. Note that since we cannot simulate

an infinite trajectory, parameter N is chosen so as to be large enough to have a good

estimation of the average discounted reward of the model defined in (4.10). That is, N is

estimated such that the error criterion γN +1r̄/(γ−1) gets sufficiently small. This criterion

shows the difference between the average discounted reward of the model with an infinite

time horizon and with a long time horizon N , where r̄ is a pre-estimation of the average

reward per time unit in the model (for more details see (Powell, 2007, page 340)). Moreover,

in order to improve the performance of the algorithm the discount factor γ is set to a smaller

value than would be needed to capture the time value of money (Powell, 2007, pages 343,

597).

Next, in iteration n of the interior loop (related to decision epoch n), when pre-decision

state s = (~t,~q,~w) is observed, the maximization problem (4.19) is solved and the value of

a = (~x,~g) that solves this problem is stored in ã (after slope parameters have been updated).

Given ã, the post-decision state sã is found using the transition function ϕ(s, ã). Finally,

a sample of random information ω is generated (denoted by ω̂) and the next pre-decision

state of the system is found using the transition function ψ(sã, ω̂). Note that using sample

ω̂, the transition function ψ(sã, ω̂) results in a deterministic transition from sã to the next

pre-decision state s+.

Updating the slope parameters. The updating procedure of the slope parameters is given in

Algorithm 2. Note that according to equations (4.16) and (4.18), an estimation of the value

function ν(s) in pre-decision state s gives an estimation of the value function ν(sa
−) in the

previous post-decision state sa
−. In Algorithm 2, we use the same logic to update the value

of slope parameter b(ta
i ,w

a
i j) (when ti >= tmin). More precisely, in a given decision epoch

n (n > 1), we first estimate the gradients of the approximate value function with respect

to the number of remaining pigs and we then use them to update the slope parameters of

the value function in post-decision state sã observed in decision epoch n−1. Note that the

gradients of the value function are estimated according to the weight information observed

in all the pens. In order to calculate the gradient ∇̂ν in a pen with information wi j and

ti, first we add one average weighted resource into this pen (when there are qmax pigs in

the pen, one average weighted pig is removed from this pen) and then we calculate the

change in the objective function value of the maximization problem (4.20) in which, the
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coefficients ccull
k (wi j) and cfeed

k (wi j) are replaced by the reward and cost of an average

weighted pig.

Now using the estimated gradient ∇̂ν , the value of the slope parameter b(ta
i ,w

a
i j) is

updated as follows

b̂(t ã
i ,w

ã
i j) = (1−αh)b̂(t ã

i ,w
ã
i j)−+αh∇̂ν ,

where b̂(t ã
i ,w

ã
i j)− is an estimated slope of the value function in post-decision state sã

obtained in the previous decision epoch. The step size αh specifies how much weight

we should consider for the estimated gradient ∇̂ν to update slope b(ta
i ,w

a
i j) at iteration

h. The step size αh has an important effect on the convergence rate of the algorithm. We

use the generalized harmonic step size rule to determine the value of αh in each iteration

of the algorithm (Powell, 2007, page 430). That is, αh = ᾱ/(ᾱ + h− 1) where ᾱ is a

parameter specifying the reduction rate of the step size to zero while the iteration counter h

is increasing in the algorithm.

Finally, when a termination occurs in the section (y∗i = 1), the value of the slope

parameter b(ta
i ,w

a
i j) = b(1,w0) is updated in the algorithm. More precisely, using the

structure of equation (4.17) and the value of the value function at termination time, we

first estimate a sample of the value function at section level at the beginning time of the

production cycle (ti = 1) and next we use it to update the value of the slope parameter

b(1,w0) in the current iteration of the algorithm.

Stopping criteria. The algorithm is stopped when the norm (||.||) of difference between two

consecutive sets of parameter values (in an iteration of the outer loop) is less than or equal

to a predefined error criterion λ , ||~bh−~bh−1|| ≤ λ , or when we reach a maximum number

of iterations H .

The final values of the slope parameters, estimated at the end of the algorithm, can be used to

find the best actions in the system, i.e. given the slope vector~b including the final estimates of

the slope parameters, the following maximization problem is solved to find the best action a∗ for

an arbitrary observed state s:

a∗ = arg maxa∈A(s)(r(s,a)+ ν̃~b
(sa)). (4.21)

where sa = ϕn(s,a). That is, in contrast to the usual solution procedures of MDPs, we do not

generate a policy containing the optimal actions for every possible state. Instead, we solve the

above maximization problem to find the best actions for the observed states in the system.
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Table 4.1: Parameter values used in the discounted infinite-horizon MDP.

