
 
U N I V E R S I T Y  O F  C O P E N H A G E N  

F A C U L T Y  O F  H E A L T H  A N D  M E D I C A L  S C I E N C E  

 

 

 

 

     

Detecting abnormalities in daily weight gain in 

finisher pigs using automatic camera weighing  

 

Master’s Thesis in Animal Science  

Kasper Balslev Sørensen, gmx774 

Submitted on: 31st of January 2018 

Main Supervisor:  

Anders Ringgard Kristensen, Professor, Faculty 

of Health and medical Science,  University of 

Copenhagen 

Co-Supervisors:  

Julie Krogsdahl Bache, Consultant, SEGES - 

Danish Pig Research Centre  

& 

Dan Børge Jensen, Assistant professor, Faculty 

of Health and medical Science, University of 

Copenhagen 



I 

Preface 

This thesis is the final work of my Master’s degree in Animal Science at Faculty of Health and 

Medical Science at University of Copenhagen. It was conducted in the time period from February 

2018 to December 2018 at the Department of Veterinary and Animal Science, University of 

Copenhagen. This thesis was conducted as a collaboration between Copenhagen University, 

SEGES – Danish Pig Research Centre and SKOV A/S. Thus, I will like to thank all involved 

partners.  

 

Throughout the writing period, many people have been of great help. I would like to thank my 

main supervisor Anders Ringgaard Kristensen, for constructive criticism, guidance and for helping 

with the data analysis. I would also like to thank my co-supervisor Dan Børge Jensen, for guidance, 

reviewing parts of the manuscript and for help with the data analysis.  Also, special thanks to my 

other co-supervisor Julie Krogsdahl Bache for providing invaluable support, guidance and for 

reviewing large parts of my manuscript.  

 

The study was conducted in collaboration with the Danish company SKOV A/S who provided 

data for this study. I would especially like to thank Hans Ulrik Jensen, Niels Henrik Lundgaard 

and Maria M. Bager Sørensen for guidance and for making me feel welcome when I was at the 

company. I would like to thank Ib Filholm Jensen, for letting me visit the farm where the data 

analyzed in this study is from and for taking the time showing me the farm. 

 

I would also like to thank all my wonderful colleagues at SEGES – Danish Pig Research Centre 

for their great support and understanding during the writing process. Finally, I would like to thank 

Lasse Emil Sembach, Anne Mette Mathina Nygaard and Alma Magdalene Precht for reviewing 

parts of my manuscript. I appreciate your time and effort.   



II 

Abstract 

Knowledge of daily body weight (BW) gain of finisher pigs allows the farm employees to monitor 

performance and health of the animals. However, weighing pigs has traditionally been a labour 

intensive and time consuming task, which might have negative implications for the pigs. Thus, an 

automatic weighing system using camera vision has been suggested as a superior method. 

However, in order to use the weight observation from automatic camera weighings for a 

monitoring tool to give an early warning if abnormalities are occurring, it is important that the 

collected data are processed and analysed. The aim of this thesis was therefor to design a dynamic 

linear model with Kalman filtering to detect abnormalities in BW gain in a commercial Danish 

finisher herd based on weighing data generated from the automatic weighing system ProGrow 

from the company SKOV A/S.   

 

From the literature review, it is clear that BW can be estimated based on body size measurements 

obtained from camera vision. The best estimates can be found by measuring the body area of the 

pig. Thus, a top view camera can be enough to obtain measurement. At farm level the cameras can 

be placed above a passageway or above a feeder. The weighing process can be automated. Thus, 

frequent BW measurements can be obtained. A DLM with Kalman filter was suggested to analyse 

BW data. Finally, a tabular cumulative sum chart (Cusum) was described as a method to detect 

abnormalities in growth. Thus, small shifts in BW gain can be detected.  

 

In the data analysis of this thesis a DLM were used to dynamically filter frequently obtained data 

from ProGrow. Furthermore, the model was used to construct a monitoring tool based on a Cusum 

which can detect abnormalities in BW gain and give early warnings as alarms to the farm 

personnel. The performance of the system was tested on a test data set which was not used to 

estimate the parameters used in the DLM. Additionally, the performance of the alarm system was 

displayed using simulated data with a known event of decreased growth rate. The number of alarms 

from the monitoring system will depend on the reference value and decision interval used as 

parameters in the Cusum. Thus, these values should be defined based on the choice of the farmer.  
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1. Introduction  

1.1 Background 

Trends show that the development in Danish pig production is moving towards fewer farms, but 

with increased herd size (Christiansen, 2017). Increasing herd size gives the ability to exploit 

economies of scale and improve the efficiency because of optimized time use and specialization 

of attributes of the workers. However, increasing herd size also demands more from the farm 

employees, because they must overview more animals and make smart decisions to insure high 

production, health, and animal welfare. One way to improve the employees’ overview of a herd 

and improve the decision making is by using integrated monitoring systems (Cornou and 

Kristensen, 2013; Frost et al., 1997; Wathes et al., 2008). Integrated monitoring systems rely on 

sensors to generate data which can be analysed to detect abnormalities in a production and give 

early warnings to the farm employees. In a finisher pig production examples of parameters which 

could be monitored are; climate, water intake, feed intake, activity, and body weight (BW) (Cornou 

and Kristensen, 2013). However, if a monitoring system should be integrated in a herd, it is 

important that it is cost effective and that the early warnings are relevant and without false positives 

(Dominiak and Kristensen, 2017) 

 

Knowledge of daily weight gain allows the farm employees to monitor performance and health of 

the animals (Schofield et al., 1999; Shi et al., 2016; Wang et al., 2008). Field studies have shown 

that large deviations in daily gain can indicate irregularities in production as for example mistakes 

in feeding (Jessen and Udesen, 2016). Beside its use for early warning of abnormalities, knowledge 

of daily gain can also be used to optimize production. Thus, it plays an important role in controlling 

the factors which affect the performance of a finisher herd (Brandl and Jørgensen, 1996; Leen et 

al., 2017; Parsons et al., 2007). Number of transfers, sorting strategies, group size, floor space 

allowance, and feeding level are examples of things which the farm employees can change to affect 

the growth of finisher pigs (Cornou et al., 2005; Flohr et al., 2016). Currently information used as 

basis for decision making and general monitoring is a combination of the farm employees’ 

observations and typically a monthly or a quarterly report (Cornou and Kristensen, 2013; Madsen 

and Ruby, 2000). However, real time surveillance of daily weight gain would make it possible to 

monitor and optimize an ongoing production by detecting irregularities in the production earlier 

and while change still can be made (Stygar and Kristensen, 2016).  
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In order to monitor weight gain in a production regular weighing is necessary. Weighing of finisher 

pigs can be performed in several ways, each with different implications. Manually weighing of 

pigs is done be either moving a scale into the pen and weighing the pigs individually or by moving 

the pigs out of the pen and onto a scale in the passageway. Thus, manually weighing is a time-

consuming task, as well as a stressor for the pigs (Brandl and Jørgensen, 1996). Weighing pigs 

manually might also have unwanted implications on the performance of the pigs. Augspurger and 

Ellis (2002) showed that manually weighing of pigs resulted in a short-term decrease in feed 

uptake. However, Wolter et al. (2002) found no effect of weighing frequency on growth 

performance. Although manually weighing is the most accurate method it is doubtful that it will 

be performed more than once a week, because of the workload and the implications for the pigs. 

Therefore, it can be argued that manually weighing cannot be used to give early warnings of 

abnormalities in growth. In that case, an automatic weighing system should be considered.  

 

Present, two kinds of automatic weight systems have been suggested; electronic weigh platforms 

(Williams et al., 1996), and camera weighing (Kashiha et al., 2013; Kongsro, 2014; Schofield et 

al., 1999; White et al., 2004; Wu et al., 2004). Electronic weigh platforms theoretically have a high 

accuracy. However, the pig has to stand in the same position when it is weighed and several pigs 

can stand on the platform at the same time which will result in wrong weight measurements 

(Williams et al., 1996). Another alternative could be to use image analysis of the pig, because there 

has been found a correlation between the area of a pig’s image and the weight of the pig (Kollis et 

al., 2007). Weighing using cameras has been suggested because it causes no stress for the pigs and 

it can be installed in most farms without modification of the pens. Studies have shown that the live 

weight of the individually pig can be estimated with 4-6 % deviations using image analysis (Brandl 

and Jørgensen, 1996; Kollis et al., 2007; Kongsro, 2014; Schofield et al., 1999). Additionally, a 

recent test has shown that the commercially available system ProGrow (SKOV A/S, Roslev, 

Denmark) can be used to estimate the group mean of pigs with a deviation in means from manually 

weighing and image weighing between 0.3- 3.6 % (Udesen and Krogsdahl, 2018). 

 

The level of data generated from an automatic weighing system, depends on the technology 

availably and the price the farmer is willing to pay for the system. Monitoring of all pigs in a herd 

would demand a lot of equipment and sophisticated image processing techniques, which could 

lead to a greater production cost (Kollis et al., 2007). However, these costs could be reduced by 

only monitor a subset of pigs in a herd. These groups of pigs could serve as a basis for prediction 

for the remaining pens. (Stygar and Kristensen, 2016; Udesen and Krogsdahl, 2018; White et al., 
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2004). If, on the other hand, only a subset of the pigs are monitored, the use of the data will be 

limited, because of the variance of the weight between the pigs and between the pens (Udesen and 

Krogsdahl, 2018). Currently, there is, to the author’s knowledge, no commercial automatic image 

weighing system available, which can identify the individual pigs without using additional 

technology (Artmann, 1999). Thus, the measured BW will be a mean of all pigs in the pen.  

 

In recent years several commercial weighing systems using image analysis have come available 

(Vranken and Berckmans, 2017). However, in order to use the weight observation as a monitoring 

tool to give an early warning if abnormalities are occurring, it is important that the collected data 

are processed and analysed. Thus, this study will investigate how weight measurements can be 

collected and analysed to detect abnormalities.   

1.2 Objective 

The aim of this thesis is to design a dynamic linear model with Kalman filtering to detect 

abnormalities in BW gain in a commercial Danish finisher herd based on weighing data generated 

from the automatic weighing system ProGrow (SKOV A/S, Roslev, Denmark).  The aim is 

achieved by the following two objectives: 1) a literature review, and 2) a data analysis. 

 

1) The literature review will focus on how the BW can be estimated using camera vison. 

Furthermore, it will be investigated how dynamic linear models with Kalman filtering can 

be used to analyse weight data. The following research questions will be answered in the 

literature review: 

- How can BW of finisher pigs be estimated using camera vision? 

- How can a camera vison weighing system be used at farm level?  

- How can a dynamic linear model using a Kalman filter be used to analyse weigh data?  

 

2) In the data analysis, a DLM to estimate BW gain in pigs will be constructed based on data 

from two commercial Danish finisher pig herd. The model will be estimated from historical 

data and will be tested in a dataset which has not been used to estimate the parameters. 

Additionally, it will be analysed when an abnormality can be detected using simulated data. 

The following research questions will be answered in the data analysis: 

- How can the DLM and the monitoring tool be constructed? 

- When can an abnormality be detected with the monitoring tool?  

- Which implications could the monitoring tool have on a commercial finisher farm?  
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1.3 Hypothesis 

The main hypothesis of this study is that a dynamic linear model with Kalman filtering can be used 

to analyse frequent obtained BW data from camera weighing to detect abnormalities in growth of 

finisher pigs. 

1.4 Delimitations  

In the data analysis of this study, BW data are generated using the camera technology which is a 

part of the commercial system ProGrow. The precision of a similar weighing system has been 

tested in another study (Udesen and Krogsdahl, 2018). The main target of this project is to apply 

a suitable model to analyse the data and give useful information to the farmer. Hence, no validation 

of manually weighings is performed.  

 

The system can potentially weigh pigs starting from 7 kg. However, the scope of this thesis is 

finisher pigs weighing from 30 kg until slaughter marketing. 

 

No information of abnormalities from the farm is available. Thus, the performance of the early 

warning system will be tested on a simulated dataset where the events are known.  

1.5 Structure of this thesis  

This thesis consists of a general introduction, a literature review, a manuscript for an article, a 

general discussion, a general conclusion, and perspectives. The literature review consists of three 

main chapters. The first chapter reviews how image weighing of the individually pig is performed. 

The second chapter describes how the image weighing method can be used at a farm level. The 

third chapter describes how a dynamic linear model can be used to analyse frequent BW 

estimations.  

The literature review is background information relevant for the method used in the data analysis 

part of this thesis, presented in the article. However, the article can be read alone as, it includes: 

abstract, introduction, materials and methods, results, discussion, conclusion, and a list of 

references of its own.  
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2. Literature review  

2.1 Weight estimation using camera vision 

The BW of growing pigs is important to know, because the BW is an indicator of performance and 

health. Additionally, the weight determines if the pigs are ready to be send to slaughter (Kristensen 

et al., 2012; Schofield et al., 1999). Furthermore, the weight can be used to manage feed change 

(Whittemore and Schofield, 2000) and floor space allowance (Pastorelli et al., 2006). However, 

weighing pigs has traditionally been a time consuming and labor-intensive task (Brandl and 

Jørgensen, 1996). The traditional way of weighing can have negative implication for the pigs, 

because it has been found, that the pigs have a reduced feed intake on the day of weighing 

(Augspurger and Ellis, 2002).  

 

An automatic weight system using camera vision has been considered as an alternative to manually 

weighing pigs. The camera method has the great advantage that it has no implication for the pigs 

and that the cost and maintenance are minimal because only a camera and a light source are needed 

in the pen (Schofield et al., 1999).  

 

Many studies have led to the possibility of constructing a weighing system using image analysis. 

This chapter will review how body dimension of a pigs can be measured and how the dimensions 

are converted to a BW and lastly, how the process is made automatic.  

2.1.1 Correlation between body dimensions and BW 

The concept of using the obvious correlation between body dimension and BW is not new. Thus, 

early studies showed that the body dimensions can be used to estimate the BW of pigs (Petherick, 

1983; Phillips and Dawson, 1936).  

 

In order to estimate BW of pigs the first step is to obtain useful parameters of body dimension. 

Phillips and Dawson (1936), studied three methods to obtain body dimensions to find the most 

practical method as well as the method with the highest accuracy. The three methods were named 

method A, B, and C. The dimensions used to estimate BW in method A were obtained directly 

from the pigs with callipers and a measuring tape. Method B involved a scaling instrument with a 

sighting device which measured the ratio of one body part compared to another body part. The 

readings were afterward converted into centimetres using a constant. In method C the pigs were 
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photographed, and the image projected to life-size for measuring. In order to make sure the 

photograph was projected as life-size the pig was wearing a harness of known size. All methods 

were used to measure the same 11 pigs. The possible body measurements given the current method 

was obtained. The study showed that the most accurate method to estimate body dimensions was 

the manual method A. However, method A was also the most work intensive and included most 

contact with the pig, so the photograph method, method C, was concluded to be a simpler way to 

obtain body measurements.  

 

Although, the method using photographs in the study of Phillips and Dawson (1936), was rejected 

in favour of direct measurements using measuring tape the concept of using photographs has later 

been revisited. Because, technology advancement has given new possibilities to obtain 

measurements.  

 

The correlation between body dimension and live weight has caused several authors to investigate 

the possibility to estimate pigs weight by using direct image analysis of the body area of the pig 

(Brandl and Jørgensen, 1996; Kollis et al., 2007; Schofield, 1990). However, to apply an image 

analysis method, the relationship between the dimension parameters which potentially can be 

obtain from a camera and the estimated BW must be known.   

 

In general, better estimations should be obtained when looking at an area of a pig instead of length 

or width measurement. Thus, if the volume is calculated by length and width measurements, the 

error of each measurement is multiplied in order to estimate the volume (Schofield, 1990). 

Furthermore, the body area will to some extent be able to account for the deviation in body shape 

between pigs. However, the exact full body area of a pig can be difficult to measure from a 2-

dimensional image, due to different compositions of the body. This lead Schofield (1990) to 

investigate which dimensions of a pig should be taken into account for the best prediction of BW. 

For this purpose, photographs were used to obtain the body measurements of 15 pigs weekly in 

the growth period from 30 to 80 kg. These pigs were photographed separately using a side camera. 

However, both the side view and top view of the pig were obtained. Thus, the image was projected 

from a mirror above the pig in a 45-degree angle. To compare the correlation, the pigs were 

immediately weighed manually after the pigs were photographed. From each photograph the 

height and width of the pig was measured. Additionally, three area measurements of each pig were 

manually outlined from the top view, and the area extracted. The three area measurements obtained 

from the top view camera were: 1) the whole body, 2) the body without the head and ears, and 3) 
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the body without the head, ears, and neck. The measured area was afterwards converted into a 

volume. However, because the full body area was not obtained, the measurements were converted 

to a volume using a model of a pig constructed using cones and a cylinder. In this study, the density 

of a pig was assumed to be 1,050 kg/ m3. The study showed that the highest correlation between 

dimensional data and the manually weight of the pig was found to be the measurement of the body 

without head, ears, and neck. This was argued to be due to a larger variation in these parts and due 

to the visual appearance on a top view image of head and neck changes depending on how the pig 

was standing. The variation in height found in this study only affected the estimation of BW with 

a maximum of 0.5 %. Thus, the variation in height of the animals was found to be ± 5 cm.  

 

Although, the study of Schofield (1990) developed a system that was able to weigh pigs, the 

placement of the camera was not practical. Because, the measurements were very dependent of the 

distance from the camera to the pig, should be approximately the same in all measurements, due 

to the ratio of the mirror projection.  Furthermore, nothing can be placed between the pig and the 

scope of the camera. This led to an, investigation of a method placing the camera on top of a pig. 

Thus, this placement would be more practical under farm conditions (Brandl and Jørgensen, 1996; 

Van der Stuyft et al., 1991).  

 

In a study of Minagawa and Ichikawa (1994) two measurements of the area of pigs obtained from 

a top view camera was investigated. The two methods were 1) measuring the central area and 2) 

measuring the orthogonal area. The central area of the pig was specified as the mean projected 

area of the pig as a simple 2-dimensional measurement. The orthogonal projected area of the pig 

was the central area of the pig adjusted for the height. Thus, it was an estimate of the actual area 

of the pig’s back. The area of the pig in the image was found using a threshold method where the 

contrast between the white pig and the dark surroundings was used. A special booth was used in 

order to test the performance of the two methods. The booth was equipped with a black rubber 

sheet as floor, a frame around the pig of plywood and additional lighting in order to get the best 

contrast difference between the pig and the surroundings. In the study, 33 pigs weighing from 7 to 

120 kg were measured in order to test the performance of the system. From a video camera placed 

above the booth, images of pigs were obtained and analysed manually, in order to obtain the 

projected area of the pig while the pigs were standing.  Afterwards, the height of each pig was 

measured, and each pig was weighed manually, using a scale. In the study, the projected area using 

both methods was plotted as a function of the BW, found using the scale. It was found that both 

the central projected area and the orthogonal projected area had high exponential relationship 
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between measured area and the BW of the pig. Thus, the coefficient of determination was 0.999 

and 0.998 for the central projected area and the orthogonal area, respectively. The equation to 

convert the central projected area in cubic centimetres to the BW in kilos of the pig where: 𝐴𝑟𝑒𝑎 =

200 ∗ 𝐵𝑊0.669. The standard deviation between mean central projected area and weight of the 

pigs was ± 0.9 kg.  The study from Minagawa and Ichikawa (1994) showed, that the measurement 

of a single pig could be estimated with a high precision using only the central area of the pig using 

a threshold method if operated under optimal lighting condition. However, this will demand 

moderation of the pen and would not be feasible in practice on a farm.  

 

In order to investigate the precision of a weight estimation obtained from an image weighing under 

farm condition,  Brandl and Jørgensen (1996) used a recording method, where a pen was video 

recorded from a camera above the pen. The image was frozen by an operator when a pig was 

standing under the camera. From the image eight points in the outline of the pig were selected. 

These points were used as end points for different length and width measurements which were 

used to estimate the body area of the pig. The aim of the study was to establish the precision of the 

method and to investigate if the correlation between area and BW depends on breed or feeding 

methods. The different treatments in the study were breed (different cross breed combinations of 

Danish Landrace, Danish Large white and Duroc) and feeding methods (ad libitum vs. restricted). 

In total 416 pigs were used in the study, and each pig was on average weighed 5.5 times. From all 

observations the weight was estimated with 5-6 % deviation. Furthermore, the study found that 

different breeds and feeding methods could lead to the need of different algorithms to estimate 

BW from body measurements.  

 

Measuring method in order to obtain an image of a pig standing in the best position was further 

investigated in a study of Wang et al., (2006). In this study the image used for estimation was a 

manually selected still picture from a top view video of approximately one minute of length of 

each pig. This was done, in order to get a picture of each pig standing. A total of 187 pigs were 

measured in the weight range of 50 to 150 kg. The images were used to test the correlation between 

different measured features of the pigs and the BW of the pig which were manually weighed using 

a scale. In total, 18 features were tested. The best features to correlate to the BW were the area of 

the pig projected from the top (r = 0.96). Furthermore, the study found great correlation between 

the BW and the width (r = 0.95). Additionally, five mathematical models were tested to estimate 

the pigs’ weight from the measured rear area of the pig. The five mathematical models were: 

polynomial, square root, linear, power, and logarithmic. All five models showed a coefficient of 
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variation ranging from 5.68 to 6.42 %, concluding that all five models could be used for the 

estimation.  

 

The relationship between the plan area and the pig weight was further investigated by Marchant et 

al., (1999). In the study a full automated algorithm to find the plan view of a pig under farm 

conditions was found. In the study, 10 female and 10 male pigs were weighed continuously as they 

grew starting from 30 kg in approximately 60 days. The images of the pigs were captured using a 

top view camera installed above the feeder. An average of 1,250 images were stored each day. 

Additionally, the pigs were manually weighed weekly, using a scale. The plan area of the pig was 

found from each image by dividing the body into three regions as: rump, abdomen and the shoulder 

region. As seen in Figure I the parameter was found using a “snake” method, where a line follows 

the boundary as an elastic string. The relationship between body area and the BW was found by 

plotting the sum of the rump, abdomen and shoulder region (denoted A4) against the manual 

weighings. Thus, the relationship between the plan area and the BW was well represented as a 

straight line: 𝑊 = −15.56 + 411.3 ∗ 𝐴4 in which 𝑊 is the predicted weight of the pig and A4 is 

the plan view area without the head and neck.  The study did not find a significant (P< 0.05) effect 

of gender of the pigs. In the study, it was assumed that the pigs were still weighed manually in 

order to calibrate for variation in shape of the individually pigs. If the pigs were manually weighed 

weekly, the standard error of the predicted weight compared to the manual weighing were 0.25 kg, 

0.17 kg and 0.39 kg for pigs weighing 33kg, 66 kg and 99 kg respectively. However, if the pigs 

were only weighed every second week, the standard error for the prediction at 33 kg, 66 kg and 99 

kg was 0.42 kg, 0.24 kg and 0.58 kg respectively. Lastly, if the pigs were only individually weighed 

once early in the growth period the BW of the pigs could be estimated with a standard error under 

1 kg. 

 

In this study, the weighing method had a relative high precision. However, the relationship found  

is only valid for the breed of pigs investigated. Furthermore, the method still acquires manual 

weighings for calibration.    
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2.1.2 Automated camera measurements 

In the previous section it was established, that pigs’ BW can be estimated using camera vision. 

However, in order to automate the process of capturing usefull images to continuously monitor 

growth of pigs several steps are necessary.  

 

The first step is to detect when an object is in the scope of the camera’s view and an image should 

be captured. The most commonly described method is using a threshold method, where a change 

of brightness in the area of the camera would be recognized as a pig (Kollis et al., 2007; Schofield 

et al., 1999; Tscharke and Banhazi, 2013a). In order for the whole pig to be in the view of the 

camera before the image is captured, the threshold changes can be compromised to some hotspots 

which can be placed in the middle of the camera view (Schofield et al., 1999). An alternative 

method, reviewed by Li et al., (2014), is to use a trigger method where a sensor is activated under 

the camera when an animal is present. However, this method would demand additional equipment 

in the pen. Thus, the price of the system would increase.  

 

When an image is captured the body dimensions of the pig should be obtained. In order to get the 

best estimation of the pig’s weight the body area without head and neck should be found 

(Schofield, 1990; Schofield et al., 1999). Similar, to the detection procedure a threshold method 

can be used. Thus, the contrast between the white pig and the darker floor could be found 

Figure I. Image showing the plan view of a pig dived in three regions as: rump, abdomen and the shoulder 

region (Marchant et al., 1999) 
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(Schofield et al., 1999; Wang et al., 2006). The outline of the pig can then be detected by using a 

pre-defined model of a pig which can be scaled in size (Tillett and Marchant, 1990). Alternatively, 

the outline can be found using a snake method, where the boundary of the pig is followed by a 

detection line (Marchant and Schofield, 1993; Schofield et al., 1999).  

 

In a study of Kongsro (2014) it was suggested that body measurements of pigs could be obtained, 

using a Microsoft Kinect prototype imaging system with an infrared-light depth sensor. Thus, from 

the depth map generated, a pig under the camera would easily be detected, due to a change in 

depth. Additionally, both the outline of a pig and the height of the pig are visible. In the study 37 

Duroc and 34 Landrace boars were selected, ranging in weight from 29 to 139 kg. 50 pictures of 

each pig were taken. However, the best image of each pig was selected manually afterwards. The 

best image should be an image containing the whole pig standing with the head slightly lowered. 

The head, ears and tail of the pig were removed to improve accuracy.  

The study showed that the mean weight of the measured pigs was estimated with an error of 4.6-

4.9 % for Landrace and Duroc breed, respectively. The advances of using the infrared-light depth 

sensor are that the weighing is not dependent on visible light to measure the pigs and that darker 

breeds as the Duroc breed can be measured. Additionally, the height of the pigs can be measured, 

which might bring new information of the variation. Although, prior studies showed that height 

only affect the estimation with a maximum of 0.5 % (Schofield, 1990).  

 

Although, images are only obtained when a pig is in the view of the camera,  some images can still 

be unusable if the pig is lying or if two pigs are standing together. These pictures should be 

removed in order to make a better estimation. One solution was presented in a study of Schofield 

et al., (1999). Thus, three tests were used to remove unusable images. In the first test, it was tested 

if the pixels in the area where the pig’s shoulder was expected was above 60 % of a predicted value 

found from a pre-trail. The first test was performed in order to make sure a pig was present, and 

the lighting of the image was acceptable. The second test was that the whole area of the pig’s body 

should not be less than the predicted minimum value. In the third test the length- to- width ratio 

was measured and compared with predicted BW value. If an image had passed all three tests the 

body area of the pig was measured in pixels.  In the study 30 pigs were monitored over 47 days 

during the fattening period from 47 to 90 kg. The pigs were of three breeds (Landrace, Large White 

and Meishan pigs). The images were captured when the pigs were inside a feeding station. Thus, 

the pigs were standing and eating at the time the images were captured. The study showed, that 

the system captured an image on average once every 26 seconds during a 24 hours period. 
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However, the tests mentioned above removed 32 % of the images. In total 140  weight observations 

per pig for each day was obtained. The mean weight of the whole group of pigs could be estimated 

within 5 %. However, if a breed specific algorithm was used the error was reduced to below 2% 

for both Landrace and Large White pigs and below 3 % for Meishan pigs.  

 

Both image vision weighing systems using 2-dimensional cameras capturing a top view image of 

a pig and 3-dimensional cameras with depth sensors are commercially available (Pezzuolo et al., 

2018; Vranken and Berckmans, 2017). However, the key for an image vision weighing system is 

that the weighing system should work under farm conditions.  

 

Summary 

Direct measuring and manually weighing methods are currently the most accurate due to the fact 

that the camera cannot obtain the whole-body area of a pig. However, the correlation between 

body area and BW can be used to give an estimation of the BW. The best correlation between body 

measurements and the BW is found by measuring the whole-body area of the pig without the head, 

ears, and neck. Thus, a top view image could potentially be enough. Additionally, it was found 

that different correlations might be found in different breeds and feeding methods. Therefor, the 

correlation will have to be recalculated in each system. Furthermore, some manual measurements 

of height can be necessary in order to get a high precision, even though the height of the pig only 

seems to deviate a little between pigs.  

 

An automated process of obtaining and analysing images in order to predict BW has been 

suggested in several studies. The automated process requires some analysing of the image in order 

only to capture an image when a pig is in the view of the camera and the pig is standing.  

Traditionally, the body area of a pig is found by a threshold method by comparing the contrast 

between a dark background with a white pig. However, this method has some limitations and an 

alternative method using a 3-dimensional camera with a depth senor has been suggested.   
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2.2 On farm measurements 

In the previously chapter, Chapter 2.1, it was established how estimated BW of pigs from image 

analysis can be obtained. However, in order for the technology to be useful at a farm, factors as: 

cost, functionality, practicality, and accuracy should be taking into account (Tscharke and Banhazi, 

2013b) In addition it is necessary that the system works in harsh environmental conditions which 

can be both moisty and dusty (Tscharke and Banhazi, 2013b). Most of the studies of image 

weighing systems are estimating the weight of the individual pig. However, to detect abnormalities 

in growth the average weight of the pen can be enough. Thus, most abnormalities will affect more 

than one individual pig in the pen.  

 

Basically, the vision weighing technology can be used with two purposes in a finisher herd: 1) 

single measurement or 2) Automatic growth detecting by continuously weighings (Tscharke and 

Banhazi, 2013a).  

 

Several commercial products using depth images sensors have been developed as hand-held units, 

which enables the farm employees to walk among the pigs and acquire the weight estimations 

(Condotta et al., 2018; Wang et al., 2018). Although this approach will enable the farm employees 

to weigh the individual pig in order to find the pigs that are ready for marketing the system is not 

as useful as a monitoring system. Hence, to make a useful monitoring system, frequent 

measurements of each pig are needed.  

2.2.1 Walk-trough weighing 

One way to use automatic image weighing at a farm would be to use a walk-trough weighing 

system (Wang et al., 2008). However, a walk-trough weighing system requires the estimation of a 

pig to be made when the pig is moving. In the study of Wang et al. (2008) pigs were guided 

individually through a one meter wide passageway to another pen. On top of the passageway a 

video camera and artificial lighting were installed. 22 pigs with weights from 14 to 123 kg were 

video recorded as they walked through the passageway. The video was converted into still pictures 

and both an automatic and a manual method were used in the selection of the pictures. The 

criteria’s set for the manual selection were: the whole body had to be visual inside the area and the 

pig’s body should not have contact with the edges. Additionally, the body and head of the pig had 

to be in line. The criteria for the automatic selection were: no part of the pig should touch the 

edges, the ratio between the left and right side should not exceed a certain value, and finally the 

head had to be within a certain ratio of the body of the pig to ensure that the pig was not looking 
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down. The images were analysed in a similar method as described by Kollis et al. (2007). 