Parameter Value Description

qmax 18 Maximum number of pigs in a pen.a

tmax 15 Maximum number of weeks in a growing period (week).a

tmin 9 First possible week of marketing decisions.a

|I| 3 Number of sections.a

|J| 20 Number of pens in a section.a

ktruck 205 Capacity of truck transferring the culled pigs to the abattoir (pig).b

ctruck 400 Fixed cost of the truck (DKK).b

cpiglet 375 Cost of buying a piglet (DKK).c

γ 0.95 Discount factor.
w0 (26.4,3,6.2) Initial weight information, w0 = (µ0,σ0,g0), at the start of a production cycle (kg).d

a Value based on discussions with experts in Danish pig production. b Value taken from information in DAN-
ISH CROWN (http://www.danishcrown.dk/Ejer/Svineleverandoer/DC-Afregning/DC-Logistik-svin.aspx ).
c Value taken from Kristensen et al. (2012). d Estimated based on time series generated using simulation.

Table 4.2: Range of centre points for continuous state variables µi j,σi j, and gi j. Given centre
points, the continuous state variables µi j,σi j, and gi j are discretized into 21, 9, and 6 intervals,
respectively. The unit of values in the table is kg.

Week (t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

uµ

t 6.4-46.4 13.4-53.4 20.4-60.4 27.4-67.4 34.4-74.4 41.4-81.4 48.4-87.4 55.4-95.4 62.4-102.4 69.4-109.4 76.4-115.4 83.4-123.4 90.4-130.4 97.4-137.4 104.4-144.4
uσ

t 2-10 2.5-10.5 3-11 3.5-11.5 4-12 4.5-12.5 5-13 5.5-13.5 6-14 6.5-14.5 7-15 7.5-15.5 8-16 8.5-16.9 9-17
ug

t 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.4-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2 4.2-8.2

4.4 Computational results

In order to show the functionality of the proposed model, we use it in three numerical experiments.

In Experiment 1, we apply the AVI algorithm at pen level and investigate the accuracy of this

algorithm. Since the size of the model is small at pen level, we first solve it by the value iteration

algorithm and compare the results with the AVI algorithm. Next, in Experiment 2, we give an

example at herd level and show how the ADP can find the best marketing decisions when there

are different conditions in the average growth of pigs in sections. Finally, in Experiment 3, the

marketing policy obtained by the ADP is compared with other marketing policies that may be

applied in the production unit.

4.4.1 Parameters

In order to initialize the ADP and use it for the marketing decisions, we need to specify the

parameter values of the discounted infinite-horizon MDP model and the AVI algorithm.

http://www.danishcrown.dk/Ejer/Svineleverandoer/DC-Afregning/DC-Logistik-svin.aspx
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The values of the parameters used in the discounted infinite-horizon MDP model are given

in Table 4.1. These values have been obtained from information in finisher pig production

units (Danish conditions) and related literature. In the MDP model, we also need to calculate

functions/coefficients ccull
k (wi j) and cfeed

k (wi j) used in the reward function of the model in

(4.8). These functions depend on the carcass weight, leanness, feeding cost, and the settlement

pork price of individual pigs in pens. The method of acquiring this information and the related

parameter values are given in Appendix 4.B.

Moreover, since the framework of the model is based on a discrete Markov process, the

possible values of the continuous state variables µi j,σi j, and gi j related to weight information

wi j (defined in Section 4.2.1) must be split up into the discrete intervals. We use a simple method

to discretize state variables µi j,σi j, and gi j such that in every week of the growing period they

are divided into 21, 9, and 6 intervals of equal length, respectively. That is, the size of set W

including the weight information in the model is |W |= 21×9×6 = 1,134. This discretization

of the state space splits the domain of each continuous state variable into intervals of sufficiently

small length, e.g. by splitting the possible range of state variable µi j into 21 intervals per week,

the length of each weight interval will be 2 kg. In a given week number t, the centre points of

these intervals are denoted by uµ

t , uσ
t , and ug

t and their ranges are specified in a way such that they

represent possible values of weight and growth information in the system. That is, the range of the

centre points for the average and standard deviation of weight, uµ

t and uσ
t , increases linearly since

it is not possible to have, for instance, large values of µi j and σi j (e.g. 100 and 15, respectively)

in the first weeks of production. Table 4.2 shows the possible values of these centre points during

the growing period in pens.