Additionally, because the pig could move both ways the head was identified by the positions of 

the ears. The two methods of selecting images manually and automatically showed similar 

accuracy of the measurements around 3 % compared to direct measuring using a scale. The result 

indicate that it is possible to use image analysis to estimate the weight of moving pigs. However, 

this approach will demand moderation of the barn and possibly still some labour in order to make 

sure all pigs move past the camera.  

 

2.2.2 Pen measurements  

A different approach is using the fact that all healthy pigs will be standing in front of the feeding 

machine or drinker at some point during the day. During feeding, pigs are standing in a relatively 

stable position for a few minutes several times a day. Therefore, above the feeder has been found 

to be a good placement of the camera (Banhazi et al., 2011; Pezzuolo et al., 2018). This technic 

was used by Tscharke and Banhazi (2013a) in a farm trial where the camera was placed above the 

feeder in a pen with 12 pigs. The weight of the pigs was estimated using a vision system in the 

growth period between 60 and 120 kg. In this study the average weight estimated as a daily mean 

of all observations from the pen was obtained and compared to manual weighings using a scale 

performed seven times during the growth period. Hence, a precision of ± 1 kg error between the 

estimated and the measured weight on six of the seven days. On the last day, the error was greater 

due to three pigs jumped over a gate and therefore, the pigs were missing in most observation on 

that day. The weight deviation of the group was estimated within ± 2 kg error on all days. The 

study showed that the average weight of pigs can be estimated without any moderation of the pen. 

However, this method depends on all pigs being measured every day and that the number of pigs 

in the pen does not changes. Thus, the average pen weight will change if pigs are removed or 

inserted in the pen if their weight deviates from the mean.   

 

If the weight of the individual pig is important to know, the image-based system can be combined 

with pattern recognition to identify the pig. In a study by Kashiha et al. (2013) a method was 

presented to monitor individual weights of pigs full automated. In the study, in a pen with 10 pigs 

each pig was marked with an individual pattern on the back using a dye marker. These patterns 

were recognized in 88.7 % of the observations. Thus, the camera weighing could be related to the 

individual pig. However, the study showed problems with faded colour and dirty pigs which are 

actual problems under farm condition. Additionally, the paint application would be labour 
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intensive and not convenient for the farmer. Therefore, a more practical method with electronic 

tags is probably more reliable (Artmann, 1999).  

 

In some studies, the camera used for weighing is placed above a single feeder (Marchant et al., 

1999; Schofield et al., 1999; White et al., 2004). A great advantage of using a single feeder is that 

the pig will be isolated from the other pigs, while the image is captured. One type of single feeder 

is an electronic feeding machine. The use of an electronic feeding machine could potentially give 

more information of the individual pig. Thus, if the pig had an ear tag, it could be identified and 

feeding records could be combined with the weight of the pig (White et al., 2004).  

 

In recent years, several commercial systems to weigh pigs in the pen using camera vision have 

become available (Vranken and Berckmans, 2017). One of them is ProGrow (SKOV A/S, Roslev, 

Denmark). ProGrow is a real time monitoring concept where data of water intake, feed intake, and 

BW are collected (Udesen and Krogsdahl, 2018).  

 

Weight estimation using ProGrow was tested by Udesen and Krogsdahl (2018). In the test 

ProGrow cameras were placed above the feeder in 12 pens in one section in a commercial finisher 

farm. The weighing system was tested in two batches of pigs: batch 1) and batch 2). In each pen 

16 pigs were inserted. In batch 1 and batch 2, the average insertion weight of the pigs was 29 and 

23 kilos, respectively. In the test, weighing data was converted into an average daily gain at pen 

level. The pigs were weighed in 56 days in batch 1 and 70 days in batch 2 starting one week after 

insertion. In order to remove outliers, the 25 percent highest and the 25 percent lowest observations 

per day were removed. Additionally, the pen average growth was estimated as a moving average 

of three days. The image-based weighings from ProGrow were compared with weekly manually 

weighings using a scale.  In the test, an average of 56 images per day in batch one and 43 images 

per day in batch two were obtained. The test showed, that the deviation in mean daily gain based 

on manually weighing and on weighing using ProGrow on average was three percent in batch 1 

and seven percent in batch two. However, the test showed, that if the weighings from multiple 

cameras were collected, the estimate error was improved. Thus, if four cameras were collected, 

the deviation was in average three percent in batch 1 and five percent in batch 2 and if all 12 pens 

was collected, the deviation was 0.2 percent in batch 1 and 3.4 in batch 2.   
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Summary 

Vision based weighing systems can be used to analyse the weight of individual pigs or to weigh a 

group of pigs. However, to have a monitoring system that can give early warnings, frequent 

measurements are required. Thus, an automated process which can perform under farm conditions 

is essential.  

 

One implication of an automated weighing system is using a walk-trough method where the pig 

walks individually through a passageway with a camera above. This method requires that still 

pictures from video of the pig walking is obtained. This can be done both manually or 

automatically.   

 

The pigs can also be weighed while they are still in the pen. Two methods were suggested: 1) 

average pen weighing and 2) single feeder measuring. If using a single feeder, the pig is isolated 

while weighing. Additionally, the feeder can be combined with an identification system and can 

give more information of the individual pig. However, a single feeder might need moderation of 

the pen and the pigs might need a training period. In the average pen weighing system, the camera 

was placed above the feeder. Thus, this was found to be the best placement, due to that the pig is 

standing in the same position while eating. In this method the ID of the pig can only be recorded 

using a recognition method. Thus, only the pen average and the deviation in weight is normal 

recorded. Furthermore, it was found that if data from multiple cameras are combined the precision 

is increased.  

 

2.3 Growth monitoring using a dynamic linear model 

The previous chapters focused on how automatic weighing data can be generated using camera 

vision. However, to use BW data for monitoring a dynamic production process and to present data 

in a meaningful way for the farm personnel. The data should by analyzed using a suitable model 

(Wathes et al., 2008). Additionally, frequent BW observations from automatic camera weighings 

might need to be filtered (Udesen and Krogsdahl, 2018).  
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One way of analysing repeated observations is to calculate the moving average, where the average 

of the observations in a giving time period is calculated. The moving average 𝑀 at time t of a 

period of 𝑛 can be described as: 𝑀𝑡(𝑛) = (𝑘𝑡−𝑛+1+.  .  . 𝑘𝑡−1 + 𝑘𝑡)/𝑛 in which k is a series of 

observations (Kristensen et al., 2010).  

 

An alternative to the moving average method is the exponentially weighted moving average 

(EWMA). The EWMA 𝑧 at time t is defined as: 𝓏𝑡 = 𝜆𝑘𝑡 + (1 − 𝜆)  (Montgomery, 2005) in which 

k is a series of observations and  𝜆 is a weight factor between 0 and 1 that controls how much 

weight is put on the recent observation. Thus, if 𝜆 is close to zero most weight will be put on all 

observations up until the recent observation, and if 𝜆 is close to 1, most weight will be put on the 

most recent observation. The choice of 𝜆 will results in different shifts shown in the observations 

(Kristensen et al., 2010).    

 

A different approach is to use a Dynamic linear model (DLM). Thus, a DLM has the benefit that, 

although it starts with some basic assumptions, it is adaptive to the current situation (Jensen et al., 

2017). Furthermore, a DLM can be used for analysing frequent BW observations, as decision 

support (Kristensen et al., 2012) and to provide meaningful alarms on growth (Stygar et al., 2017; 

Stygar and Kristensen, 2018). The following section will contain a brief introduction to DLM and 

Kalman filtering. Moreover, the section will review how DLMs have been used for dynamic 

growth monitoring in previous studies.  

 

2.3.1 Dynamic linear models 

One simple and widely used DLM is the first-order polynomial model (West and Harrison, 1997). 

The model says, that each observation (𝑌𝑡) obtained at time (t) is normally distributed around an 

unobservable underlying mean (𝜃𝑡) (Kristensen et al., 2010). Thus, the observation equation is 

described by West and Harrison (1997) as: 

𝑌𝑡 = 𝜃𝑡 + 𝑣𝑡 , 𝑣𝑡~𝑁(0, 𝑉𝑡)  (2.1) 

where, 𝑣𝑡 is the observational error, which describe the random fluctuation.  

The time evolution of the underlying level is modelled as the previously underlying mean and 

evolution error (𝑤𝑡). Thus, the system equation allows the model to fluctuate over time as 

described by West and Harrison (1997):  

𝜃𝑡 = 𝜃𝑡−1 + 𝑤𝑡, 𝑣𝑡~𝑁(0,𝑊𝑡)  (2.2) 
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Before any observations are made, the prior information set (𝐷0) of the underlying mean are 

expressed as a mean 𝑚0 and a variance (𝐶0) as (𝜃0|𝐷0)  ̴ 𝑁(𝑚0, 𝐶0). Thus, to initiate the DLM the 

prior mean 𝑚0 and variance 𝐶0 are specified. The corresponding conditional distribution at time t, 

given that all information is available is then (𝜃𝑡|𝐷𝑡)  ̴ 𝑁(𝑚𝑡, 𝐶𝑡). Each time a new observation is 

observed at time t, the DLM is updated. Thus, all prior information is contained in the conditional 

distribution of 𝜃𝑡. The variance components 𝑉𝑡 and 𝑊𝑡 can either be estimated from previously 

analysed data or the observation variance Vt be unknown (and estimated concurrently) while a 

discount factor can be used to represent the system variance Wt.   

 

The DLM can also be applied to more general models, where it is possible to model multivariate 

time series with patterns (Kristensen et al., 2010).  In the more general dynamic linear model, both 

the observation 𝑌𝑡 and the underlying parameter 𝜃𝑡  are vectors with n and m elements, respectively. 

In the general DLM the observation equation is an extension of Equation 2.1. However, the 

observations in the general DLM are multivariate normally distributed around the unobservable 

underlying mean 𝑭𝑡
′𝜽𝑡 . Described by West and Harrison (1997) as:   

𝑌𝑡 = 𝑭𝑡
′𝜽𝑡 + 𝑣𝑡 ,        𝑣𝑡~𝑁(0, 𝑉𝑡) (2.3) 

, where, 𝑭𝑡 is an 𝑚 × 𝑛 design matrix which relate the observation to the parameter vector 𝜃𝑡, 𝑣𝑡 

is an n dimensional random vector,  0 is a vector of zeros, and 𝑽𝑡 is an n× n variance-covariance 

matrix. The system vector 𝜽𝑡 is similar to Equation 2.2. However, in a multivariate DLM the 

system equation contains the system matrix 𝑮𝑡 . Thus the system equation is described by West 

and Harrison (1997) as: 

𝜽𝑡 = 𝑮𝑡 𝜽𝑡−1 + 𝒘𝑡,        𝑤𝑡~𝑁(0,𝑊𝑡) (2.4) 

, where, 𝑮𝑡  is the 𝑚 ×  𝑚 system matrix, 𝑤𝑡is an 𝑚 dimensional random vector, 0 is a vector of 

zeros, and 𝑊𝑡 is an 𝑚 ×  𝑚 variance-covariance matrix.  

All matrices (𝑭𝑡 , 𝑮𝑡 , 𝑽𝑡 ,𝑾𝑡 ) are assumed to be known at time t, although not necessarily at 

time from the beginning (Kristensen et al., 2010).  

 

One of the main benefits of using a DLM is that it can be used as a tool for making one-step 

forecasts, based on prior knowledge by extending the DLM with a Kalman filter (also known as 

an update equation). Based on all prior information 𝐷𝑡 available at time t-1 a Kalman filter provides 

the prior distribution of 𝜽𝑡, a one-step forecast distribution for 𝑌𝑡 and the posterior distribution for 

𝜽𝑡 . In the following the Kalman filter for a multivariate DLM will be shown. Thus, this model is 
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used in the data analysis part of this study. However, using a similar method a univariate DLM 

can be extended with a Kalman filter.  

 

The Kalman filter for a multivariate DLM is described by West and Harrison (1997) and 

formulated in the following equations (Equation 2.5 – 2.10). 

The posterior distribution for the underlying level 𝜽𝑡, at time t-1 can be described as:  

(𝜃𝑡−1|𝑫𝑡−1)~𝑁(𝑚𝑡−1, 𝐶𝑡−1) (2.5) 

where 𝑚𝑡−1 is the mean, and 𝐶𝑡−1 is the variance matrix.  

 

The prior distribution for 𝜃𝑡  at time t-1 is given as:  

(𝜃𝑡|𝑫𝑡−1)~𝑁(𝒂𝒕, 𝑹𝒕)  (2.6) 

,where 𝑎𝑡 = 𝑮𝒕𝑚𝑡−1 and 𝑹𝒕 = 𝑮𝒕𝑪𝒕−𝟏𝑮𝒕
′ + 𝑾𝒕. 

 

The one-step forecast for 𝑌𝑡 at time t is then: 

(𝑌𝑡|𝑫𝑡−1)~𝑁(𝑓𝑡, 𝑄𝑡) (2.7) 

where 𝑓𝑡 = 𝑭𝒕
′𝒂𝑡 and 𝑄𝑡 = 𝑭𝒕

′𝑹𝒕𝑭𝒕 + 𝑽𝒕. 

 

The posterior distribution for 𝜃𝑡 at time t:  

(𝜃𝑡|𝑫𝑡)~𝑁(𝒎𝒕, 𝑪𝒕) (2.8) 

 

With the updating equations: 𝒎𝑡 = 𝒂𝒕 + 𝑨𝒕𝑒𝑡 and 𝑪𝒕 = 𝑹𝒕 − 𝑨𝒕𝑸𝒕𝑨𝒕
′ . 

 

The adaptive matrix(𝐴𝑡) is found as:  

𝑨𝑡 = 𝑹𝒕𝑭𝒕𝑸𝒕
−𝟏 (2.9) 

 

And the forecast errors were calculated as:  

𝑒𝑡 = 𝑌𝑡 − 𝑓𝑡. (2.10) 

 

The main point of the Kalman filter is that the posterior mean (Eq. 2.8) is obtained by correcting 

the prior mean (Eq. 2.6) with a term proportional to the forecast errors (Eq. 2.8). The adaptive 

coefficient (𝐴𝑡) scales the correction according to the relative precision (Eq. 2.9). Additionally, 

the forecast errors can be used in monitoring systems.  
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Beside its use for dynamic monitoring a DLM can be used to optimize a production by 1) 

calculating the effect of an intervention, 2) give forecast of future production, and 3) by smoothen 

data to analyze production, retrospectively.  

 

If a known intervention occurs, as for example a change in feed, and a change in the underlying 

mean is expected the Kalman filter can be slightly modified by either adding the expected change 

to the underlying mean if it is known, or by increasing the system variance (Kristensen et al., 

2010). Thus, the DLM will be more adaptive to the recent observations. By implementing an 

intervention, the effect can be compared to the forecast of growth without the intervention. Thus, 

an intervention can be evaluated.   

 

Another implementation of a DLM is that it can be used to give prognoses for the future 

production. Thus, one example is the use to forecast when pigs are ready for marketing (Stygar 

and Kristensen, 2016) 

 

If the parameter vectors are autocorrelated, the DLM can be analysed retrospectively. Thus, the 

parameter vector will contain information of the true development. A plot of a smoothed DLM can 

retrospectively be evaluated to analysis a growth pattern for fluctuations. Because, these 

fluctuations could be avoided by changing routines (Stygar and Kristensen, 2016).  