The AVI algorithm was coded in C++ (MS VS2010 compiler), and CPLEX 12.6.2 (C++ API

by Concert Tecnology) was used as the optimization solver to solve the maximization problem

of the algorithm. In the algorithm, parameters N , H , λ , ᾱ are set to 120, 300, 5, and 100,

respectively. The best setting has been obtained by testing the algorithm with different values of

these parameters. Note that under these parameter values, 36,000 decision epochs are simulated

in the algorithm and in each simulation, slope parameters are updated according to the weight

information in 60 pens, i.e. the maximization problem of the algorithm is solved 2,160,000 times

to update the value of slope parameters in the model (at herd level). When the slope parameters

have been estimated, they are used in the maximization problem in (4.21) to find the best actions

for the observed states in the test instances.

The test instances used in the computational experiments are randomly generated from
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the stochastic process of weight information (wi j = (µi j,σi j,gi j), j ∈ J & i ∈ I ) described in

Appendix 4.A. More precisely, we simulate sample paths for state variables µi j,σi j, and gi j during

the growing period in the pens. These samples are obtained using the conditional probability

distributions of variables (µi j,gi j) and σi j acquired by the state space models formulated in

Pourmoayed et al. (2016).

4.4.2 Experiment 1: Accuracy of the AVI algorithm

In this section, we investigate the accuracy of the AVI algorithm and compare it with the value

iteration (VI) algorithm. For the purpose of comparison, we consider the sequential marketing

decisions at pen level and first we use the VI algorithm to solve the discounted infinite-horizon

MDP model described in Section 4.2. After solving the model, the value function is estimated

for every possible state in the model. Figure 4.2 shows the behavior of the value function with

respect to the number of remaining pigs in the pen (denoted by q). Each black line in this figure

corresponds to different conditions in the pen that may happen according to week number t

and weight information w. As we mentioned in Section 4.3.1, a good functional form for the

value function at pen level, in state s = (t,q,w), is ν(s)≈ qb(t,w) where the parameter b(t,w)

is approximately equal to the slope of the line related to week number t ∈ {1, ..., tmax} and

weight information w ∈W in Figure 4.2. In order to compare the performance of the AVI and VI

algorithms, we compare these slopes (resulting from the VI algorithm) with the estimated slopes

obtained by the AVI algorithm. The AVI algorithm is implemented in a single section with one

pen such that all slope parameters in the algorithm are initialized to one fixed number (e.g. 450).

Based on the values of parameters N , H , λ , ᾱ in the algorithm, the final values of the slope

parameters are estimated after approx. 45 minutes.

Figure 4.3 illustrates how the slope parameters of the approximate value function (obtained by

the AVI algorithm) converge to the constant values. Since the algorithm is based on simulating the

states, some of the states are observed more often and hence the related slope parameters converge

earlier. Figure 4.4 shows how the estimation of slope parameters by AVI is close to the related

values of slope parameters obtained by the VI algorithm. In this figure, each point corresponds to

a specific pair (t,w) such that the x-coordinate value of a point is the estimated value of slope

b(t,w) obtained by the AVI algorithm and the y-coordinate is the slope value estimated by the VI

algorithm. The dashed line is a 45-degree line considered as a marker in the plot when the values

of x and y coordinates are equal. As seen in the figure, the data points are close to the marker
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Figure 4.2: Behaviour of the value function with respect to the number of remaining pigs in the
pen (q) resulting from solving the discounted infinite-horizon MDP model using the VI algorithm.
Horizontal axis shows the number of remaining pigs in the pen and the vertical axis the value of
value function ν(s) in state s = (t,q,w). Each black line shows different conditions in the pen
that may happen according to week number t and weight information w.

line indicating that there is a little difference between the slope values acquired by the AVI and

VI algorithms. Over-estimation and under-estimation of slope parameters, estimated by the AVI

algorithm, happens in the first and last weeks of the growing period when the pen is almost

full and empty, respectively. The root mean square error (RSME) between the slopes obtained

by the AVI and VI is 22.7 which is an acceptable error according to the range of the estimated

values for the slope parameters (between 500 and 900). This shows that the AVI algorithm gives

a reasonable estimation for the slope parameters of the approximate value function. Note that

if the values of parameters N and H are increased in the algorithm, the estimation error will

be lower. However, the parameters of the algorithm should be adjusted in such a way to give a

good balance between the computational efficiency of the algorithm and the quality of the results.