 

In a study by Stygar and Kristensen (2016) weighing groups of  pigs was used to predict the 

number of pigs ready for marketing at a given future, using a multivariate DLM with Kalman 

filtering. In the study, a commercial finishing unit with five sections with 14 double pens in each 

section was used. In each double pen 36 pigs, in average, were inserted, weighing approximately 

30 kilos each. In the study, two selected double pens in each section were manually weighed 

weekly, they should serve as representatives for the whole section.  In total nine completed 

fattening cycles for 9,800 pigs were used. Based on the weighing data, a hierarchical quadratic 

mixed effects model of pig growth was constructed with fixed effects of intercept, effects of time 

and square value of time and random effects of intercept, effects of time and squared value of time 

for each batch and pen. The parameters from the model were used to construct a multivariate DLM 

for a batch of pigs. In the study, the growth of the pigs was smoothed retrospectively and the 

effects of events influencing the growth were investigated by comparing irregularities with 

information from a logbook of particular event such as feed changes or feed mistakes. 

Additionally, the DLM was used to forecast the number of pigs above a given threshold which 
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could be used to predict optimal slaughter time. Compared to if only the initial weight of all pigs 

where known, the mean absolute deviation of the observed and predicted number of pigs above 

105 kg in a single pen decreased by 1.4 and two pigs in the two batches, respectively, if 15.5 % of 

pigs in a section were weighed weekly.  

 

In this study the main aim is to use a DLM as a monitoring tool. Thus, this method will be further 

described. 

2.3.2 Dynamic monitoring of BW gain.  

Normally, the information available for decision making is the farm personnel’s own visual 

observations together with a monthly or quarterly production report, which provides information 

of production results from the former batches (Cornou and Kristensen, 2013; Madsen and Ruby, 

2000). However, to improve the production process, dynamic production monitoring can be used. 

One of the main benefits of a dynamic monitoring system is that the information can be analysed 

to detect abnormalities and provide early warnings of potential problems, while changes still can 

be made (Dominiak and Kristensen, 2017; Stygar and Kristensen, 2018).  

 

As reviewed by De Vries and Reneau (2010) primarily Shewhart control chart and cumulative sum 

control (Cusum) charts have been used in animal production to detect changes in production 

processes. The basic principle of a Shewhart control chart is a plot of the observations over time 

supplemented with a center line and upper and lower control limits (Kristensen et al., 2010). The 

center line represents the tendency of the process as a target value. Additionally, if an observation 

is plotted outside the control limits, it is evidence that the process is out of control (De Vries and 

Reneau, 2010). Thus, an alarm can be given. The basic assumptions for using a  Shewhart control 

chart is that the error term is mutually independent over time (Kristensen et al., 2010). Shewhart 

control chart is useful in a process which is likely to be out of control due to the ability to detect 

large shifts in the monitored parameters (Montgomery, 2005).  

 

Another type of control chart used in monitoring animal production is a Cusum control chart. The 

Cusum control chart incorporates past observations and is therefore sensitive to small shifts in a 

process (Montgomery, 2005). The preferred Cusum is the tabular Cusum. Thus, the tabular Cusum 

monitors the mean of a process. The tabular Cusum works by accumulating derivations from the 

mean that are either below or above the mean. By applying a DLM with Kalman filter, a forecast 

error was obtained for each new observation as described in Equation. 2.10. These forecast errors 



22 

can be used to detect when a process deviates from a given target. Therefore, if the process is in 

control the forecast errors should fluctuate around a mean of zero. However, if an abnormality 

occurs the forecast errors would start to drift, as the forecast errors become either mainly positive 

or negative.   

 

In several studies, a Cusum applied a DLM with Kalman filter is constructed to detect 

abnormalities in growth (Madsen and Ruby, 2000; Stygar and Kristensen, 2018).  

 

Madsen and Ruby, (2000) developed a method for monitoring productivity in a continuous finisher 

production without using weighing data. In the study, it was assumed, that the heaviest pig was 

also the oldest. Thus, if the number of pigs inserted and the number of pigs delivered to slaughter 

is known, the average time to slaughter can be estimated and converted into an average daily gain 

each time pigs are delivered. This, average daily gain can be used as an indicator of irregularities. 

Thus, if something happened in the farm which affects the growth of the animals negatively, the 

time from insertion to slaughter will become longer. In order to account for the variance in the 

observations a DLM with a Kalman filter was used to filter the average daily gain. The study 

showed that the interval from a decrease in productivity until the time it is realised can be 

shortened. However, the information from the system is still historical.  

 

Frequent BW observations are needed for monitoring an ongoing production. Stygar et al. (2017) 

developed a precise description of hourly growth. In the study, BW data was collected on a 

commercial finisher herd with four large common pens with a maximum capacity of 400 pigs in 

each pen. Each pen was separated in a feeding area and a resting area. Therefore, each time a pig 

wants to eat it has to pass through a passageway where it is weighed. Consequently, each pig was 

weighed several times a day. Data from five batches of pigs were used. Thus, a total of 1,710 pigs 

and 243,160 BW measurements. The data were analysed in order to construct a mixed effects 

model of pig growth similar to the model used in the study of Stygar and Kristensen (2016), 

supplemented with fixed effects for the amplitude and frequency of a cosine wave. The cosine 

wave was used to account for diurnal pattern in daily BW of pigs. Because, it was found, that the 

pigs were lighter in the morning compared to the evening. In the study the daily variation of the 

individual pig’s BW was 1.2 kg.  

 

The model parameters obtained in the study of Stygar et al. (2017)  was in a study of Stygar and 

Kristensen (2018) used as a monitoring tool to alert farm personnel if abnormalities in growth 
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occurred. The tool was built as a DLM with Kalman filter where the initial parameters were 

estimated from historical data. The data analysed in the study were obtained from three batches of 

finisher pigs from a commercial finisher herd in a large common pen, with a capacity of 400 pigs. 

The pigs were identified by an electronic ear tag within each weighing. Therefore, a tool for both 

individually identified and unidentified pigs, was constructed. The DLM with Kalman filter was 

applied every time a weighing of a pig was observed. Thus, if the growth of the pigs grew as 

expected the forecast errors should fluctuate around zero. However, if an abnormality occurs the 

forecast errors start to drift. In order to detect these changes, a standardized tabular Cusum was 

constructed at batch level for both the unidentified pigs and the identified pigs. Additionally, a 

similar Cusum was constructed at pig level when each pig was identified.  The study showed that 

the constructed tool was able to detect major abnormalities in growth at both pig and batch level 

using identified observations and at batch level using unidentified observations. The specificity 

and the sensitivity of the tool will depend on the parameters set in the Cusum. Thus, if either too 

few or too many alarms are given, the setting can be changed.  

 

Summary  

Frequent BW observations from an automatic weighing system needs to be filtered and analysed 

in order to obtain useful information. Several methods can be used such as moving average, 

EWMA or a DLM. The DLM starts with some basic assumptions, but is adaptive to the current 

situation.  

 

Studies have shown, that a DLM can be used to analyse BW information, to predict time of 

slaughter and to detect abnormalities in growth. 

 

If only the number of pigs at insertion and slaughter is known, a DLM with Kalman filter can be 

used to filter data in order to smoothen observations with variance. If the weight at insertion and a 

subset of pigs is weighed weekly, a DLM can be used to account for the variance between pens. If 

frequent BW measurements are available, a DLM can be used to give early warnings.  

 

Primarily Shewhart control chart and Cusum charts have been used in animal production to detect 

changes in production process. Shewhart control chart is mainly used to detect large shifts in the 

monitored parameters. Whereas, Cusum charts can detect smaller shifts.   
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Abstract 14 

Increased sizes of finisher farms sets higher demand for the farm employees. Hence improving the 15 

overview of the farm is essential. Frequent information of the daily gain would allow farm 16 

employees to monitor performance and health. However, traditionally weighing pigs has been a 17 

labour intensive task. Recently, several image weighing systems have been developed to obtain 18 

group-weight assessment continuously. The data generated from an automatic weighing system 19 

must be filtered and analysed to be useful in a monitoring system. Thus, the objective of the present 20 

study was to use a dynamic linear model with Kalman filtering to detect abnormalities in pen-21 

weight data from a commercial finisher pig farm obtained from an image weighing system. For 22 

this study, data was obtained as raw data from the commercial available automatic weighing 23 

system ProGrow (SKOV A/S, Roslev, Denmark). The data originated from two similar Danish 24 

commercial farms (herd 1 and herd 2). A total of 34 pens was used from nine batches. The nine 25 

batches were distributed as five batches from herd 1 and four batches from herd 2. Eighteen pigs 26 

were inserted in each pen at approximately 30 kg and monitored until time of slaughter. The 27 

sections consisted of 16 and 42 pens at herd 1 and herd 2, respectively. However, ProGrow was 28 

only installed in four pens at each farm. On average 30,607 body weight (BW) observations from 29 

each camera were recorded during the growth period of the pigs. A hierarchical quadratic mixed-30 

effects model was fitted on data from 31 pens (batch 1-8). The last batch from herd 1 was obtained 31 

during the study. Thus, it was used to test the system. The final model included fixed effects of 32 

intercept, time and square value of time. Furthermore, random effects of intercept and time within 33 

batch. Finally, random effects of intercept, time and squared value of time of pen within batch. 34 

The random residuals were assumed independent for different batches, pens and time effects. The 35 

variance increased over time. Thus, the power of absolute value of variance used to estimate the 36 

variance. The parameters and variance components from the mixed-effect model were used to 37 

build a dynamic linear model (DLM). The DLM was updated using a Kalman filter at each new 38 

observation. The forecast errors obtained from the Kalman filter was standardized and monitored 39 

with a one-sized tabular cumulative-sum control chart (Cusum). The constructed tool was tested 40 

on data from herd 1 (batch nine) by plotting the filtered growth. The alarm system was tested with 41 

different values of the decision interval and reference values. Thus, in future studies the tool 42 

constructed in this study should be tested and the decision interval and reference values should be 43 

adjusted to the farmers preferences. Because, no information of irregularities in the BW from the 44 

herd was available, the tool was tested on simulated BW data with a known event of depressed 45 

growth to demonstrate the potential. In this study it is demonstrated how frequent obtained BW 46 

data from an automatic weighing system as ProGrow can provide alarms on growth. 47 
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Introduction 48 

Danish pig production has evolved rapidly in recent years, as it is moving towards fewer farms 49 

with increasing herd size (Christiansen, 2017). However, the increased herd size sets a higher 50 

demand for the farm employees. Hence, improving the overview of the farm is essential to ensure 51 

high production, health, and animal welfare. The overview of a herd can potentially be improved 52 

by using an integrated monitoring system which can detect abnormalities and provide early 53 

warnings to the farm employees (Frost et al., 1997). 54 

 55 

The growth of finisher pigs is important, as it determines the profitability of the farm (Schofield, 56 

1990). Furthermore, frequent body weight measurements can be used for monitoring health and 57 

welfare problems (Cornou and Kristensen, 2013). Currently, the growth information is a 58 

combination of the farm employees’ observations and typically a monthly or a quarterly report 59 

(Cornou and Kristensen, 2013; Madsen and Ruby, 2000; Parsons et al., 2007). Traditionally, 60 

weighing pigs has been a labour intensive and time consuming task (Brandl and Jørgensen, 1996) 61 

which might have negative implications for the pigs (Augspurger and Ellis, 2002). However, 62 

technologies have proven to be able to weigh pigs automatically and none invasively, using weigh 63 

platforms (Williams et al., 1996) or camera weighing (Brandl and Jørgensen, 1996; Schofield et 64 

al., 1999).  65 

 66 

Recently, several commercial image weighing systems have been developed in order to obtain  67 

group-weight assessment continuously (Tscharke and Banhazi, 2013b; Vranken and Berckmans, 68 

2017). These systems have the advantages of no equipment needed to be installed within reach of 69 

the pigs, where it would be vulnerable (Frost et al., 1997). Additionally, this method overcomes 70 

much of the safety risk, labour, and costs associated with the traditional methods (Tscharke and 71 

Banhazi, 2013b). However, these systems are not able to identify the individual pig. Furthermore, 72 

the system can have a large variability between weight samples collected on the same day. Thus, 73 

data analysing and filtering are needed (Tscharke and Banhazi, 2013b).  74 

 75 

In order to provide valuable information, the data generated from an automatic weighing system 76 

must be analysed. Frequent BW measurements can be analysed using a dynamic linear model 77 

(DLM) with a Kalman filter (Stygar et al., 2017; Stygar and Kristensen, 2016).  Furthermore, the 78 

DLM can be used as a monitoring system, to detect abnormalities in the growth of the pigs (Stygar 79 

and Kristensen, 2018).  80 
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The objective of the present study was therefore to use a dynamic linear model with Kalman 81 

filtering to detect abnormalities in group-weight data from a commercial finisher pig farm obtained 82 

with an image weighing system.  83 

 84 

Material and methods 85 

Housing and Animals 86 

Weighing data were collected in two Danish commercial finisher herds (herd 1 and herd 2) using 87 

the ProGrow system (SKOV A/S, Roslev, Denmark). The two farms were similar because both 88 

farms had the same owner and the pigs came from the same sow herd. Thus, the genetic and health 89 

status of the pigs were comparable. Additionally, the same manager managed both finisher herds.   90 

 91 

Herd 1 consisted of four sections with 16 pens in each section. Each pen measured 6.5 m x 4.5 m. 92 

The pens were paired into double pens, with the two pens in each double pen sharing a single dry 93 

feeder (TuboMat, Egebjerg). The floor in each pen was composed by 1/3 drained floor and 2/3 94 

slatted floor. The pigs had access to water through two water nipples at the dry feeder and one 95 

additional water nipple in the opposite side of the pen. Artificial light was provided for eight hours 96 

a day. Furthermore, the sections had windows in the north side. The ventilation was a negative 97 

pressure system (SKOV A/S) with diffuse air inlet and three outlets in each section.  98 

 99 

Herd 2 consist of one large section of 42 pens. Each pen measured 6.5 m x 4.5 m. The pens were 100 

paired into double pens with a single dry feeder (Funki) per double pen. The floor in each pen was 101 

composed by 1/3 drained floor and 2/3 slatted floor. The pigs had access to two water nipples at 102 

the dry feeder and one additional water nipple in the opposite side of the pen. Artificial light was 103 

provided for eight hours a day. Furthermore, the sections had windows in both sides facing east 104 

and west. The ventilation was a negative pressure system (SKOV A/S, Roslev, Denmark) with 105 

diffuse air inlet and eight outlets.  106 

 107 

At both farms all pigs were fed ad libitum during the fattening period. The pigs were during the 108 

fattening period fed one of three different feed mixed based on the body weight (BW). The feed 109 

was changed when the smallest pig in the section was 45 kg and again at 85 kg based on observed 110 

BW estimated from ProGrow. At both farms two woodblocks were provided for each pen to meet 111 

the requirement of rooting and enrichment materials.  112 

 113 
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On both farms 18 pigs with an approximate BW of 30 kilos were inserted in each pen at the start 114 

of a batch. The pigs were not sorted by gender or size within the section. 115 

The finisher pigs were a crossbreed, D-LY, the dam of the pigs was a cross breed between Danish 116 

Landrace and Danish Yorkshire, and the sire was purebred Duroc. 117 

 118 

On both farms any sick pigs were moved to a special sick pen in a separate section. In this study, the 119 

number of pigs in the pen were not noted. Thus, it was assumed that the BW of any removed pigs 120 

would be equal to the pen average. This was a practical assumption, because the removal of sick pigs 121 

would be a rare occurrence, and because the system should be automatic and not need additional 122 

registrations from the farm manager. However, if the pig removed from the pen was much larger or 123 

smaller than the pen average BW it could potentially affect the observed pen average BW.  124 

 125 

The pigs where delivered to the abattoir over a period of three weeks starting 60 days after insertion. 126 

The heaviest pigs were delivered first, which would affect the average weight in the pen in a negative 127 

direction. Therefore, we only used the first 60 days after insertion to estimate the model parameters 128 

for this study. 129 

 130 

Image weighing 131 

In this study, the BW is obtained from cameras as part of the commercially available system 132 