Notice that, when the algorithm is run at herd level, the quality of the results will be much better
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Figure 4.3: Converging trends of slope parameters in the AVI algorithm. The horizontal axis
shows the number of updates of an observed slope and vertical axis indicates the estimated
value of observed slope parameters. Black lines show the converging trend of observed slope
parameters in the algorithm.

since the slope parameters are estimated using the simulated weight information in 60 pens at

the herd instead of one pen, i.e. each loop of the algorithm for updating the slope parameters will

contain 60 interior loops, each for one pen (see Algorithm 2).
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Figure 4.4: Comparison between the estimated slope values obtained by the AVI and VI algo-
rithms. Each point corresponds to a specific pair (t,w). The x-coordinate value of each point is
the estimated value of slope b(t,w) obtained by the AVI algorithm, and the y-coordinate value is
the slope value estimated by the VI algorithm. The dashed line is a 45-degree line considered as
a marker in the plot when the values of the x and y coordinates are equal.

4.4.3 Experiment 2: Marketing decisions at herd level

In this section, we use the ADP to find the best marketing decisions in a herd with 3 sections. In

order to show how the marketing decisions change according to the conditions of the herd, we

assume that there are different environmental effects (e.g. temperature, housing conditions, and

humidity) for each section resulting in different average growth rates of pigs in the three sections.

We therefore set the average growth rate of pigs in Section 2 as normal (6 kg per week) while in

Sections 1 and 3 pigs grow 10 percent faster and slower than Section 2, respectively.

To find the best marketing decisions, we first run the AVI algorithm under the parameters given

in Table 4.1 and Section 4.4.1 to estimate the slope parameters in the approximation architecture

of the value function at herd level. After running the algorithm, the slope parameters are converged

after approximately 21 hours. These slope values are then used in the maximization problem

(4.21) to find the best marketing decisions in the simulated states of the herd. The simulated

states are dependent on the weight information of the pens which is randomly generated using

the stochastic process of weight information described in Appendix 4.A.

Figure 4.5 shows the range of the simulated weight data during tmax = 15 weeks of the

growing period in the three sections. The distribution of weight values in each week is shown by

a box plot where the horizontal line inside the box indicates the median of the simulated data. As

seen in the figure, in each week (e.g. week 10), the weight values of pigs in Section 3 are higher
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Figure 4.5: The range of the simulated weight data in the three sections during tmax = 15 weeks
of growing period in the production cycles. Each box-plot contains 360 weight values split into 4
quartiles. The body of the box includes 50 % of the data (second and third quartiles) and within
the box the horizontal line shows the median of the simulated data. The up and down whisker
lines show the range of the data in the first and last quartiles. If a data point diverges considerably
from the overall pattern, it is plotted as a point.

than Sections 1 and 2 and the pigs in Section 2 grow faster compared to Section 1. Moreover,

when the pigs become older, the inhomogeneity of weight distribution increases between the pigs

with the same age in all sections (see the length of the box plots from week numbers 1 to 15).

Figure 4.6 illustrates the best marketing decisions during 52 weeks of production in the herd

(from week 46 to 94). We have randomly selected this period to have a plot of marketing decisions

in each section. That is, weeks 1 to 45 can be considered as the warm-up period of the simulation

for reaching steady state. In this figure, the bar lines show the number of remaining pigs before

a decision is made, the numbers below the bars denote the number of heaviest pigs culled from

the section, the letter “T” indicates the termination of a production cycle in the section, and the

letter “C” corresponds to continuing the production process without marketing. Note that when

termination occurs in a section (letter “T”), a new production cycle is started in this section.

Moreover, the time period between two successive terminations shows the length of a production
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Figure 4.6: Results of marketing decisions in a herd with three sections during 52 weeks of
production (from week 46 to 94). Bar lines show the number of remaining pigs in the sections
before a decision is made. Numbers below the bars denote the number of heaviest pigs culled
from the section, the letter “T” indicates the termination of a production cycle in the section, and
the letter “C” corresponds to continuing the production process without marketing.

cycle in the section.

As seen in Figure 4.6, the length of the production cycles in Section 3 is shorter than other

sections since according to Figure 4.5 the average weight of pigs in this section is higher than

Sections 1 and 2 and hence the pigs obtain their optimal slaughter weight earlier. It is therefore

beneficial that after a few weeks of individual marketing in Section 3, an early termination occurs

in this section resulting in a higher number of production cycles in this section compared to other

sections. In Sections 1 and 2, the pigs grow slower than Section 3 and hence it is better to keep

them in the pens for a longer period compared to Section 3, i.e. the length of the production cycles

in Sections 1 and 2 is longer than Section 3. However, after starting the marketing decisions

in Sections 1 and 2, we observe that in each production cycle the fraction of pigs remaining in

Section 1 is more than Section 2 (see the height of the bar lines for Sections 1 and 2 in Figure 4.6).

This happens since the average growth of pigs in Section 2 is better than Section 1 and hence

more pigs are culled from Section 2 compared to Section 1 resulting in a lower number of pigs in

Section 2.
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Figure 4.7: The total number of culled pigs from the herd in weeks 46 to 94. The numbers
below the bars show the number of trucks needed to transfer the culled pigs to the abattoir. The
horizontal dashed line shows the full capacity of a truck.
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Figure 4.8: The effect of the transportation cost on the marketing policy of the herd. Black and
gray bars show the number of pigs culled from the herd when the fixed costs of transportation
are 400 DKK and 2000 DKK, respectively. The horizontal dashed line shows the full capacity of
a truck (205 pigs).

Figure 4.7 illustrates the total number of culled pigs in the herd from weeks 46 to 94. The

numbers below the bars show the number of trucks needed to transport the culled pigs to the

abattoir and the horizontal dashed line shows the full capacity of a truck . As can be seen, the full

capacity of the trucks is not used in most cases and only the pigs with appropriate live weight are

sent to the abattoir (the capacity of a full truck is ktruck = 205). This happens since the fixed cost
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Table 4.3: Comparison between the performance of different marketing polices. Since each
policy is applied in 100 sample paths, the results are reported as 95% confidence interval m±
1.96s/

√
100, where m and s are the mean and standard deviation of the values of comparison

criteria in 100 sample paths.

Policy ADP M FTC All-In All-Out

9 10 11 12 13 14 15

Av. discounted reward per week 2072±45.5 1078±11.1 1830±103 470±11.9 1398±10.3 1831±7.6 1881±6.7 1679±4.6 1365±4 1014±3.9
Av. length of production cycle 11.8±0.01 10±0 11.6±0.06 9±0 10±0 11±0 12±0 13±0 14±0 15±0
Number of production cycles 30.5±0.14 36±0 31.3±0.28 39±0 36±0 33±0 30±0 27±0 27±0 24±0
% of truckload capacity utilized 76±1 75±0 88±0 87±0 87±0 87±0 87±0 87±0 87±0 87±0
Number of trucks sent to abattoir 73.7±1 84±0 63.6±0.5 84±0 72±0 66±0 60±0 54±0 54±0 48±0

of calling a truck (see Table 4.1) is lower than the profit obtained by culling a specific number of

pigs that are ready for slaughter. For instance, when 40 pigs are ready for slaughter, it is beneficial

to call a truck and transport them to the abattoir. However, this happens in few cases and there

are not many deliveries with a small number of culled pigs. Moreover, note that in some cases

a compulsory termination at the latest week of the growing period (week tmax = 15) leads to

a small number of pigs being culled and sent to the abattoir by one truck (e.g. see week 84 in

Figure 4.6).

Transportation costs can affect the marketing policy of the farm. Figure 4.8 shows the change

in the number of marketed pigs in the herd when the fixed costs of transportation (ctruck) are 400

and 2,000 DKK. As we see in this figure, a high transportation cost leads to a better utilization

of trucks and fewer deliveries to the abattoir. More precisely, with the fixed transportation cost

ctruck = 400, the number of deliveries to the abattoir is 39 while with ctruck = 2,000 this number

is decreased to 18 that may result in culling some pigs that are not ready for slaughter yet. Note

that the variable cost of transportation per pig (e.g. cost of loading a pig into the truck) is not

considered in the model since this variable cost is much smaller than the value of a pig in the

abattoir and hence it would not have a noticeable impact on the marketing policy and can be

ignored.