ProGrow. ProGrow is a management concept where climate data, water intake, feed intake and 133 

camera weighing are collected. In this study, however, only the weighing data were used. 134 

 135 

The image weighing system (ProGrow) was installed in one section in each of the two herds. In 136 

each section where ProGrow was installed, a total of four pens were weighed. Thus, four cameras 137 

were installed. The cameras were located on top of the area where the pigs would be standing 138 

when eating from the feeder, as seen in Figure 1. The cameras were connected to a CWS controller 139 

box (DOL 68, SKOV A/S, Roslev, Denmark) where the images were processed, in order to 140 

perform weight estimations.  141 
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 142 

Figure 1. Image from herd 1 showing the pen and the placement of the camera above the feeder (indicated 143 

by a blue arrow). 144 

 145 

The image weighing was performed in several steps.  In the first step, it was detected if a pig was 146 

present in the scope of the camera. The pig was detected by a change in the contrast from darker 147 

background to the brighter pig. If a pig was present, one of four “hotspots” in front of the feeder 148 

was activated and a still picture was obtained. The hotspots can be seen at Figure 2.     149 

Figure 2. Image showing a pig standing in front of the feeder. At the image the four hotspots can be seen 150 

overlayed on top of the pig. Source: (SKOV A/S, Roslev, Denmark)  151 

 152 
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From the still picture of a pig, several tests are made to validate the picture: The ratio between the 153 

length and the width of the pig has to be in a certain interval, the rear end and the front end has to 154 

be approximately the same size, and the contrast has to be lighter in the middle of the pig and 155 

darker at the boundary of the pig. These boundaries can be changed if either too many pictures are 156 

rejected or if to many are accepted. In Figure 3. an accepted picture of a pig can be seen.  157 

 158 

Figure 3. Image showing an accepted picture of a pig, the front and rear end is illustrated with the 159 

green and blue boarders. Source: (SKOV A/S, Roslev, Denmark)  160 

 161 

If a still picture is taken, and the image is accepted, the perimeter of the pigs without the head and 162 

neck is recorded and converted to a measurement of the weight of the pig. The conversion method 163 

is not known to the author. The height of the pig is not visible at the top view image. Hence, the 164 

height is estimated as a linear coefficient of the body size. A maximum of five pictures of the same 165 

pig can be taken at each visit to the feeder. Each measurement was recorded as a weight estimation 166 

and a timestamp and send to a computer.  167 

 168 

Normally, the weighing data from ProGrow are filtered in the computer system FarmOnline 169 

(SKOV A/S, Roslev, Denmark). Thus, measurement noise is removed and a daily section average 170 

and deviation from the daily section average is provided. However, in this study, raw unfiltered 171 

data were provided from the company.    172 

 173 

Explorative analyses 174 

The data used in this study were historical data obtained from two commercial farms. Thus, only 175 

little information from the batches were available. Hence, to get an overview of the observations 176 

of BW an explorative analysis was done by summarizing the number of observations, and by 177 

plotting observed BW as a function of time. Moreover, the number of observations as a function 178 
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of the hour of the day were plotted. All analysis and data visualizations were done using R, a 179 

language and environment for statistical computing (R Core Team, 2018). 180 

 181 

In Table 1, both the total number of observations per batch and the number of observations per 182 

camera within each batch can be seen. A total of eight batches was used to estimate the parameters 183 

for the model. Additionally, a test data set from Herd 1 became available during the writing period 184 

of this study. The test data set was used to test the performance of the system developed. 185 

Observations from a total of 34 pens were recorded, due to missing observation from camera 2 in 186 

batch number 4 and from camera 2 in the test set. Normally, the weighing measurements from 187 

ProGrow is combined at section level and an alarm is given if the total number of images from all 188 

four cameras is under 100 images per day. However, this approach meant that some of the pens 189 

were plagued by missing observations. Thus, in this project, each pen was observed separately. 190 

The missing observations could be due to technical errors of the camera or simply that the lens on 191 

the camera was dirty.  192 

 193 
Table 1. Overview of the data set included in this study. The 8 first batches were used as learning data and 194 

the last was used for testing.  195 

    Number of observations per camera 

Batch Insertion 

date 

Total Number of 

observations 

Herd No. 1 No. 2 No. 3 No. 4 

1 21-06-2017 189,521 1 46,557 46,212 64,691 32,061 

2 05-10-2017 154,367 1 26,435 45,832 40,806 41,294 

3 28-12-2017 180,914 1 38,041 42,234 61,926 38,713 

4 18-04-2018 123,971 1 31,950 -* 53,807 38,214 

5 27-07-2017 83,749 2 11,749 14,175 36,504 21,321 

6 24-10-2017 116,220 2 24,140 20,920 33,665 37,495 

7 01-02-2018 116,749 2 63,809 1,655 15,656 35,629 

8 25-04-2018 137,680 2 33,188 14,634 54,214 35,644 

Test 18-07-2018 165,974 1 48,758 -* 68,052 49,164 

*Data from camera was missing. 196 
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The data were corrected as days after insertion using the lubridate packages for R (Spinu et al., 197 

2018). Thus, each timestamp was set as the numeric length from the insertion date. The initial 198 

timestamp generated from the ProGrow system was divided in date and time. For example, if a 199 

measurement in batch 1 was obtained at 22-06-2017 at 06:01:02, the time after insertion was 200 

1.250718 days after insertion. The raw weight data of each pen from each batch were plotted as a 201 

function of the time to get an overview of missing or irregular data. A regular pattern is exemplified 202 

in Figure 4A. Moreover, a pen with days missing observations is exemplified in Figure 4B.  203 

 204 

Figure 4. Raw observations of all weight estimations as a function of the number of days after insertion 205 

(grey crosses). Examples of A: regular pen (Herd 1, Pen 1, Batch 1) and B: pen with missing observations 206 

from day five to day 11 (Herd 1, Pen 3, Batch 4).   207 

A

: 

B

: 
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The number of observations was plotted as a function of day after insertion as exemplified in 208 

Figure 5. The plot shows that the number of observations per day declined during the growth 209 

period.   210 

Figure 5. Number of observations as a function of the number of days after insertion (black line) (Herd 1 211 

pen 1 batch 1).  212 

 213 

Figure 6 represents the amount of observations as a function of the hour of the day in both herds. 214 

It was expected that only a few images were obtained during the night, as the BW observations 215 

were obtained by camera vision using a 2D camera and ambient light to detect the perimeter of a 216 

pig. Thus, light in the section was important to obtain reliable estimates. Additionally, the activity 217 

level of the pigs was expected to be lower during the night. The pattern seen in Figure 6A from 218 

herd 1 (black dotted line) match the expectations where very few observations were made between 219 

9 pm and 3 am. It can, however, be seen from Figure 6A that the pattern of herd 2 (grey dotted 220 

line) was different with only a few observations between 5am and 10 am. This was most likely  221 

due to a wrong setting of the time in herd 2. The time was therefore corrected with plus 17 hours 222 

as seen in Figure 6B.  223 

 224 



11 

 225 

Figure 6. Number of observations as a function of the hour of the day for herd 1 (black dotted line) and 226 

herd 2 (grey dotted line). A) Before correction, and B) after correction. 227 

 228 

The explorative analysis showed that the weight estimates made during the night period were 229 

unrealistically low (outliers) due to the lack of light in the section during the night hours. Normally, 230 

this data would be filtered away automatically by the ProGrow system, which removes the lowest 231 

25 percent of the observations per day. For these reasons, only weight estimate data made between 232 

4 am and 10 pm were included in the current study. This removed some outliers. However, the 233 

explorative analysis showed, that some pens were still plagued by outliers. These outliers were in 234 

this study not removed, thus the DLM should be able to cope with all observations.  235 

 236 

A

: 

B

: 
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Parameter estimation 237 

The explorative data analyses showed difference in initial BW, growth rate and slope of the growth 238 

rate between each pen and batch. Furthermore, the variance in observations increased over time.  239 

The pens within the batches represented pigs from the same weaning thus batch effects were also 240 

expected.  241 

To estimate the parameters and variance components needed to model the mean live weight over 242 

time, a static mixed-effects model was mas made using the nlme package in R (Pinheiro et al., 243 

2018). The observed BW( 𝑌𝑗𝑘𝑡) of a pig was described as a function of the pen j and batch k over 244 

time after insertion t as: 245 

𝑌𝑗𝑘𝑡 = (𝛽0 + 𝐵0𝑘 + 𝑏0𝑗,𝑘) + (𝛽1 + 𝐵1𝑘 + 𝑏1𝑗,𝑘)𝑡 + (𝛽2 + 𝑏2𝑗,𝑘)𝑡
2 + 𝜀𝑗𝑘𝑡  (1) 246 

 247 

,where 𝛽0, 𝛽1and 𝛽2 are the fixed effects of intercept, time, and square value of time. The random 248 

effect vector of batch 𝐵𝑘 = [
𝐵0𝑘

𝐵1𝑘
] and the random effect of pen within batches 𝑏𝑗,𝑘 = [

𝑏0𝑗,𝑘

𝑏1𝑗,𝑘

𝑏2𝑗,𝑘

]  were 249 

assumed to be independent, so that 250 

 𝑁 ([
0
0
] , [

𝜎𝐵0
2 0

0  𝜎𝐵1
2 ])   251 

and 𝑁 ([
0
0
0
] , [

𝜎𝑏0
2 0 0

0  𝜎𝑏1
2 0

0 0  𝜎𝑏2
2

])  252 

The random residuals 𝜀𝑗𝑘𝑡 ~𝑁(0,𝜎𝑡
2) are assumed independent for different batch, pen, and time 253 

effects.  254 

 255 

Variance components 256 

The explorative analysis suggested that the variance of the live weights would increase over time 257 

within a given pen. For this reason, three variance models were tested. The three models were: 1) 258 

power of the absolute value of variance covariate, 2) an exponential function of covariate and 3) a 259 

constant plus power of covariate variance functions. These functions are furtherly described by 260 

Pinheiro and Bates (2000). The chosen model was the power of the absolute value of variance 261 

model based on the highest adjusted R2 value (0.7635) corresponding to the variance model: 262 

𝜎𝑡
2 =  𝜎2 |𝑡|

2𝛿
(2) 263 

Where 𝜎2  is the variance for t=1 and 𝛿 is a constant.  264 

 265 
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Autocorrelation 266 

A serial correlation structure was considered, because the data consist of repeated measurements 267 

of each pen. An exponential spatial correlation was tested because measurement data are not 268 

equidistantly distributed over time. However, it was not possible to estimate a correlation different 269 

from zero, as the within-group errors could not be separated from the general errors of estimations.  270 

 271 

Model validation 272 

The ANOVA method was used to test significance of the parameters of the model (p<0.05), and 273 

parameters for the final model were selected by backwards elimination. The test showed no 274 

significant random batch effect for quadratic time (p=0.894). Thus, the final model was without 275 

random batch effect for quadratic time. Finally, the parameters used in the model were tested using 276 

adjusted R2 values, in order to avoid overestimating the model.   277 

 278 

Model parameters 279 

The final model parameters estimated from the eight batches can be seen in Table 2.  280 

Table 2. Parameters implemented in the DLM.  281 

Parameter Symbol Value Standard error  P-value 

Fixed effect for intercept 𝛽0 26.744719 0.9225273 < 0.01 

Fixed effect for time 𝛽1 0.830208 0.0708756 < 0.01 

Fixed effect for quadratic time 𝛽2 0.004107 0.0005175 < 0.01 

Standard deviation in random 

batch effect for intercept 

𝜎𝐵0 0.08838439  < 0.01 

Standard deviation in random 

batch effect for time 

𝜎𝐵1 0.1720983  < 0.01 

Standard deviation in random pen 

effect within batch effect for 

intercept 

𝜎𝑏0 5.098993  < 0.01 

Standard deviation in random pen 

effect within batch effect for time 

𝜎𝑏1 0.1994472  < 0.01 

Standard deviation in random pen 

effect within batch effect for 

quadratic time 

𝜎𝐵2 0.002852625  < 0.01 

Residual standard deviation at 

time t=1 

𝜎  3.598213   

Power of variance 𝛿  0.3005379   



14 

Modelling 282 

A Dynamic linear model (DLM) is constructed by an observation equation and a system equation.  283 

In this study, only a single batch is observed at a time. Thus, the herd effect and batch effect could 284 

be combined. However, similar to Stygar and Kristensen, (2018) the generic version was kept in 285 

order to be able to extend the model in future research.    286 

In this study, the observation equation describes the observed BW 𝑌𝑗𝑘𝑡 at time t in the current batch 287 

in pen j as:  288 

𝑌𝑗𝑘𝑡 = 𝑭𝒋𝒌𝒕
′ 𝜽𝒕 + 𝑣𝑡,  𝑣𝑡~𝑁(0, 𝜎𝑡

2) (3) 289 

Where 𝑭𝒕
′  is the transposed design matrix, 𝜽𝒕 is the parameter vector, and 𝒗𝒕 is the random 290 

observation error. 291 

 292 

The parameter vector 𝜽𝒕 was composed of 17 parameters with elements from three subvectors: 293 

herd [

 𝛽0

 𝛽1

 𝛽2

], batch  [
𝐵0𝑘

𝐵1𝑘
] and a vector of each of the four pens in each batch [

𝑏0𝑗,𝑘

𝑏1𝑗,𝑘

𝑏2𝑗,𝑘

] as:  294 

𝜽′𝒕 = [ 𝛽0,  𝛽1,  𝛽2, 𝐵0, 𝐵1, 𝑏01, 𝑏11, 𝑏21, 𝑏02, 𝑏12, 𝑏22, 𝑏03, 𝑏13, 𝑏23, 𝑏04, 𝑏14, 𝑏24] (4)  295 

The design matrix 𝑭𝒋𝒌𝒕 indicates which of the four pens in a section that was observed, i.e. which 296 

parameters in the parameter vector 𝜽𝒕 should be used. As an example, the transposed design matrix 297 

for pen 2 in a batch at time t would be as follows: 298 

𝐹2,𝑡
′ = [1, 𝑡, 𝑡2 ,1 , 𝑡 ,0 ,0 ,0 ,1 , 𝑡 , 𝑡2 ,0 ,0 ,0 ,0 ,0 ,0 ,0] (5) 299 

 300 

The system equation was defined as: 301 

𝜽𝒕 = 𝑮𝒕𝜽𝒕−𝟏 + 𝒘𝒕 ,  𝑤𝑡~𝑁(0,𝑾𝒕) (6) 302 

Where 𝑮𝒕 is the system matrix, 0 is a zero vector and 𝒘𝒕 is the variance covariance matrix. 303 

However, in this study, the system equation can be reduced as: 𝜽𝒕 = 𝜽𝒕−𝟏. Thus, the system matrix 304 

𝑮𝒕 will be an identity matrix and the variance covariance matrix 𝑾𝒕 is a zero matrix, as the 305 

parameters are expected to be constant.  306 

 307 

Prior to the first observation the belief is that 𝜽𝟎 is distributed as:  308 

(𝜃0|𝐷0)~ 𝑁(𝑚0, 𝐶0) (7) 309 

Where 𝐷0 is the prior information,  𝑚0 is the mean vector and 𝐶0is a variance-covariance matrix.  310 

In this study, the mean vector 𝑚0 is a vector with the length of 17 and consist of estimates for the 311 

fixed effects of the herd. The remaining part of the vector is zeros as:    312 
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𝒎′𝟎 =[ 𝛽0̂, 𝛽1̂, 𝛽2̂, 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0] (8) 313 

The variance-covariance matrix 𝑪𝟎 was a 17 × 17 matrix and it was constructed by a 3 × 3 matrix 314 

with the variance and covariance of fixed herd effects and diagonal of the variance of random 315 

effects of batch and pen within batch effects as:  316 

𝑪𝟎 =  

[
 
 
 
 
 
 
 
 
 
 
 
 

𝝈𝜷𝟎

𝟐 𝝈𝜷𝟏,𝜷𝟎

𝟐 𝝈𝜷𝟏,𝜷𝟐

𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 … 𝟎

𝝈𝜷𝟎,𝜷𝟏

𝟐 𝝈𝜷𝟏

𝟐 𝝈𝜷𝟏,𝜷𝟐

𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 … 𝟎

𝝈𝜷𝟎,𝜷𝟐

𝟐 𝝈𝜷𝟏,𝜷𝟐

𝟐 𝝈𝜷𝟐

𝟐 𝟎 𝟎 𝟎 𝟎 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝝈𝑩𝟎
𝟐 𝟎 𝟎 𝟎 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝟎 𝝈𝑩𝟏
𝟐 𝟎 𝟎 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝝈𝒃𝟎𝟏
𝟐 𝟎 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝝈𝒃𝟏𝟏
𝟐 𝟎 … 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝝈𝒃𝟐𝟏
𝟐 … 𝟎

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝝈𝒃𝟐𝟒

𝟐 ]
 
 
 
 
 
 
 
 
 
 
 
 

 (9) 317 

Kalman filter 318 

The DLM was updated using a Kalman filter at each new observation, using the notation described 319 

by West and Harrison, (1997). The Kalman filter makes a short-term prediction for the next 320 

observation based on the prior information (Roush et al., 1992). The difference between the 321 

predicted response and the actual observation is the prediction error 𝑒𝑡 which can be applied in an 322 

alarm system. 323 

 324 

Alarm system 325 

In this study a BW estimation was collected very frequently. In order to detect abnormalities in 326 

the BW gain of the pigs, a tabular cumulative-sum (Cusum) control chart method was used. If the 327 

process is in control, the Cusum should fluctuate stochastically with mean zero. However, if the 328 

underlying mean changes, the Cusum will drift. In this study, the tabular Cusum was used. The 329 

tabular Cusum is separated into an upper and a lower Cusum. If the accumulated deviation exceeds 330 

either the upper or lower decision interval H the process is considered to be out of control, and an 331 

alarm is given. In this study, only the lower Cusum is of interest, as it can detect persistent negative 332 

tendency in the growth. 333 

 334 

 335 

 336 
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In order to, apply the Cusum control chart, the standardized forecast errors were obtained similar 337 

to the method used of Stygar and Kristensen, (2018) as: 338 

𝑢𝑡𝑛 =
𝑒𝑡

√𝑄𝑡
 (10) 339 

, where 𝑒𝑡 is the 1-step forecast errors and 𝑄𝑡 is the variance of the forecast model, which is 340 

calculated as part of the Kalman filter. 341 

 342 

The lower Cusum value is defined as formulated by (Montgomery, 2005) as: 343 

𝐶𝑢𝑠𝑢𝑚𝑡
− = max[0, (0 − 𝐾) − 𝑆𝐸𝑡 + 𝐶𝑢𝑠𝑢𝑚𝑡−1

− ] (11) 344 

Where 0 is the target value and K is the reference value.  345 

The reference value K, and decision interval H must be chosen in order to design the tabular 346 

Cusum. Generally, the K is chosen relative to the size of the shift desired to be detected. The shifts 347 

were expresses in standard deviation units. Thus, if K = 1 the aim is to detect two standard 348 

deviation units, and if K=0.5 the aim is to detect one standard deviation unit. The decision interval 349 

H is chosen in order to provide a long average run length performance. The higher the value of H, 350 

the more observations are needed before an alarm is giving. Similar to Stygar and Kristensen 351 

(2018) forecast errors higher than three standard deviation units was removed in order remove 352 

outliers.  353 

 354 

Simulated alarms 355 

In this study, no information of irregularities in the BW data from the herd was available. Thus, in 356 

order to test the performance of the alarm system a scenario with depressed growth was simulated. 357 

In order to make the simulations as close to a real scenario as possible, the timestamps from pen 1 358 

in the test dataset was used to mark when the weight measurements were obtained. Before each 359 

simulation an initial mean 𝛽0𝑠𝑖𝑚
, an effect of time 𝛽1𝑠𝑖𝑚

, and a quadratic effect of time 𝛽2𝑠𝑖𝑚
 were 360 

found from a normal distribution of the fixed effect at herd level as mean and standard deviations 361 

of random pen effect from the parameters estimated in the mixed effects model (shown in Table 362 

2).  363 

Because the true mean of the simulated observations (𝑌𝑠𝑖𝑚) at time t was assumed to be:  364 

𝑌𝑠𝑖𝑚𝑡 = 𝛽0𝑠𝑖𝑚
+𝛽1𝑠𝑖𝑚

𝑡 + 𝛽2𝑠𝑖𝑚
𝑡2+ 𝜀𝑡   (12) 365 

the daily gain was found as the differentiated function:  366 

𝑌′𝑠𝑖𝑚(𝑡) = 𝛽1𝑠𝑖𝑚
+ 2𝛽0𝑠𝑖𝑚

(13) 367 

 368 
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The simulated observation was then finally found as a random number from a normal distribution 369 

with 𝛽0𝑠𝑖𝑚
 as mean and the variance function (eq. 2) as standard deviation. At each new day, the 370 

mean was updated by adding the daily gain 𝑌′𝑠𝑖𝑚𝑡.  371 

 372 

The abnormality was then constructed by decreasing the daily gain function 𝑌′𝑠𝑖𝑚𝑡 at the days of 373 

the event. In this study, the abnormality was constructed as: - 20 %, -60% and -80 % in daily gain 374 

at day 20, 21 and day 22-25 after insertion, respectively. 375 

 376 

Results and discussion 377 

Model performance 378 

The DLM was used to estimate the filtered mean from the three pens in the test data set. Thus, this 379 

data set were new information, which had not been used to define the model. To get an overview 380 

of the performance of the model in the three pens (data from pen 2 was missing due to a failure) 381 

the raw observation, the calculated daily mean, and the filtered mean is plotted for pen 1, pen 3 382 

and pen 4 in Figure 7A, Figure 7B, and Figure 7C respectively.  383 

 384 

As it can be seen on the plots, the DLM uses the first day to adjust to the individual pen. Thus, the 385 

blue line indicating the filtered mean is fluctuating unusually. This is caused by the pigs being 386 

inserted in the pens with different start weight. One approach to avoid this would be to manually 387 

weigh each pen or batch in order to derive the initial BW of the pigs, which could be used as a 388 

parameter in the DLM. On one hand, this would be an extra workload, which do not seem 389 

necessary. Because, the DLM seems to be stabilizing during the first day. However, on the other 390 

hand, most farmers already weigh their pigs when they are moved from one section to another. In 391 

that case, the extra workload of typing the weight into the system would be minor and the 392 

advantages greater. Thus, knowledge of the BW gain the first day after insertion can be of great 393 

interest for the farmer. Because, the pigs are vulnerable just after a move. 394 

 395 

After the first day, the DLM seems to adjust to the current pen as the filtered mean is following 396 

the calculated daily mean until the time of the first delivery. However, as is seen on the plots, some 397 

of the calculated daily means are fluctuating, especially in the end of the growth period, due to 398 

fewer images per day. In order to present reliable information to the farm personnel, these 399 

fluctuations should be avoided. Thus, if the estimated BW is fluctuating, the user might lose trust 400 
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in the system. However, the filtered means estimated using the DLM seems in all three pens to be 401 

growing steadily. Thus, this mean can be reported to the farmer.  402 

The model parameters (Table 2) were, only estimated on data from the first 60 days after insertion, 403 

due to first deliveries of pig at that point. Nevertheless, as seen in Figure 7 the filtering procedure 404 

seems to be able to continue after 60 days. However, in all tree pens a major negative dive in the 405 

calculated mean weight is realized around day 62 and again at day 76 after insertion. These dives 406 

are most likely due to the farmer sending the heaviest pigs to slaughter. Thus, removing the 407 

heaviest pigs will affect the pen mean in a negative direction. However, the filtered mean of the 408 

DLM applied in this study, does not seem to be affected by the drop in the mean. This is most 409 

likely due to the few measurements obtained in the end of the period. If the farmer was interested 410 

in the growth rate after deliveries, the systematic variance component of the DLM could be 411 

increased on the day when pigs are removed from the pen, thus making the DLM temporarily more 412 

adaptable to new observations.  413 

 414 

In the explorative analysis of data, it was seen that the variance was increasing over time. Similar 415 

results have been found in other studies of frequent BW measurements where a scale was used 416 

(Stygar et al., 2017; Stygar and Kristensen, 2018, 2016). Thus, the increase is most likely due to 417 

the within-group variance of the pigs increasing, rather than an increase in variance of the BW 418 

estimations from the vision-based weighing system. 419 

420 
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  421 

Figure 7. Growth of pigs - Raw observations, daily calculated mean and filtered mean from 

the test dataset (herd 1).  A) Pen 1, B) Pen 3, and C) Pen 4.  
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Missing observations 422 

The explorative analysis showed, that BW data were missing on some days. Because, the cameras 423 

are placed inside a harsh environment in a barn with dust, water, and flies, days with missing data 424 

cannot be avoided. As described by Jensen et al. (2018), however, a DLM can be designed to 425 

handle missing data; the DLM provides forecast values which are automatically adjusted over time 426 

based on the observations. When no observations are available, the DLM will continue to make 427 

its forecasts. When data again become available, the DLM will use the new observations to update 428 

its parameters according to the Bayesian framework described under Materials and Methods. In 429 

Figure 8, one of the pens with missing observations can be seen together with the raw observations, 430 

the calculated daily mean and the filtered mean. It can be seen, that in the period of the missing 431 

data, the filtered mean of the DLM still follows the trajectory described by its parameter vector. 432 

Thus, when observations are available again, the filtered mean still matches the calculated daily 433 

means.  434 

Figure 8. Example of missing observation - Raw observations, daily calculated mean and filtered 435 

mean.  436 

 437 

Filtered means at batch level. 438 

In Figure 9, the filtered mean curves of all four pens from the test dataset are plotted. As seen in 439 

the plot, the filtered mean of pen 2 is estimated, even though no observations were available. The 440 

parameter vector used in the DLM was designed so that effects of both batch and pen level were 441 



21 

used. This implementation meant, that the observations from one pen also affected the estimated 442 

parameters of the other pens in the same batch. Thus, if image data were missing from one pen, 443 

the part of the parameter vector relating to that pen could still be updated based on information 444 

from the other pens. However, as seen in Figure 9, the growth of pen 2 is deviating from the growth 445 

of the other pens after approximately 30 days after insertion. This, is most likely due to the random 446 

effect of quadratic time, only was estimated as a pen effect within batch effect and not at batch 447 

level. Thus, each pen would find a individually quadratic time effect independent of the other pens.   448 

 449 

In figure 9 it can be seen, that the filtered growth curves of pen 1 is above the filtered growth 450 

curves of the other pens indicating a higher mean weight in the pen. However, after day 40 after 451 

insertion, the filtered mean of pen 3 is above the other pens. These retrospective observations could 452 

potentially be used as a learning tool to optimize management in each pen if knowledge of events 453 

in the pens is known (Stygar and Kristensen, 2016). One example of events which could be 454 

investigated retrospectively is effect of shortage of feed placed in the pen. Thus, this could affect 455 

the largest pigs first. However, in order to detect this, data from more than one batch is needed 456 

(Stygar and Kristensen, 2016).        457 

 458 

In this study, the DLM was applied at pen level, in order to analyse the effect in each pen separately. 459 

However, a different approach could be to estimate the growth at section level. This could be done 460 

by combining BW data from the four cameras in each batch. Because, as Udesen and Krogsdahl 461 

(2018) showed, the estimated weight using more than one camera at a time gives a better estimation 462 

for the whole section. In this study, an exponential spatial correlation, which was used in similar 463 

studies (Stygar et al., 2017) could not be estimated. However, if instead the DLM was applied at 464 

section level, a correlation between pens could most likely be found. Therefor, if a pen was above the 465 

batch average in one time observation, it would probably also be above in the next observation.  466 

 467 
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Figure 9. Filtered growth curves of the four pens (Pen 1-4) in the test dataset (herd 1).  468 

 469 

Diurnal pattern 470 

In this study, a diurnal pattern in growth at pen level was investigated, using similar  methods as 471 

used in Stygar et al. (2017). However, the diurnal pattern in growth did not improve the model 472 

significantly, based on the adjusted R2 value (0.76452 and 0.76450 without and with the diurnal 473 

component, respectively). In a study of Stygar et al. (2017) a diurnal amplitude for pig growth 474 

varied between 0.9 to 1.4 kg during a day during 5 batches. In their study, the BW observations 475 

were found using automatic scale measurements. However, in this study, the BW is found from 476 

camera weighing. To the authors knowledge, no other studies have investigated diurnal pattern in 477 

pigs growth from camera weighing, thus a comparison cannot be made. However, it is intuitive to 478 

think that the cause of the pigs being heavier in the evening than in the morning is due to the feed 479 

uptake during the day. These changes are likely too small to be detected using a camera. Another 480 

reason could be, that in this study it is not identified which pig is weighed. Thus, the smaller pigs 481 

might eat on different times than the larger pigs in the pen.  482 

 483 

Alarm system 484 

In this study an alarm system using a Cusum chart was implemented on data from the test data set 485 

using the method described by (Montgomery, 2005). In Figure 10, examples of alarms are plotted 486 

as red vertical lines at the time of the alarm. In this, study, no actual recordings of undesired events 487 

were available. Thus, different decision interval and references value were tested in order to give 488 

alarms to illustrate the effect. However, if the DLM-Cusum alarm system had been implemented 489 

at the farm, it was not known to the author whether any alarms should actually have been given.  490 
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The number of alarms will depend on the reference value K and decision interval H used as 491 

parameters in the Cusum. Thus, the sensitivity of the system can be adjusted. On Figure 10 B,C it 492 

can be seen, that increasing the decision interval from 10 to 15 results in fewer alarms from four 493 

(K=1, H=10) to two (K=1, H=15). Additionally, it can be seen on Figure 10A, that if the reference 494 

value K is decreased to 0.5 the number of alarms is increased to seven (K=0.5, H=15). These effect 495 

are further exemplified in Figure 11, where the corresponding lower Cusum charts for a reference 496 

value of 0.5 and 1 are shown for the same pen as used in Figure 10. On Figur 11 it can be seen, 497 

that if reference value is lowered, the lower Cusum values are higher. Consequently, the Cusum 498 

value reach the threshold more often. The same pattern was found in Stygar and Kristensen (2018) 499 

for both identified and unidentified pigs. The final parameters could be defined based on the choice 500 

of the farmer. 501 

 502 

A general challenge is if an alarm system produces too many alarms because false alarms reduces 503 

the reliability of the system (Dominiak and Kristensen, 2017). In a study by Dominiak et al. (2018) 504 

an alarm system to detect systematic changes in water consumption using a standardized two sided 505 

Cusum was constructed.  In the study, the optimal parameters used in the Cusum was found using 506 

an area under the ROC curve. However, this approach would demand that the alarms are verified, 507 

and correct and false alarms are noticed. Even though it seems easy, this could be a difficult task. 508 