4.4.4 Experiment 3: ADP compared to other marketing policies

In order to evaluate the performance of the marketing policy obtained by the ADP, we compare it

with other well-known marketing polices often applied at herd level. In order to have a valid com-

parison, we use same test instances for all the policies in which the simulated weight information

in the pens shows normal conditions at the herd. Since we cannot simulate an infinite trajectory,

marketing decisions are considered over a long time horizon (N = 120 weeks approximately
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equal to 2.5 years) and 100 sample paths are generated in this horizon for comparing the policies.

The average discounted reward of the production unit per week is chosen as the main criterion

to compare the policies. This criterion is defined as ∑
N
n=1 γn−1rn(s,π(s))/N for a given policy

π. Moreover, the average length of the production cycle, the number of production cycles, the

percentage of truckload capacity utilized, and the number of trucks sent to the abattoir during

this horizon are reported for each policy. We compare the marketing policy resulting from ADP

with the following policies:

Myopic policy (M). This policy does not consider the impact of the present decisions on the

future conditions of the system, i.e. only the immediate reward of the decisions is taken

into account in the model. To find the best marketing decisions under this policy, in each

decision epoch, we solve the following maximization problem without considering the

future reward of decisions:

a∗ = arg maxa∈A(s)(r(s,a)).

This policy was chosen for comparison in order to stress the importance of using dynamic

programming that considers the future value of decisions.

All-In All-Out policy. When the length of the growing period in the section equals a specified

value, all pigs are marketed from the section in one delivery, i.e. individual marketing

decisions are not considered in the model. We evaluate this policy under the assumptions

that the section must be terminated at weeks 9, 10, 11, 12, 13, 14, and 15. This policy is

commonly used in the industry as the main delivery strategy to the abattoir.

Full truck capacity policy (FTC). When a delivery to the abattoir takes place, the farmer prefers

to use the maximum capacity of the trucks. In order to evaluate this policy, we change the

inequality transportation constraint (4.4) in the model to an equality constraint, and assume

that a compulsory termination at herd level occurs when the number of pigs at the herd is

less than the full capacity of one truck (ktruck). This policy is usually followed by farmers

who want to use the maximum capacity of the truck when sending the pigs to the abattoir.

Table 4.3 shows the results for the ADP, M, FTC, and All-In All-Out policies. Since each pol-

icy is used in 100 sample paths, results are reported as 95% confidence interval m±1.96s/
√

100,

where m and s are the mean and standard deviation of the values of comparison criteria in 100

sample paths.
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As we see in the table, the ADP policy outperforms other policies in terms of average

discounted reward per week, and the All-In All-Out policy with a length of 9 weeks results in

the lowest reward. The difference between the ADP and FTC policies is noticeable. Using the

maximum capacity of trucks in the FTC policy results in marketing some pigs that are not ready

for slaughter yet and hence the farmer loses the possible profit that could be earned by keeping

these pigs for a longer time in the herd. Moreover in this policy, as expected, the utilization of

truckload capacity is better than other policies (see the percentage of truckload capacity utilized).

It seems that All-In All-Out policies with lengths 11 and 12 weeks perform well in the test

instances. This is because of the lengths of the growing period in these policies that are close to

the average length of the production cycle in the ADP policy resulting in the best marketing time.

In the All-In All-Out policies, as expected, when the length of the growing period is increasing

(from 9 to 15 weeks), the number of production cycles decreases during 120 weeks of production

and hence we need to have fewer trucks to transfer the culled pigs to the abattoir. Furthermore

in these policies utilization of truckload capacity is high and close to the FTC policy, since in

one delivery all the pigs are sent to the abattoir and hence the full capacity of most trucks are

utilized. Finally note that when the length of the production cycle is high (e.g. 14 or 15 weeks),

the average discounted reward per week is reduced noticeably. This happens since the feeding

cost of the pigs increases considerably during a longer growing period and the revenue that can

be obtained by selling the heavy pigs in this period cannot compensate well the feeding cost of

the system and therefore the average reward of the production unit will be reduced. This shows

the importance of the feeding costs in the herd.

4.5 Conclusions

In the production of growing/finishing pigs, cross-level constraints (e.g. termination at section

level or transportation at herd level) resulting from marketing decisions at different levels (e.g.

animal, pen, section, and herd level) have an effect on the marketing policy of the farm.