It is the author’s belief, that events such as feeding mistakes can be verified. However, illnesses 509 

without clinical sign would be more difficult (Weber et al., 2015). Thus, some correct alarms could 510 

potentially be verified as false positive. Additionally, it can be discussed that, because BW gain is 511 

one of the direct parameters of interest for the farmer, any sign of lowered growth should be 512 

reported. Even if no events occur in the farm, the growth is still lowered, and this could potentially 513 

give the farmer new knowledge to optimize from.     514 

 515 

In this study, similar to other studies (Stygar and Kristensen, 2018, 2016), a quadratic growth term 516 

was included in the model. On one hand, the quadratic effect was significant and improved the 517 

model fit. Thus, the growth of the pigs was not a simple linear line. However, on the other hand, 518 

Madsen and Kristensen (2005) argued that a DLM used for monitoring for detection of 519 

abnormalities should not adapt to sudden changes. Thus, it is the deviation between observed data 520 

and the model predictions that is of interest. The quadratic effect makes the DLM more adaptable 521 

to shifts in BW gain, which could delay the time of an alarm.    522 

 523 

 524 
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 525 

  526 

Figure 10. Pen alarms (red vertical lines) for different decision (H) and reference values (K) 
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  527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

Figure 11. Lower Cusum charts for different reference values (K) and decision interval (H) showed at 15 539 

and 10 (blue horizontal dotted lines) at both A), and B).  540 

 541 

Simulated alarm 542 

Because no information of undesired events was available from the herd data set, a scenario with 543 

simulated data was constructed in order to show the performance of the alarm system. In figure 12 544 

the simulated dataset can be seen. The vertical dashed lines indicate the start and stop in the 545 

decreased growth. In this simulation alarms were given 22 and 24 days after insertion, as indicated 546 

by the red vertical lines (H=15, K=0.25). In Figure 12A it can be seen, that the shift in weight was 547 

small. Thus, it is difficult to see in the Figure 12A. However, at Figure 12B only day 10 to day 40 548 

is shown. In this figure, it can be seen that after the first dotted line (start of event at day 20) the 549 

filtered mean was slightly above the calculated daily mean. Thus, the predicted mean was above 550 

the calculated daily mean. Consequently, the prediction errors started to shift, and alarms were 551 

A

: 

B

: 
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given. After the event, (day 26) the DLM was adapted to the lowered growth. Thus, the following 552 

days the growth was underestimated.  553 

Figure 12. Pen alarms (red vertical lines) in the simulated data set with event of decreased growth between 554 

day 20 and day 26(dotted vertical lines). Simulation values: 𝛽0𝑠𝑖𝑚
= 30.7, 𝛽1𝑠𝑖𝑚

= 1.00,  𝛽2𝑠𝑖𝑚
= 0.003. 555 

Decision interval (H) 15 and reference value 0.25.  556 

 557 

In order to test the repeatability, the simulation was repeated 1,000 times. The number of alarms 558 

can be seen in Figure 13.  The total number of alarms was 2,634 with 1,622 being in the interval 559 

between day 20 and 25. Thus, 61 % of the alarms were correct. The system gave at least one correct 560 

alarm 746 times of the 1,000 simulations or approximately ¾ of the times.  561 

 562 

In Figure 13 it is seen that most alarms are given between day 22 and day 25 after insertion (grey). 563 

It is expected, that the Cusum will react a bit delayed from an event. Thus, the Cusum needs to 564 

reach the threshold value before the first alarm is given. On one hand, if the decision interval was 565 
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lowered, the alarm would be given earlier. However, on the other hand more alarms (both false 566 

and correct) would be given.  567 

 568 

Figure 13. Frequency of alarms per day, when a simulated event occurs after 20 days. Alarms at the time 569 

of the simulated event (grey), alarms outside the time periode of the effent (black) 570 

 571 

 Future studies 572 

In this study, a DLM was applied to frequent BW estimations obtained from the image weighing 573 

system which is a part of ProGrow. However, water consumption and feed conversion are also a part 574 

of the system. Thus, an alarm system combining the sensors could be implemented using a 575 

multivariate DLM, as implemented by (Jensen et al., 2017).  576 

 577 

The performance of ProGrow cameras was recently tested by Udesen and Krogsdahl (2018). 578 

However, this test showed, that the variance from the estimated BW and the manually weighed BW 579 

was 0.2 % and 3.4 % in batch 1 and batch 2, respectively, which indicates fluctuation in the 580 

performance. This also indicates that further testing and development should be performed in order 581 

to increase the certainty of each measurement. Thus, a systematic error might influence the conclusion 582 

from an alarm system as the one presented in this study.  583 

 584 

In this study, only limited data were available, due to that the ProGrow system is a relatively new 585 

system. However, as production continues, more data are collected. Thus, the parameters could be 586 
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recalculated with a higher precision and adding additional effects, such as a seasonal pattern, to 587 

increase the performance.  588 

 589 

The model parameters described in this study were estimated on data available from two similar 590 

herds. If the model should be used in another farm, the model parameters would most likely have to 591 

be recalculated due to differences in farms as: breed, feed, management, genetics, initial weight etc. 592 

Jensen et al. (2018) however, found no effect from whether or not a farm-specific version of a DLM 593 

was used in a study of dynamic milk yield monitoring in dairy cows. Thus, a future study could 594 

determine if the DLM estimated in this study could be used on another farm.  595 

 596 

The DLM constructed in this study could, beside its use to detect abnormalities, be used as a forecast 597 

model to forecast when the weight of the pigs would reach a certain threshold. These forecasts could 598 

potentially be used for a decision support tool for optimal marketing of finisher pigs (Kristensen et 599 

al., 2012). Thus, it could potentially increase the farmers revenue and consequently the farmers 600 

willingness to pay for the system.  601 

 602 

Conclusion 603 

In this study it is shown that a DLM updated with a Kalman filter can be used to dynamically filter 604 

frequently obtained BW data from an automatic weighing system such as ProGrow. Because, multiple 605 

cameras are placed in the same section, both batch and pen effects were estimated. Additionally, the 606 

prediction errors from the Kalman filter were used to construct a warning system, using a tabular 607 

Cusum. The warning system can be used to give warnings about consistent negative BW growth. 608 

With this study it was demonstrated how the sensitiveness of the system can be set according to the 609 

farmers preferences. Furthermore, the warning system was tested on simulated data with a known 610 

event of decreased growth. The DLM and the warning system constructed in this study should be 611 

implemented in different farms to furtherly evaluate the performance.   612 



25 

Literature cited 

Augspurger, N.R., Ellis, M., 2002. Weighing affects short-term feeding patterns of growing-

finishing pigs. Can. J. Anim. Sci. https://doi.org/10.4141/A01-046 

Brandl, N., Jørgensen, E., 1996. Determination of live weight of pigs from dimensions measured 

using image analysis. Comput. Electron. Agric. 15, 57–72. https://doi.org/10.1016/0168-

1699(96)00003-8 

Christiansen, M.G., 2017. Strukturudvikling i dansk svineproduktion 2015. SEGES 

svineproduktion 1–18. 

Cornou, C., Kristensen, A.R., 2013. Use of information from monitoring and decision support 

systems in pig production: Collection, applications and expected benefits. Livest. Sci. 157, 

552–567. https://doi.org/10.1016/j.livsci.2013.07.016 

Dominiak, K.N., Hindsborg, J., Pedersen, L.J., Kristensen, A.R., 2018. Spatial modeling of pigs’ 

drinking patterns as an alarm reducing method II. Application of a multivariate dynamic 

linear model. Comput. Electron. Agric. 1–13. https://doi.org/10.1016/j.compag.2018.10.037 

Dominiak, K.N., Kristensen, A.R., 2017. Prioritizing alarms from sensor-based detection models 

in livestock production - A review on model performance and alarm reducing methods. 

Comput. Electron. Agric. 133, 46–67. https://doi.org/10.1016/j.compag.2016.12.008 

Frost, A.R., Schofield, C.P., Beaulah, S.A., Mottram, T.T., Lines, J.A., Wathes, C.M., 1997. A 

review of livestock monitoring and the need for integrated systems. Comput. Electron. 

Agric. 17, 139–159. https://doi.org/10.1016/S0168-1699(96)01301-4 

Jensen, D.B., Toft, N., Kristensen, A.R., 2017. A multivariate dynamic linear model for early 

warnings of diarrhea and pen fouling in slaughter pigs. Comput. Electron. Agric. 135, 51–

62. https://doi.org/10.1016/j.compag.2016.12.018 

Jensen, D.B., van der Voort, M., Hogeveen, H., 2018. Dynamic forecasting of individual cow 

milk yield in automatic milking systems. J. Dairy Sci. 101, 10428–10439. 

https://doi.org/10.3168/jds.2017-14134 

Kristensen, A.R., Nielsen, L., Nielsen, M.S., 2012. Optimal slaughter pig marketing with 

emphasis on information from on-line live weight assessment. Livest. Sci. 145, 95–108. 

https://doi.org/10.1016/j.livsci.2012.01.003 

Madsen, T.N., Kristensen, A.R., 2005. A model for monitoring the condition of young pigs by 

their drinking behaviour. Comput. Electron. Agric. 48, 138–154. 

https://doi.org/10.1016/j.compag.2005.02.014 

 

 



26 

Madsen, T.N., Ruby, V., 2000. An application for early detection of growth rate changes in the 

slaughter-pig production unit. Comput. Electron. Agric. 25, 261–270. 

https://doi.org/10.1016/S0168-1699(99)00073-3 

Montgomery, D.C., 2005. Statistical quality control, 5th. ed. Wiley. 

Parsons, D.J., Green, D.M., Schofield, C.P., Whittemore, C.T., 2007. Real-time Control of Pig 

Growth through an Integrated Management System. Biosyst. Eng. 96, 257–266. 

https://doi.org/10.1016/j.biosystemseng.2006.10.013 

Pinheiro, J.C., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Willigen, B., R-core, 2018. 

Package ‘nlme.’ 

Pinheiro, J.C., Bates D B., 2000. Mixed-Effects Models in S and S-PLUS, New York. ed. 

Springer. 

R Core Team, 2018. A language and environment for statistical computing. R Foundation for 

Statistical Computing. 

Roush, W.B., Tomiyama, K., Garnaoui, K.H., D’Alfonso, T.H., Cravener, T.L., 1992. Kalman 

filter and an example in poultry production responses. Comput. Electron. Agriculure 6, 

347–356. 

Schofield, C.P., 1990. Evaluation of image analysis as a means of estimating the weight of pigs. 

J. Agric. Eng. Res. 47, 287–296. https://doi.org/10.1016/0021-8634(90)80048-Y 

Schofield, C.P., Marchant, J.A., White, R.P., Brandl, N., Wilson, M., 1999. Monitoring pig 

growth using a prototype imaging system. J. Agric. Eng. Res. 72, 205–210. 

https://doi.org/10.1006/jaer.1998.0365 

Spinu, V., Grolemund, G., Wickham, H., Lyttle, I., Constigan, I., Law, J., Mitarotonda, D., 

Larmarange, J., Boiser, J., Lee, C, H., 2018. Package ‘lubridate.’ 

https://doi.org/10.1145/3097983.3098168 

Stygar, A.H., Dolecheck, K.A., Kristensen, A.R., 2017. Analyses of body weight patterns in 

growing pigs: a new view on body weight in pigs for frequent monitoring. Animal 1–8. 

https://doi.org/10.1017/S1751731117001690 

Stygar, A.H., Kristensen, A.R., 2018. Detecting abnormalities in pigs’ growth – A dynamic 

linear model with diurnal growth pattern for identified and unidentified pigs. Comput. 

Electron. Agric. 155, 180–189. https://doi.org/10.1016/j.compag.2018.10.004 

Stygar, A.H., Kristensen, A.R., 2016. Monitoring growth in finishers by weighing selected 

groups of pigs – A dynamic approach. J. Anim. Sci. 94, 1255–1266. 

https://doi.org/10.2527/jas2015-9977 

 



27 

Tscharke, M., Banhazi, T.M., 2013. Review of Methods to Determine Weight and Size of 

Livestock from Images. Aust. J. Multi-Disciplinary Eng. 10, 1–17. 

https://doi.org/10.7158/14488388.2013.11464860 

Udesen, F., Krogsdahl, J., 2018. Realtidsovervågning af slagtesvin med progrow. SEGES 

svineproduktion Meddelelse, Danish. 

Vranken, E., Berckmans, D., 2017. Precision livestock farming for pigs. Anim. Front. 7, 32. 

https://doi.org/10.2527/af.2017.0106 

Weber, N., Nielsen, J.P., Jakobsen, A.S., Pedersen, L.L., Hansen, C.F., Pedersen, K.S., 2015. 

Occurrence of diarrhoea and intestinal pathogens in non-medicated nursery pigs. Acta Vet. 

Scand. 57, 1–6. https://doi.org/10.1186/s13028-015-0156-5 

West, M., Harrison, J., 1997. Bayesian forecasting and dynamic models. Springer. 

Williams, S.R.O., Moore, G.A., Currie, E., 1996. Automatic weighing of pigs fed ad Libitum. J. 

Agric. Eng. Res. 64, 1–10. https://doi.org/10.1006/jaer.1996.0040 

 



27 

4. General discussion 

The aim of this thesis was to design a DLM with Kalman filtering to detect abnormalities in BW 

gain in a commercial Danish finisher herd based on weighing data generated from the automatic 

weighing system ProGrow from the company SKOV A/S. This was done by reviewing how 

measurements of a pig’s weight can be performed using vision-based systems and how the systems 

can be implemented on a farm. Additionally, methods of analysing the data and constructing a 

monitoring tool to monitor BW gain was reviewed. Finally, a data analysis was conducted to test 

the hypothesis, that a DLM with a Kalman filter can be used to detect abnormalities in BW data 

obtained from a commercially available image weighing system. 

 

In the literature review of this study it was established how pigs can be weighed using camera 

vision. Additionally, it was found, that an effective method to obtain BW measurements at farm 

level was to place the camera above the feeder. Furthermore, it was described that a DLM with 

Kalman filtering would be useful to monitor weight gain in pigs. These findings were used as basis 

for the data analysis part of this study. Thus, in the data analysis a monitoring tool build on a DLM 

with Kalman filter was constructed based on parameters estimated from a hierarchical mixed-

effect model. Missing data was realised in the explorative analysis of data. Therefore, the DLM 

was constructed with both effects of batch and pen. The monitoring tool showed that the DLM 

smoothed the mean of the observations. Additionally, the warning system showed warnings of 

consistent negative BW growth. The sensitiveness of the system can be set according to the farmers 

preference. In the previous chapter the result of the data analysis was discussed. The following 

chapter will include a discussion of the literature review and a more general discussion of the 

results from the data analysis. 

4.1.1 Correlation between body dimensions and BW 

In the literature review of this study it was found, that body size measurements of pigs can be used 

to estimate their BW. However, a general correlation between the measured parameters of body 

dimension and the estimated body weight is difficult to estimate across different studies. Thus, 

pigs of different breed and fed with different feeding methods might need different algorithms to 

estimate the BW (Brandl and Jørgensen, 1996; Marchant et al., 1999). Additionally, different 

methods of obtaining the body dimensions has been used. Thus, a calibration of each system prior 

to measurements can be needed.  
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In most studies, this calibration is performed by comparing the relationship between the obtained 

body dimensions with manually weighings using a scale. However, this measurement can have 

some inaccuracies due to the uncertainty of the scale and the time from a manual measurement 

until the image is obtained. Thus, as shown by Stygar et al. (2017) the BW of pigs are fluctuating 

during the day. However, manual weighings is a common practise in animal production which 

indicate that the method is reliable enough to be used. Additionally, the pigs can be weighed 

approximately at the same time as the image is obtained. Thus, the daily fluctuation in BW 

becomes irrelevant.  