In this paper, we considered marketing decisions of growing/finishing at herd level modeled

by a discounted infinite-horizon MDP model. The state of the system was based on weight

information in the pens described by a stochastic process relying on state space models. Due to

the curse of dimensionality problem, an ADP approach with post-decision states was used to find

the best marketing policy.

We suggested a parametric function to approximate the value function of the MDP model
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and estimated the slope parameters of the approximation architecture using the AVI algorithm. A

numerical experiment at pen level demonstrated the accuracy of the AVI algorithm in estimating

the slope parameters of the approximated value function.

Numerical experiments at herd level showed that the ADP can find the best marketing deci-

sions under different conditions in the average growth rate of pigs in the herd. Moreover, the effect

of the fixed transportation cost was noticeable on the marketing decisions. Finally, the marketing

policy obtained by the ADP outperformed other marketing polices in terms of average discounted

reward per week and the effect of feeding cost on the discounted reward of the production unit

was important.
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4.A Modeling stochastic process of weight information in the

pen

Suppose (µ,g) and σ denote the average weight and growth, and the standard deviation of the

weight of pigs, respectively, in the pen. In order to describe the stochastic nature of the weight

information in the pen, we apply a discrete time stochastic process modeling the dynamics of

independent random variables (µ,g) and σ during the growing period (tmax weeks).

Suppose Ω(µ,g) and Ωσ are the sets of all possible outcomes for the random variables (µ,g)

and σ. Moreover, assume that X = ((µ,g),σ) is a supplementary random variable denoting the

random information of weight in the pen. A realization (sample) of this random variable is

denoted by X̂ ∈Ω(µ,g)×Ωσ .

A discrete time stochastic process modeling weight information in the pen is defined as a

collection of random variables X indexed by week number t:

{Xt , t = 1,2, ..., tmax}.

In this process, in a given week number t, the random variable Xt depends on the earlier values

observed in the process, X̂t−1, X̂t−2, .., X̂1. Therefore, in order to analyze the process, we need to

find the probability distribution of the conditional random variables in the form of

Pr(Xt |X̂t−1, X̂t−2, .., X̂1).

In order to calculate this probability, we use the properties of two state space models (SSMs)

formulated in Pourmoayed et al. (2016) for modeling the dynamics of the state variables (µt ,gt)

and σt in a finisher pen.

First, according to the Markovian property of these SSMs, we have

Pr(Xt |X̂t−1, X̂t−2, .., X̂1) = Pr(Xt |X̂t−1)

and based on the properties of the independent random variables (µt ,gt) and σt in Xt we can

conclude

Pr(Xt |X̂t−1) = Pr( (µt ,gt) | (µ̂t−1, ĝt−1) ).Pr(σt |σ̂t−1).

Now we only need to find the probability distributions of the conditional random variables

( (µt ,gt) | (µ̂t−1, ĝt−1) ) and (σt |σ̂t−1). The probability distributions of these random variables

can be found in Theorems 2 and 4 in Pourmoayed et al. (2016).
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Therefore, in the discounted infinite-horizon MDP model, the random information ω in the

stochastic transition function Γ(.) (defined in Section 4.2.4) is described using the probability

distributions of the conditional random variables ( (µt ,gt) | (µ̂t−1, ĝt−1) ) and (σt |σ̂t−1). More-

over, in order to generate sample ω̂ in the AVI algorithm (see Algorithm 1), we need to draw a

sample from the probability distributions of these random variables.

4.B Calculation of ccull
k (wi j) and cfeed

k (wi j)

Before calculating ccull
k (wi j) and cfeed

k (wi j), we need to describe the methods of obtaining the

carcass weight, leanness, feeding cost, and the settlement pork price function.