 

Different regression models to describe the relationship between body area and BW has been used 

in different studies. Primarily, linear (Marchant et al., 1999) and exponential relationship 

(Minagawa and Ichikawa, 1994). The use of regression models to describe the relationship 

between body area and BW was investigated by Wang et al. (2006). In the study it was found, that 

five common models all could be used to estimate the BW based on the body area. Thus, the 

average coefficient of variation was approximately the same. Therefore, a simple linear 

relationship was sufficient. Similar results has been shown in other studies (Marchant et al., 1999; 

Schofield et al., 1999). However, Brandl and Jørgensen (1996) showed that using a spline function 

might improve the relationship.  

 

Using most technics of image-based weighing systems the height of the pigs cannot be obtained. 

Thus, manual measurements could be necessary. Which would be a time-consuming task. In the 

study of Schofield (1990) it is argued that the correlation between height and BW only varies a 

little among pigs. Thus, it only affects the estimation a little. Additional it was found by Minagawa 

and Ichikawa (1994) that the central area of the pigs without correction for the height gave the best 

estimates for BW. However, as argued by Marchant et al. (1999) the variation in correlation in  

height of the animals will, if not accounted for, be automatically included in the relationship 

between body area and BW which can cause inaccuracy in measurements. Thus, measuring the 

height of the animals may improve the accuracy. Consequently, when implementing a weighing 

system using image vision it should be considered how accurate the system needs to be.  
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4.1.2 Automated camera measurements 

In order to obtain measurements of body dimensions, it is necessary to be able to separate the pigs 

from their surroundings. In literature review, three methods were reviewed as: 1) manually 

detecting (Brandl and Jørgensen, 1996), 2) threshold method using contrast difference (Marchant 

et al., 1999; Minagawa and Ichikawa, 1994; Schofield et al., 1999) ,and 3) threshold method using 

depth sensors to detect differences in height of pigs (Kongsro, 2014).  

 

The use of the manual detecting is very limited. Because, an operator needs to spend time to outline 

the pigs (Brandl and Jørgensen, 1996). Consequently, the manual method might have some use in 

herd management as weighing pigs for marketing. However, the method is not useful to monitor 

pigs. 

 

The threshold method using contrast difference between the white pig and the darker background 

is the most common used method in the literature reviewed. Additionally, it is the method used by 

ProGrow. This method can be used to automate the process of obtaining measurements (Minagawa 

and Ichikawa, 1994). However, the limitation of the threshold method is that it is normally 

performed with clean white pigs without darker spots. However, in a herd there will also exist a 

small number of non-white or spotted pigs and some breeds, as the brown Duroc pigs, would need 

a different threshold. Additionally, the method is very dependent on the right light conditions in 

the section. Thus, shadow at the back of the pig could give wrong measurements (Tscharke and 

Banhazi, 2013a).  

 

The challenges with light and pigs with dark skin has caused several authors to investigate the use 

of 3-dimensional cameras with infrared sensors, as an alternative to the contrast threshold method 

(Condotta et al., 2018; Kongsro, 2014; Pezzuolo et al., 2018). Thus, this method would not depend 

on the pigs colour or the lighting condition. However, these systems are not yet commercial 

available.  

4.1.3 Precision of weight estimations 

One of the main concerns when applying an automatic weighing system using camera vision is the 

precision of the estimated BW. In the data analysis, no control measurements were available. 

However, a similar system was tested in a study by Udesen and Krogsdahl (2018). In the test it 

was found, that the deviation in mean daily gain between manual weighings using a scale and 

automatic weighings using ProGrow were 0.3 % and 3.6 % after filtration in batch 1 and 2, 
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respectively. This study is not a peer reviewed article. However, similar precision has been found 

in other studies as Schofield et al. (1999) which found that a group mean could be estimated with 

5 % deviation. Another studie of Tscharke and Banhazi (2013a) found a precision of ±1 kg between 

the vision based and scale measurements of BW. The  precision in the study of Tscharke and 

Banhazi (2013a) was better than the second batch in the study of Udesen and Krogsdahl (2018). 

However, in the study of Tscharke and Banhazi (2013a) fewer days of observations was obtained.  

 

In the study of Udesen and Krogsdahl (2018) an ongoing production was observed. Thus, factors 

as natural light, dust, flies and moisture can affect the estimate because of lower visibility of the 

camera. In the study, especially moisture at the camera lens and natural light was observed to affect 

the cameras. In the data analysis in this study, the explorative analysis showed missing 

observations on some days. Additionally, outliers were observed on some days. These problems 

could potentially be due to some of the problems as reported by Udesen and Krogsdahl (2018). To 

the author’s best knowledge, no studies have addressed the problem of how the cameras should be 

maintained over time. However, this would be a technical issue which should be incorporated in 

the on-farm implementation. One of the benefits of the DLM applied in the data analyse of this 

thesis is that a batch effect was used in the parameter vector in the DLM. Thus, observations from 

one camera was missing, the prediction was still affected by the batch effect of the other cameras 

in the section.  

4.1.4 On farm measurements 

Despite that several studies addressed the possibility to weigh pigs using an image-based system 

only a few studies concern the implementation in farm conditions. As argued by (Tscharke and 

Banhazi, 2013b) a weighing system should be evaluated based on factors as: cost, functionality, 

practicality and accuracy.  

 

Two methods of automatic camera weighings were suggested as 1) Walk-trough weighing (Wang 

et al., 2008) and 2) pen measurements (Kashiha et al., 2014; Schofield et al., 1999; Tscharke and 

Banhazi, 2013a; Udesen and Krogsdahl, 2018). One of the main advantages of using a walk-trough 

weighing system, is that the farm personnel decide which pigs should be weighed. Thus, each pig 

could be weighed individual to get information of the individually pig. However, the walk-trough 

weighing system still requires some manual labour and the pigs have to be moved which can have 

negative consequences for the pigs (Augspurger and Ellis, 2002). Because the method is labour 
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intensive, it is unlikely that it would be performed frequently enough to detect abnormalities in 

growth while changes still can be made.  

 

Another method of obtaining frequent BW estimations of pigs is to place a camera in all or a subset 

of the pens in a section above the feeder. In this study, two kinds of feeders are reviewed as 1) a 

single or electronic feeder (Marchant et al., 1999; Schofield et al., 1999; White et al., 2004), and 

2) a pen feeder (Tscharke and Banhazi, 2013a).     

 

By using a single feeder or electronic feeder, the pig is isolated from the other pigs while the image 

is captured. Thus, the precision of the image weighing is improved.  Because, only the weight of 

a single pig is obtained while the pig is standing in the wanted position. Furthermore, an electronic 

feeder gives the possibility to combine the image weighing system with other sensors, as for 

example a sensor to detect feed consumption which can give more information to the farmer. 

However, the use of an electronic feeding machine might be costly. Additionally, getting the pigs 

to walk into the feeder would demand a training period (Stygar et al., 2017) and could potentially 

lead to increased labour (Tscharke and Banhazi, 2013a).  

 

Implementing a camera above a pen feeder is a practical method to obtain body measurements. 

Thus, the camera is out of reach for the pigs and does not interfere with the farm personnel and 

does therefore not require any additional infrastructure in the pen (Tscharke and Banhazi, 2013b).  

This placement is also the one used in the data analysis part of this study. Thus, only unidentified 

measurements were available.  

4.1.5 Growth monitoring using a dynamic linear model 

In order to analyse frequent BW data, several methods can be used. In this study the methods 

described were 1) the moving average, 2) EWMA and 3) a DLM.  

 

Both the moving average method as used by Udesen and Krogsdahl (2018) and the EWMA can 

be used to analyse frequent BW data. However, the disadvantages using the moving average 

method is that all observations are given equal weight. Additionally, the moving average will be 

affected by the observation excluded from the calculation. Thus, if a high observation is excluded, 

a negative trend can be seen (Kristensen et al., 2010). The EWMA cope with some of the 

disadvantages of the moving average method. Because, most weight is put on the most recent 

observations. Additionally, it is a weighted average of all observation until the recent and 
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prediction errors can be estimated. Thus, the EWMA method can be used to filter and monitor BW 

data. The EWMA method is described in Kristensen et al. (2010) as rough because the model is 

rather simple and cannot deal with effects on both batch and pen level. Therefore, a more 

sophisticated method as DLM was implemented in the data analysis.  

4.1.6 Alarm system 

In the literature review, a Shewart control chart and a tabular Cusum was suggested as methods 

for monitoring BW of pigs to detect abnormalities. Thus, these methods have primarily been used 

in animal production to detect changes (De Vries and Reneau, 2010). The Shewart control chart 

has the advantage that it quickly can detect large shift (Montgomery, 2005). However, in this study 

the aim is to detect consistent abnormalities in growth. Because of the physical property of the 

pigs it is unlikely that pigs will lose a lot of weight quickly. Thus, it is expected that the growth 

only will decrease a little. A Cusum method can detect small shifts in growth(Kristensen et al., 

2010). Therfore, the Cusum was expected to be able to analyse growth data, as also demonstrated 

by Stygar and Kristensen, (2018) Thus, it was the investigated method in the data analysis of this 

thesis. 

 

According to several studies (Brandl and Jørgensen, 1996; Parsons et al., 2007; White et al., 2004), 

a monitoring system for automatic weighing can potentially improve disease surveillance. Weber 

et al. (2015) found, that pigs can have diarrhoea even though the farm personnel assessed them as 

healthy, which indicate there is a need of an alarm system. However, as shown by the simulated 

event in the data analysis of this study, the most alarms were realised after more than two days 

after the event. Thus, a skilled farm manager will be able to detect it and possibly treat before the 

alarm is given by the alarm system. Other alarm parameters, as for example water consumption, 

have been shown to be a good indicator of disease outbreaks like diarrhea (Dominiak et al., 2018). 

Because, an early warning can be realized before the time of the event. However, a monitoring 

system on growth can potential provide alarms on factors which do not affect the water 

consumptions, as for example mistakes in feed formulation, not optimal feed changes or 

management mistakes (Jessen and Udesen, 2016). 

4.1.7 Improved weighing system 

Several things can be done to optimize the BW estimation performed by the vision-based weighing 

system (Minagawa and Ichikawa, 1994; Tscharke and Banhazi, 2013b). However, it is important 

to keep in mind, that cost and durability are important factors for the farmer. Thus, the final 
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weighing system is a compromise of the cost of the system, the durability and the amount of 

information which can be derived from the system.  

 

In the data analysis in this thesis, data obtained from a section with four cameras above a pen 

feeder was analysed. Udesen and Krogsdahl (2018) showed, that if more pens were weighed the 

estimation of the whole section mean became more accurate. Thus, if the monitoring system should 

be used to accurately estimate the mean weight of all pigs in a section, more pens should be 

monitored.  

   

One parameter which could be of interest for the farmer would be the deviation in weight within 

pen. Thus, the heaviest pig in the pen should be the one which should determine the day of the 

first delivery to the abattoir. Additional, in an all-inn/ all-out system the lightest pig would give 

information of when the section should be emptied. A camera weighing system with a good 

accuracy of the estimated BW should theoretically be able to give these estimates. However, higher 

accuracy might need some moderation of the pen (Minagawa and Ichikawa, 1994) or additional 

measurements (Marchant et al., 1999).  

 

In the data analysis of this study, only the pen average BW was estimated. Because, the pigs are 

not individually identified. However, identification of the individual pigs could have multiple 

implication. One of the benefits would be, that if a pig is removed from the pen, the DLM can 

adjust to the missing pig (Stygar and Kristensen, 2018). Another implication would be that 

individual alarms of abnormalities could be giving. Thus, if the growth of a single pig is decreased 

an alarm can be giving and give the farm personnel a change to react. The individual growth of 

pigs would also be a valuable information in order to forecast the number of animals ready for 

marketing.  

 

A DLM has been used in several studies to analyse BW growth of pigs (Madsen and Ruby, 2000; 

Stygar et al., 2017; Stygar and Kristensen, 2016). However, the method has not been widely used 

at commercial farms. Wathes et al. (2008) argues, that precision livestock farming tools like 

growth monitoring must be demonstrated at a commercial scale for the farmers to have confidence 

in the product. In this study, the DLM is implemented using data from an already commercial 

available system (ProGrow). Thus, the implementation of a DLM would upgrade an already 

existing system and would not have to be marketed as a product on its own.  
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5. Conclusion 

Body weight of finisher pigs can be estimated based on body size measurements which can be 

obtained from an image. The most practical placement of the camera is above the pig. From a top 

view image, the whole-body area of the pig without the head, ears, and neck should be obtained. 

Different breeds have shown to have different correlation between measured body area and BW. 

The process of obtaining useful images and extract body measurements should be automated to 

get frequent BW measurements. The automation process contains methods of detecting when a 

pig is present in the scope of the camera, detecting the outline of the pig, segmentation of the pig’s 

parameter to obtain measurement, and finally a quality control of the process. In most studies, the 

body area of a pig is found by a threshold method by comparing the contrast between a dark 

background with a white pig. At farm level the camera to weigh the pigs can be placed above a 

passageway to obtain the BW while the pigs are moving past, or it can be placed above the feeder. 

Implementing a camera above the feeder in a pen is a practical method to obtain body 

measurements. Thus, it does not interfere with the farm personnel and does not require additional 

equipment in the pen. Frequent BW observations from an automatic weighing system needs to be 

filtered and analysed in order to obtain useful information. A DLM with Kalman filter can be used 

to filter BW data from both identified and unidentified pigs. Additionally, the forecast errors from 

the Kalman filter can be used to monitor growth in finisher pigs using a Cusum control chart. 

 

Based on the findings in the data analysis, it can be concluded that a DLM with Kalman filtering 

can be used to dynamically filter frequently obtained data from an automatic weighing system 

such as ProGrow. The estimates from the model was validated using data from a dataset which 

was not used to estimate the model parameters. Furthermore, a monitoring tool based on the 

prediction errors from the Kalman filter was designed to detect consistent negative growth. Thus, 

it can be used as an alarm system. The sensitiveness of the system can be set according to the 

farmer’s preferences. Because no information of undesired events was available from the herd data 

set, a scenario with simulated data was constructed to show the performance of the system. The 

warning system should be implemented in different farms to evaluate the performance further. 

 

Image weighing systems as the one used in the data analysis of this thesis, can be improved with 

higher accuracy or additional information. However, the cost and the durability of a system are 

important factors for the farmer. Therefore, the monitoring tool constructed in the data analysis of 

this thesis is constructed as an upgrade to an already proven system.  
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6. Perspectives 

In this thesis a DLM was modelled and a monitoring tool constructed. However, further studies 

should concern the implementation of the tool in commercial farms. Thus, the parameters used in 

the Cusum should be chosen based on the farmers preferences of number of alarms.  

 

The scope of this thesis was to detect abnormalities in growth of pigs. However, a DLM as the one 

constructed in the data analysis of this study, could also be applied with a forecast function. Thus, 

the day where the average pen weight reaches a certain threshold could be forecasted. This function 

could for example be used by the farm personnel to plan when a feed change should be made, a 

vaccination should be performed, or it could be used to forecast when the pigs are ready for 

marketing. Additionally, the forecast could be of great interest for the abattoir. Because, 

knowledge of the number of pigs which are ready for marketing in a certain time period could 

improve their ability to plan the number of pigs they could sell.   

 

Only BW data from finisher pigs was analysed in this study. However, if frequent obtained BW 

data is obtained, the methods could most likely also be used on BW data from weaning to 30 kg. 

However, the modelled parameters and variance components would have to be recalculated.  

 

Information of economic value of monitoring systems are scares. However, in this study the 

monitored trait is the BW gain which is the main product in meat production. Therefore, it would 

be possibly to estimate a cost of abnormalities using retrospectively analysis. Thus, if the system 

described in this study was implemented at multiples farms, the average cost of different mistakes 

could be known, and the economic value of the system could be estimated.   
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