Carcass weight, leanness, feeding cost, and settlement pork price

Consider the kth ordered pig with live weight wl and daily growth g in the pen. The carcass

weight w̃ can be approximated as (Andersen et al., 1999)

w̃ = 0.84wl−5.89+ ec, (4.22)

where ec ∼ N(0,1.96) is a normal distributed term. The relation between growth rate, leanness

(lean meat percentage), and feed conversion ratio varies widely between herds. Hence, these

formulas must be herd specific. The leanness w̆ can be found as (Kristensen et al., 2012)

w̆ =
−30(g−6)

4
+61. (4.23)

The feed intake (energy intake) is modeled as the sum of feed for maintenance and feed for

growth. The basic relation between daily feed intake f (FEsv1), live weight and daily gain is

(Jørgensen, 2003)

f = k1g+ k2w0.75, (4.24)

where k1 = 1.549 and k2 = 0.044 are constants describing the use of feed per kg gain and per kg

metabolic weight, respectively. As a result the expected feed intake of the kth pig over the next d̃

1FEsv is the energy unit used for feeding the pigs in Denmark. One FEsv is equivalent to 7.72 MJ.
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days equals

f feed
(k) (d̃) = E

(
d̃

∑
d=1

fd

)
= E

(
d̃

∑
d=1

(
k1g+ k2(wl +(d−1)g)0.75

))
=

E

(
d̃k1g+ k2

d̃

∑
d=1

(wl +(d−1)g)0.75

)
,

where fd denotes the feed intake at day d calculated recursively using (4.24). The feeding cost

for the kth pig during d̃ days can be calculated by multiplying f feed
(k) (d̃) to the unit feed cost per

FEsv (1.8 DKK2):

pfeed
(k) (d̃) = 1.8 f feed

(k) (d̃). (4.25)

Consider the kth ordered pig with carcass weight w̃ and leanness w̆ at delivery. Under the

Danish system, the settlement pork price is the sum of two linear piecewise functions related to

the price of the carcass and a bonus of the leanness:

ppork
(k) (w̃, w̆) = p̃(w̃)+ p̆(w̆). (4.26)

Functions p̃(w̃) and p̆(w̆) correspond to the unit price of carcass and the bonus of leanness for

1 kg meat, respectively. We define p̃(w̃) and p̆(w̆) based on the meat prices used in (Kristensen

et al., 2012) 3 as

p̃(w̃) =



0 w̃ < 50

0.2w̃−2.7 50≤ w̃ < 60

0.1w̃+3.3 60≤ w̃ < 70

10.3 70≤ w̃ < 86

−0.1w̃+18.9 86≤ w̃ < 95

9.3 95≤ w̃ < 100

9.1 w̃ ≥ 100.

p̆(w̆) = 0.1(w̆−61).

2Current feed price can be found at http://www.notering.dk/WebFrontend/.
3For the current prices see http://www.danishcrown.dk/Ejer/Noteringer/

Aktuel-svinenotering.aspx

http://www.notering.dk/WebFrontend/
http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx
http://www.danishcrown.dk/Ejer/Noteringer/Aktuel-svinenotering.aspx
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Note that when marketing decisions are made, the culled pigs are sent to the abattoir after

b = 3 days. The additional feeding cost and reward, resulting from keeping the culled pigs in this

period (b = 3 days), can be calculated using equations (4.25) and (4.26), respectively.

Calculation of reward and feed cost

The calculations of ccull
k (wi j) and cfeed

k (wi j) are rather complex due to the ordered random

variables and the non-continuous function p̃(w̃). However, these values can be calculated using

simulation with a simple sorting procedure as described below.

In pen j of section i given the weight information wi j = (µi j,σi j,gi j), do the following steps:

Step 0 Use the value of state variables µi j and σi j to find the probability distribution of live

weight in the pen. i.e. wl
i j ∼ N(µ̂i j, σ̂i j).

Step 1 Draw qmax random weights ŵl from the probability distribution wl
i j ∼ N(µ̂i j, ĝi j). More-

over, find the daily growth of the pen using the value of state variable gi j, i.e. g = ĝi j/7

Step 2 For each week t and each random weight ŵl , use (4.22) and (4.23) to find the carcass

weight and leanness (b days ahead), respectively. Moreover, use (4.25) to find the feeding

cost for the next d = 7 and b = 3 days.

Step 3 For each week t and each random weight ŵl , calculate the settlement pork price (4.26)

and deduct the feeding cost for b days from it, i.e. the reward of selling a pig with weight

ŵl to the abattoir is calculated.

Step 4 For each week t, sort the obtained values of feed cost and reward of selling in non-

decreasing order of weights ŵl .

We run the simulation 1,000 times and calculate the average values for the feed cost and the reward

of selling to the abattoir for the sorted weights, i.e. ccull
k (wi j) and cfeed

k (wi j) are calculated.
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